The font tests use Jasmine too, so while they are technically unit
tests, it's a bit confusing to see `Started unit tests` when the font
tests are run on the bots.
The current font type/subtype detection code is quite inconsistent/unwieldy. In some cases it will simply assume that the font dictionary is correct, in others it will somewhat "arbitrarily" check the actual font file (more of these cases have been added over the years to fix specific bugs).
As is evident from e.g. issue 9949, the font type/subtype detection code is continuing to cause issues. In an attempt to get rid of these hacks once and for all, this patch instead re-factors the type/subtype detection to *always* parse the font file.
Please note that, as far as I can tell, we still appear to need to rely on the composite font detection based on the font dictionary. However, even if the composite/non-composite detection would get it wrong, that shouldn't really matter too much given that there's basically only two different code-paths (for "TrueType-like" vs "Type1-like" fonts).
The font in the PDF is marked as a CIDFontType0, but the font file is
actually a true type font. To fully address this issue we should really
peek into the font file and try to determine what it is. However, this
is the first case of this issue, so I think this solution is acceptable for
now.
Fixes a stupid oversight on my part, since /Filter may (obviously) contain an Array, which resulted in unnecessary console warning spam in perfectly valid PDF files.
Note that it still makes sense to check that /Filter is actually a Name, before attempting to access its `name` property, but the warning should definitely be removed.
This should really have been included in PR 9868, since it will help ensure that the `URL` constructor is correctly imported/exported by `src/shared/util.js`.
According to the PDF specification, see https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#page=45
> When using the JPXDecode filter with image XObjects, the following changes to and constraints on some entries in the image dictionary shall apply (see 8.9.5, "Image Dictionaries" for details on these entries):
>
> - Width and Height shall match the corresponding width and height values in the JPEG2000 data.
>
> - . . .
Hence it seems reasonable to use the Width/Height of the image data *itself*, rather than the image dictionary when there's a mismatch. Given that JPEG 2000 images are already being parsed, in order to obtain basic parameters, the actual Width/Height is readily available in the `PDFImage` constructor.
Given that the code is currently assuming that the /Filter entry is a `Name`, it cannot hurt to actually ensure that's the case.
Also fixes an error message, for JPEG 2000 images with unsupported ColorSpaces, since `this.numComps` hasn't been initialized when it's accessed during the `throw new Error()` invocation.
[api-minor] Add an `IsLinearized` property to the `PDFDocument.documentInfo` getter, to allow accessing the linearization status through the API (via `PDFDocumentProxy.getMetadata`)
Since PDF.js already supports range requests and streaming, not to mention chunked rendering, attempting to use the `Linearization` dictionary in `PDFDocument.getPage` probably isn't going to improve performance in any noticeable way.
Nonetheless, when `Linearization` data is available, it will allow looking up the first Page *directly* without having to descend into the `Pages` tree to find the correct object.
With the `builtInCMapCache` being a simple Object, it unfortunately means that the `Catalog.cleanup` method isn't resetting it as intended.
By just replacing the `builtInCMapCache` with an empty Object, existing references to it will not actually be updated. The result is that e.g. `Page` instances still keeps references to, what should have been removed, CMap data.
To fix these problems, the `builtInCMapCache` is converted into a `Map` instead (since it can be easily reset).
When updating Preferences using the `set` method, the input is carefully validated. However, no validation is (currently) done when a `BasePreferences` instance is created, which probably isn't that great. Hence this patch that simply ignores, to not unnecessarily break loading of the viewer itself, any invalid Preferences.
Given that the various Preferences are currently, and have been for quite some time, only used when initializing `PDFViewerApplication` re-loading them when a new PDF file is opened in the viewer is essentially a no-op.
Furthermore, with the only usage of `BasePreferences.reload` now gone, the value of that method seems questionable at best. In the event that the functionality is actually needed again, similar to the `ViewHistory`, it'd probably make more sense to simply replace `PDFViewerApplication.preferences` with a new `BasePreferences` instance instead (using e.g. `DefaultExternalServices.createPreferences`).
The `git` protocol is unencrypted which means other parties could potentially eavesdrop your traffic. `https` or `ssh` is often encouraged because of this. (For example, the Ruby package manager `bundler` prints a warning when `git` sources are being used.)
There was a (somewhat) recent question on IRC about accessing the linearization status of a PDF document, and this patch contains a simple way to expose that through already existing API methods.
Please note that during setup/parsing in `PDFDocument` the linearization data is already being fetched and parsed, provided of course that it exists. Hence this patch will *not* cause any additional data to be loaded.
With this file now being a proper (ES6) module, it's no longer (technically) necessary for this structure to be lazily initialized. Considering its size, and simplicity, I therefore cannot see the harm in letting `DocumentInfoValidators` just be simple Object instead.
While I'm not aware of any bugs caused by the current code, it cannot hurt to add an `isDict` check in `PDFDocument.documentInfo` (since the current code assumes that `infoDict` being defined implies it also being a Dictionary).
Finally, the patch also converts a couple of `var` to `let`/`const`.
Note first of all that `PDFDocument` will be initialized with either a `Stream` or a `ChunkedStream`, and that both of these have `length` getters. Secondly, the `PDFDocument` constructor will assert that the `stream` has a non-zero (and positive) length. Hence there's no point in checking `stream.length` in the `linearization` getter.
For most other `DecodeStream` based streams, we'll attempt to estimate the minimum `buffer` length based on the raw stream data. The purpose of this is to avoid having to unnecessarily re-size the `buffer`, thus reducing the number of *intermediate* allocations necessary when decoding the stream data.
However, currently no such optimization is attempted for `StreamsSequenceStream`, and given that they can often be quite large that seems unfortunate. To improve this, at least somewhat, this patch utilizes the raw sizes of the `StreamsSequenceStream` sub-streams to estimate the minimum required `buffer` length.
Most likely this patch won't have a huge effect on memory consumption, however for pathological cases it should help reduce peak memory usage slightly.
One example is the PDF file in issue 2813, where currently the `StreamsSequenceStream` instances would grow their `buffer`s as `2 MiB -> 4 MiB -> 8 MiB -> 16 MiB -> 32 MiB`. With this patch, the same stream `buffers`s grow as `8 MiB -> 16 MiB -> 32 MiB`, thus avoiding a total of `12 MiB` of *intermediate* allocations (since there's two `StreamsSequenceStream` used, for rendering/text-extraction).