pdf.js/src/jpx.js
Yury Delendik 75e928c102 Merge pull request #2058 from Pimm/master
Small fixes for normal and potential post-compilation bugs
2012-09-20 11:36:55 -07:00

1890 lines
68 KiB
JavaScript

/* -*- Mode: Java; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set shiftwidth=2 tabstop=2 autoindent cindent expandtab: */
/* Copyright 2012 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
var JpxImage = (function JpxImageClosure() {
// Table E.1
var SubbandsGainLog2 = {
'LL': 0,
'LH': 1,
'HL': 1,
'HH': 2
};
function JpxImage() {
this.failOnCorruptedImage = false;
}
JpxImage.prototype = {
load: function JpxImage_load(url) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, true);
xhr.responseType = 'arraybuffer';
xhr.onload = (function() {
// TODO catch parse error
var data = new Uint8Array(xhr.response || xhr.mozResponseArrayBuffer);
this.parse(data);
if (this.onload)
this.onload();
}).bind(this);
xhr.send(null);
},
parse: function JpxImage_parse(data) {
function ReadUint(data, offset, bytes) {
var n = 0;
for (var i = 0; i < bytes; i++)
n = n * 256 + (data[offset + i] & 0xFF);
return n;
}
var position = 0, length = data.length;
while (position < length) {
var headerSize = 8;
var lbox = ReadUint(data, position, 4);
var tbox = ReadUint(data, position + 4, 4);
position += headerSize;
if (lbox == 1) {
lbox = ReadUint(data, position, 8);
position += 8;
headerSize += 8;
}
if (lbox == 0)
lbox = length - position + headerSize;
if (lbox < headerSize)
error('JPX error: Invalid box field size');
var dataLength = lbox - headerSize;
var jumpDataLength = true;
switch (tbox) {
case 0x6A501A1A: // 'jP\032\032'
// TODO
break;
case 0x6A703268: // 'jp2h'
jumpDataLength = false; // parsing child boxes
break;
case 0x636F6C72: // 'colr'
// TODO
break;
case 0x6A703263: // 'jp2c'
this.parseCodestream(data, position, position + dataLength);
break;
}
if (jumpDataLength)
position += dataLength;
}
},
parseCodestream: function JpxImage_parseCodestream(data, start, end) {
var context = {};
try {
var position = start;
while (position < end) {
var code = readUint16(data, position);
position += 2;
var length = 0, j;
switch (code) {
case 0xFF4F: // Start of codestream (SOC)
context.mainHeader = true;
break;
case 0xFFD9: // End of codestream (EOC)
break;
case 0xFF51: // Image and tile size (SIZ)
length = readUint16(data, position);
var siz = {};
siz.Xsiz = readUint32(data, position + 4);
siz.Ysiz = readUint32(data, position + 8);
siz.XOsiz = readUint32(data, position + 12);
siz.YOsiz = readUint32(data, position + 16);
siz.XTsiz = readUint32(data, position + 20);
siz.YTsiz = readUint32(data, position + 24);
siz.XTOsiz = readUint32(data, position + 28);
siz.YTOsiz = readUint32(data, position + 32);
var componentsCount = readUint16(data, position + 36);
siz.Csiz = componentsCount;
var components = [];
j = position + 38;
for (var i = 0; i < componentsCount; i++) {
var component = {
precision: (data[j] & 0x7F) + 1,
isSigned: !!(data[j] & 0x80),
XRsiz: data[j + 1],
YRsiz: data[j + 1]
};
calculateComponentDimensions(component, siz);
components.push(component);
}
context.SIZ = siz;
context.components = components;
calculateTileGrids(context, components);
context.QCC = [];
context.COC = [];
break;
case 0xFF5C: // Quantization default (QCD)
length = readUint16(data, position);
var qcd = {};
j = position + 2;
var sqcd = data[j++];
var spqcdSize, scalarExpounded;
switch (sqcd & 0x1F) {
case 0:
spqcdSize = 8;
scalarExpounded = true;
break;
case 1:
spqcdSize = 16;
scalarExpounded = false;
break;
case 2:
spqcdSize = 16;
scalarExpounded = true;
break;
default:
throw 'Invalid SQcd value ' + sqcd;
}
qcd.noQuantization = spqcdSize == 8;
qcd.scalarExpounded = scalarExpounded;
qcd.guardBits = sqcd >> 5;
var spqcds = [];
while (j < length + position) {
var spqcd = {};
if (spqcdSize == 8) {
spqcd.epsilon = data[j++] >> 3;
spqcd.mu = 0;
} else {
spqcd.epsilon = data[j] >> 3;
spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1];
j += 2;
}
spqcds.push(spqcd);
}
qcd.SPqcds = spqcds;
if (context.mainHeader)
context.QCD = qcd;
else {
context.currentTile.QCD = qcd;
context.currentTile.QCC = [];
}
break;
case 0xFF5D: // Quantization component (QCC)
length = readUint16(data, position);
var qcc = {};
j = position + 2;
var cqcc;
if (context.SIZ.Csiz < 257)
cqcc = data[j++];
else {
cqcc = readUint16(data, j);
j += 2;
}
var sqcd = data[j++];
var spqcdSize, scalarExpounded;
switch (sqcd & 0x1F) {
case 0:
spqcdSize = 8;
scalarExpounded = true;
break;
case 1:
spqcdSize = 16;
scalarExpounded = false;
break;
case 2:
spqcdSize = 16;
scalarExpounded = true;
break;
default:
throw 'Invalid SQcd value ' + sqcd;
}
qcc.noQuantization = spqcdSize == 8;
qcc.scalarExpounded = scalarExpounded;
qcc.guardBits = sqcd >> 5;
var spqcds = [];
while (j < length + position) {
var spqcd = {};
if (spqcdSize == 8) {
spqcd.epsilon = data[j++] >> 3;
spqcd.mu = 0;
} else {
spqcd.epsilon = data[j] >> 3;
spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1];
j += 2;
}
spqcds.push(spqcd);
}
qcc.SPqcds = spqcds;
if (context.mainHeader)
context.QCC[cqcc] = qcc;
else
context.currentTile.QCC[cqcc] = qcc;
break;
case 0xFF52: // Coding style default (COD)
length = readUint16(data, position);
var cod = {};
j = position + 2;
var scod = data[j++];
cod.entropyCoderWithCustomPrecincts = !!(scod & 1);
cod.sopMarkerUsed = !!(scod & 2);
cod.ephMarkerUsed = !!(scod & 4);
var codingStyle = {};
cod.progressionOrder = data[j++];
cod.layersCount = readUint16(data, j);
j += 2;
cod.multipleComponentTransform = data[j++];
cod.decompositionLevelsCount = data[j++];
cod.xcb = (data[j++] & 0xF) + 2;
cod.ycb = (data[j++] & 0xF) + 2;
var blockStyle = data[j++];
cod.selectiveArithmeticCodingBypass = !!(blockStyle & 1);
cod.resetContextProbabilities = !!(blockStyle & 2);
cod.terminationOnEachCodingPass = !!(blockStyle & 4);
cod.verticalyStripe = !!(blockStyle & 8);
cod.predictableTermination = !!(blockStyle & 16);
cod.segmentationSymbolUsed = !!(blockStyle & 32);
cod.transformation = data[j++];
if (cod.entropyCoderWithCustomPrecincts) {
var precinctsSizes = {};
while (j < length + position) {
var precinctsSize = data[j];
precinctsSizes.push({
PPx: precinctsSize & 0xF,
PPy: precinctsSize >> 4
});
}
cod.precinctsSizes = precinctsSizes;
}
if (cod.sopMarkerUsed || cod.ephMarkerUsed ||
cod.selectiveArithmeticCodingBypass ||
cod.resetContextProbabilities ||
cod.terminationOnEachCodingPass ||
cod.verticalyStripe || cod.predictableTermination)
throw 'Unsupported COD options: ' +
globalScope.JSON.stringify(cod);
if (context.mainHeader)
context.COD = cod;
else {
context.currentTile.COD = cod;
context.currentTile.COC = [];
}
break;
case 0xFF90: // Start of tile-part (SOT)
length = readUint16(data, position);
var tile = {};
tile.index = readUint16(data, position + 2);
tile.length = readUint32(data, position + 4);
tile.dataEnd = tile.length + position - 2;
tile.partIndex = data[position + 8];
tile.partsCount = data[position + 9];
context.mainHeader = false;
if (tile.partIndex == 0) {
// reset component specific settings
tile.COD = context.COD;
tile.COC = context.COC.slice(0); // clone of the global COC
tile.QCD = context.QCD;
tile.QCC = context.QCC.slice(0); // clone of the global COC
}
context.currentTile = tile;
break;
case 0xFF93: // Start of data (SOD)
var tile = context.currentTile;
if (tile.partIndex == 0) {
initializeTile(context, tile.index);
buildPackets(context);
}
// moving to the end of the data
length = tile.dataEnd - position;
parseTilePackets(context, data, position, length);
break;
case 0xFF64: // Comment (COM)
length = readUint16(data, position);
// skipping content
break;
default:
throw 'Unknown codestream code: ' + code.toString(16);
}
position += length;
}
} catch (e) {
if (this.failOnCorruptedImage)
error('JPX error: ' + e);
else
warn('JPX error: ' + e + '. Trying to recover');
}
this.tiles = transformComponents(context);
this.width = context.SIZ.Xsiz - context.SIZ.XOsiz;
this.height = context.SIZ.Ysiz - context.SIZ.YOsiz;
this.componentsCount = context.SIZ.Csiz;
}
};
function readUint32(data, offset) {
return (data[offset] << 24) | (data[offset + 1] << 16) |
(data[offset + 2] << 8) | data[offset + 3];
}
function readUint16(data, offset) {
return (data[offset] << 8) | data[offset + 1];
}
function log2(x) {
var n = 1, i = 0;
while (x > n) {
n <<= 1;
i++;
}
return i;
}
function calculateComponentDimensions(component, siz) {
// Section B.2 Component mapping
component.x0 = Math.ceil(siz.XOsiz / component.XRsiz);
component.x1 = Math.ceil(siz.Xsiz / component.XRsiz);
component.y0 = Math.ceil(siz.YOsiz / component.YRsiz);
component.y1 = Math.ceil(siz.Ysiz / component.YRsiz);
component.width = component.x1 - component.x0;
component.height = component.y1 - component.y0;
}
function calculateTileGrids(context, components) {
var siz = context.SIZ;
// Section B.3 Division into tile and tile-components
var tiles = [];
var numXtiles = Math.ceil((siz.Xsiz - siz.XTOsiz) / siz.XTsiz);
var numYtiles = Math.ceil((siz.Ysiz - siz.YTOsiz) / siz.YTsiz);
for (var q = 0; q < numYtiles; q++) {
for (var p = 0; p < numXtiles; p++) {
var tile = {};
tile.tx0 = Math.max(siz.XTOsiz + p * siz.XTsiz, siz.XOsiz);
tile.ty0 = Math.max(siz.YTOsiz + q * siz.YTsiz, siz.YOsiz);
tile.tx1 = Math.min(siz.XTOsiz + (p + 1) * siz.XTsiz, siz.Xsiz);
tile.ty1 = Math.min(siz.YTOsiz + (q + 1) * siz.YTsiz, siz.Ysiz);
tile.width = tile.tx1 - tile.tx0;
tile.height = tile.ty1 - tile.ty0;
tile.components = [];
tiles.push(tile);
}
}
context.tiles = tiles;
var componentsCount = siz.Csiz;
for (var i = 0, ii = componentsCount; i < ii; i++) {
var component = components[i];
var tileComponents = [];
for (var j = 0, jj = tiles.length; j < jj; j++) {
var tileComponent = {}, tile = tiles[j];
tileComponent.tcx0 = Math.ceil(tile.tx0 / component.XRsiz);
tileComponent.tcy0 = Math.ceil(tile.ty0 / component.YRsiz);
tileComponent.tcx1 = Math.ceil(tile.tx1 / component.XRsiz);
tileComponent.tcy1 = Math.ceil(tile.ty1 / component.YRsiz);
tileComponent.width = tileComponent.tcx1 - tileComponent.tcx0;
tileComponent.height = tileComponent.tcy1 - tileComponent.tcy0;
tile.components[i] = tileComponent;
}
}
}
function getBlocksDimensions(context, component, r) {
var codOrCoc = component.codingStyleParameters;
var result = {};
if (!codOrCoc.entropyCoderWithCustomPrecincts) {
result.PPx = 15;
result.PPy = 15;
} else {
result.PPx = codOrCoc.precinctsSizes[r].PPx;
result.PPy = codOrCoc.precinctsSizes[r].PPy;
}
// calculate codeblock size as described in section B.7
result.xcb_ = r > 0 ? Math.min(codOrCoc.xcb, result.PPx - 1) :
Math.min(codOrCoc.xcb, result.PPx);
result.ycb_ = r > 0 ? Math.min(codOrCoc.ycb, result.PPy - 1) :
Math.min(codOrCoc.ycb, result.PPy);
return result;
}
function buildPrecincts(context, resolution, dimensions) {
// Section B.6 Division resolution to precincts
var precinctWidth = 1 << dimensions.PPx;
var precinctHeight = 1 << dimensions.PPy;
var numprecinctswide = resolution.trx1 > resolution.trx0 ?
Math.ceil(resolution.trx1 / precinctWidth) -
Math.floor(resolution.trx0 / precinctWidth) : 0;
var numprecinctshigh = resolution.try1 > resolution.try0 ?
Math.ceil(resolution.try1 / precinctHeight) -
Math.floor(resolution.try0 / precinctHeight) : 0;
var numprecincts = numprecinctswide * numprecinctshigh;
var precinctXOffset = Math.floor(resolution.trx0 / precinctWidth) *
precinctWidth;
var precinctYOffset = Math.floor(resolution.try0 / precinctHeight) *
precinctHeight;
resolution.precinctParameters = {
precinctXOffset: precinctXOffset,
precinctYOffset: precinctYOffset,
precinctWidth: precinctWidth,
precinctHeight: precinctHeight,
numprecinctswide: numprecinctswide,
numprecinctshigh: numprecinctshigh,
numprecincts: numprecincts
};
}
function buildCodeblocks(context, subband, dimensions) {
// Section B.7 Division sub-band into code-blocks
var xcb_ = dimensions.xcb_;
var ycb_ = dimensions.ycb_;
var codeblockWidth = 1 << xcb_;
var codeblockHeight = 1 << ycb_;
var cbx0 = Math.floor(subband.tbx0 / codeblockWidth);
var cby0 = Math.floor(subband.tby0 / codeblockHeight);
var cbx1 = Math.ceil(subband.tbx1 / codeblockWidth);
var cby1 = Math.ceil(subband.tby1 / codeblockHeight);
var precinctParameters = subband.resolution.precinctParameters;
var codeblocks = [];
var precincts = [];
for (var j = cby0; j < cby1; j++) {
for (var i = cbx0; i < cbx1; i++) {
var codeblock = {
cbx: i,
cby: j,
tbx0: codeblockWidth * i,
tby0: codeblockHeight * j,
tbx1: codeblockWidth * (i + 1),
tby1: codeblockHeight * (j + 1)
};
// calculate precinct number
var pi = Math.floor((codeblock.tbx0 -
precinctParameters.precinctXOffset) /
precinctParameters.precinctWidth);
var pj = Math.floor((codeblock.tby0 -
precinctParameters.precinctYOffset) /
precinctParameters.precinctHeight);
var precinctNumber = pj +
pi * precinctParameters.numprecinctswide;
codeblock.tbx0_ = Math.max(subband.tbx0, codeblock.tbx0);
codeblock.tby0_ = Math.max(subband.tby0, codeblock.tby0);
codeblock.tbx1_ = Math.min(subband.tbx1, codeblock.tbx1);
codeblock.tby1_ = Math.min(subband.tby1, codeblock.tby1);
codeblock.precinctNumber = precinctNumber;
codeblock.subbandType = subband.type;
var coefficientsLength = (codeblock.tbx1_ - codeblock.tbx0_) *
(codeblock.tby1_ - codeblock.tby0_);
codeblock.Lblock = 3;
codeblocks.push(codeblock);
// building precinct for the sub-band
var precinct;
if (precinctNumber in precincts) {
precinct = precincts[precinctNumber];
precinct.cbxMin = Math.min(precinct.cbxMin, i);
precinct.cbyMin = Math.min(precinct.cbyMin, j);
precinct.cbxMax = Math.max(precinct.cbxMax, i);
precinct.cbyMax = Math.max(precinct.cbyMax, j);
} else {
precincts[precinctNumber] = precinct = {
cbxMin: i,
cbyMin: j,
cbxMax: i,
cbyMax: j
};
}
codeblock.precinct = precinct;
}
}
subband.codeblockParameters = {
codeblockWidth: xcb_,
codeblockHeight: ycb_,
numcodeblockwide: cbx1 - cbx0 + 1,
numcodeblockhigh: cby1 - cby1 + 1
};
subband.codeblocks = codeblocks;
for (var i = 0, ii = codeblocks.length; i < ii; i++) {
var codeblock = codeblocks[i];
var precinctNumber = codeblock.precinctNumber;
}
subband.precincts = precincts;
}
function createPacket(resolution, precinctNumber, layerNumber) {
var precinctCodeblocks = [];
// Section B.10.8 Order of info in packet
var subbands = resolution.subbands;
// sub-bands already ordered in 'LL', 'HL', 'LH', and 'HH' sequence
for (var i = 0, ii = subbands.length; i < ii; i++) {
var subband = subbands[i];
var codeblocks = subband.codeblocks;
for (var j = 0, jj = codeblocks.length; j < jj; j++) {
var codeblock = codeblocks[j];
if (codeblock.precinctNumber != precinctNumber)
continue;
precinctCodeblocks.push(codeblock);
}
}
return {
layerNumber: layerNumber,
codeblocks: precinctCodeblocks
};
}
function LayerResolutionComponentPositionIterator(context) {
var siz = context.SIZ;
var tileIndex = context.currentTile.index;
var tile = context.tiles[tileIndex];
var layersCount = tile.codingStyleDefaultParameters.layersCount;
var componentsCount = siz.Csiz;
var maxDecompositionLevelsCount = 0;
for (var q = 0; q < componentsCount; q++) {
maxDecompositionLevelsCount = Math.max(maxDecompositionLevelsCount,
tile.components[q].codingStyleParameters.decompositionLevelsCount);
}
var l = 0, r = 0, i = 0, k = 0;
this.nextPacket = function JpxImage_nextPacket() {
// Section B.12.1.1 Layer-resolution-component-position
for (; l < layersCount; l++) {
for (; r <= maxDecompositionLevelsCount; r++) {
for (; i < componentsCount; i++) {
var component = tile.components[i];
if (r > component.codingStyleParameters.decompositionLevelsCount)
continue;
var resolution = component.resolutions[r];
var numprecincts = resolution.precinctParameters.numprecincts;
for (; k < numprecincts;) {
var packet = createPacket(resolution, k, l);
k++;
return packet;
}
k = 0;
}
i = 0;
}
r = 0;
}
throw 'Out of packets';
};
}
function ResolutionLayerComponentPositionIterator(context) {
var siz = context.SIZ;
var tileIndex = context.currentTile.index;
var tile = context.tiles[tileIndex];
var layersCount = tile.codingStyleDefaultParameters.layersCount;
var componentsCount = siz.Csiz;
var maxDecompositionLevelsCount = 0;
for (var q = 0; q < componentsCount; q++) {
maxDecompositionLevelsCount = Math.max(maxDecompositionLevelsCount,
tile.components[q].codingStyleParameters.decompositionLevelsCount);
}
var r = 0, l = 0, i = 0, k = 0;
this.nextPacket = function JpxImage_nextPacket() {
// Section B.12.1.2 Resolution-layer-component-position
for (; r <= maxDecompositionLevelsCount; r++) {
for (; l < layersCount; l++) {
for (; i < componentsCount; i++) {
var component = tile.components[i];
if (r > component.codingStyleParameters.decompositionLevelsCount)
continue;
var resolution = component.resolutions[r];
var numprecincts = resolution.precinctParameters.numprecincts;
for (; k < numprecincts;) {
var packet = createPacket(resolution, k, l);
k++;
return packet;
}
k = 0;
}
i = 0;
}
l = 0;
}
throw 'Out of packets';
};
}
function buildPackets(context) {
var siz = context.SIZ;
var tileIndex = context.currentTile.index;
var tile = context.tiles[tileIndex];
var componentsCount = siz.Csiz;
// Creating resolutions and sub-bands for each component
for (var c = 0; c < componentsCount; c++) {
var component = tile.components[c];
var decompositionLevelsCount =
component.codingStyleParameters.decompositionLevelsCount;
// Section B.5 Resolution levels and sub-bands
var resolutions = [];
var subbands = [];
for (var r = 0; r <= decompositionLevelsCount; r++) {
var blocksDimensions = getBlocksDimensions(context, component, r);
var resolution = {};
var scale = 1 << (decompositionLevelsCount - r);
resolution.trx0 = Math.ceil(component.tcx0 / scale);
resolution.try0 = Math.ceil(component.tcy0 / scale);
resolution.trx1 = Math.ceil(component.tcx1 / scale);
resolution.try1 = Math.ceil(component.tcy1 / scale);
buildPrecincts(context, resolution, blocksDimensions);
resolutions.push(resolution);
var subband;
if (r == 0) {
// one sub-band (LL) with last decomposition
subband = {};
subband.type = 'LL';
subband.tbx0 = Math.ceil(component.tcx0 / scale);
subband.tby0 = Math.ceil(component.tcy0 / scale);
subband.tbx1 = Math.ceil(component.tcx1 / scale);
subband.tby1 = Math.ceil(component.tcy1 / scale);
subband.resolution = resolution;
buildCodeblocks(context, subband, blocksDimensions);
subbands.push(subband);
resolution.subbands = [subband];
} else {
var bscale = 1 << (decompositionLevelsCount - r + 1);
var resolutionSubbands = [];
// three sub-bands (HL, LH and HH) with rest of decompositions
subband = {};
subband.type = 'HL';
subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5);
subband.tby0 = Math.ceil(component.tcy0 / bscale);
subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5);
subband.tby1 = Math.ceil(component.tcy1 / bscale);
subband.resolution = resolution;
buildCodeblocks(context, subband, blocksDimensions);
subbands.push(subband);
resolutionSubbands.push(subband);
subband = {};
subband.type = 'LH';
subband.tbx0 = Math.ceil(component.tcx0 / bscale);
subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5);
subband.tbx1 = Math.ceil(component.tcx1 / bscale);
subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5);
subband.resolution = resolution;
buildCodeblocks(context, subband, blocksDimensions);
subbands.push(subband);
resolutionSubbands.push(subband);
subband = {};
subband.type = 'HH';
subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5);
subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5);
subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5);
subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5);
subband.resolution = resolution;
buildCodeblocks(context, subband, blocksDimensions);
subbands.push(subband);
resolutionSubbands.push(subband);
resolution.subbands = resolutionSubbands;
}
}
component.resolutions = resolutions;
component.subbands = subbands;
}
// Generate the packets sequence
var progressionOrder = tile.codingStyleDefaultParameters.progressionOrder;
var packetsIterator;
switch (progressionOrder) {
case 0:
tile.packetsIterator =
new LayerResolutionComponentPositionIterator(context);
break;
case 1:
tile.packetsIterator =
new ResolutionLayerComponentPositionIterator(context);
break;
default:
throw 'Unsupported progression order ' + progressionOrder;
}
}
function parseTilePackets(context, data, offset, dataLength) {
var position = 0;
var buffer, bufferSize = 0, skipNextBit = false;
function readBits(count) {
while (bufferSize < count) {
var b = data[offset + position];
position++;
if (skipNextBit) {
buffer = (buffer << 7) | b;
bufferSize += 7;
skipNextBit = false;
} else {
buffer = (buffer << 8) | b;
bufferSize += 8;
}
if (b == 0xFF) {
skipNextBit = true;
}
}
bufferSize -= count;
return (buffer >>> bufferSize) & ((1 << count) - 1);
}
function alignToByte() {
bufferSize = 0;
if (skipNextBit) {
position++;
skipNextBit = false;
}
}
function readCodingpasses() {
var value = readBits(1);
if (value == 0)
return 1;
value = (value << 1) | readBits(1);
if (value == 0x02)
return 2;
value = (value << 2) | readBits(2);
if (value <= 0x0E)
return (value & 0x03) + 3;
value = (value << 5) | readBits(5);
if (value <= 0x1FE)
return (value & 0x1F) + 6;
value = (value << 7) | readBits(7);
return (value & 0x7F) + 37;
}
var tileIndex = context.currentTile.index;
var tile = context.tiles[tileIndex];
var packetsIterator = tile.packetsIterator;
while (position < dataLength) {
var packet = packetsIterator.nextPacket();
if (!readBits(1)) {
alignToByte();
continue;
}
var layerNumber = packet.layerNumber;
var queue = [];
for (var i = 0, ii = packet.codeblocks.length; i < ii; i++) {
var codeblock = packet.codeblocks[i];
var precinct = codeblock.precinct;
var codeblockColumn = codeblock.cbx - precinct.cbxMin;
var codeblockRow = codeblock.cby - precinct.cbyMin;
var codeblockIncluded = false;
var firstTimeInclusion = false;
if ('included' in codeblock) {
codeblockIncluded = !!readBits(1);
} else {
// reading inclusion tree
var precinct = codeblock.precinct;
var inclusionTree, zeroBitPlanesTree;
if ('inclusionTree' in precinct) {
inclusionTree = precinct.inclusionTree;
} else {
// building inclusion and zero bit-planes trees
var width = precinct.cbxMax - precinct.cbxMin + 1;
var height = precinct.cbyMax - precinct.cbyMin + 1;
inclusionTree = new InclusionTree(width, height, layerNumber);
zeroBitPlanesTree = new TagTree(width, height);
precinct.inclusionTree = inclusionTree;
precinct.zeroBitPlanesTree = zeroBitPlanesTree;
}
if (inclusionTree.reset(codeblockColumn, codeblockRow, layerNumber)) {
while (true) {
if (readBits(1)) {
var valueReady = !inclusionTree.nextLevel();
if (valueReady) {
codeblock.included = true;
codeblockIncluded = firstTimeInclusion = true;
break;
}
} else {
inclusionTree.incrementValue(layerNumber);
break;
}
}
}
}
if (!codeblockIncluded)
continue;
if (firstTimeInclusion) {
zeroBitPlanesTree = precinct.zeroBitPlanesTree;
zeroBitPlanesTree.reset(codeblockColumn, codeblockRow);
while (true) {
if (readBits(1)) {
var valueReady = !zeroBitPlanesTree.nextLevel();
if (valueReady)
break;
} else
zeroBitPlanesTree.incrementValue();
}
codeblock.zeroBitPlanes = zeroBitPlanesTree.value;
}
var codingpasses = readCodingpasses();
while (readBits(1))
codeblock.Lblock++;
var codingpassesLog2 = log2(codingpasses);
// rounding down log2
var bits = ((codingpasses < (1 << codingpassesLog2)) ?
codingpassesLog2 - 1 : codingpassesLog2) + codeblock.Lblock;
var codedDataLength = readBits(bits);
queue.push({
codeblock: codeblock,
codingpasses: codingpasses,
dataLength: codedDataLength
});
}
alignToByte();
while (queue.length > 0) {
var packetItem = queue.shift();
var codeblock = packetItem.codeblock;
if (!('data' in codeblock))
codeblock.data = [];
codeblock.data.push({
data: data,
start: offset + position,
end: offset + position + packetItem.dataLength,
codingpasses: packetItem.codingpasses
});
position += packetItem.dataLength;
}
}
return position;
}
function copyCoefficients(coefficients, x0, y0, width, height,
delta, mb, codeblocks, transformation,
segmentationSymbolUsed) {
var r = 0.5; // formula (E-6)
for (var i = 0, ii = codeblocks.length; i < ii; ++i) {
var codeblock = codeblocks[i];
var blockWidth = codeblock.tbx1_ - codeblock.tbx0_;
var blockHeight = codeblock.tby1_ - codeblock.tby0_;
if (blockWidth == 0 || blockHeight == 0)
continue;
if (!('data' in codeblock))
continue;
var bitModel, currentCodingpassType;
bitModel = new BitModel(blockWidth, blockHeight, codeblock.subbandType,
codeblock.zeroBitPlanes);
currentCodingpassType = 2; // first bit plane starts from cleanup
// collect data
var data = codeblock.data, totalLength = 0, codingpasses = 0;
for (var q = 0, qq = data.length; q < qq; q++) {
var dataItem = data[q];
totalLength += dataItem.end - dataItem.start;
codingpasses += dataItem.codingpasses;
}
var encodedData = new Uint8Array(totalLength), k = 0;
for (var q = 0, qq = data.length; q < qq; q++) {
var dataItem = data[q];
var chunk = dataItem.data.subarray(dataItem.start, dataItem.end);
encodedData.set(chunk, k);
k += chunk.length;
}
// decoding the item
var decoder = new ArithmeticDecoder(encodedData, 0, totalLength);
bitModel.setDecoder(decoder);
for (var q = 0; q < codingpasses; q++) {
switch (currentCodingpassType) {
case 0:
bitModel.runSignificancePropogationPass();
break;
case 1:
bitModel.runMagnitudeRefinementPass();
break;
case 2:
bitModel.runCleanupPass();
if (segmentationSymbolUsed)
bitModel.checkSegmentationSymbol();
break;
}
currentCodingpassType = (currentCodingpassType + 1) % 3;
}
var offset = (codeblock.tbx0_ - x0) + (codeblock.tby0_ - y0) * width;
var position = 0;
for (var j = 0; j < blockHeight; j++) {
for (var k = 0; k < blockWidth; k++) {
var n = (bitModel.coefficentsSign[position] ? -1 : 1) *
bitModel.coefficentsMagnitude[position];
var nb = bitModel.bitsDecoded[position], correction;
if (transformation == 0 || mb > nb) {
// use r only if transformation is irreversible or
// not all bitplanes were decoded for reversible transformation
n += n < 0 ? n - r : n > 0 ? n + r : 0;
correction = 1 << (mb - nb);
} else
correction = 1;
coefficients[offset++] = n * correction * delta;
position++;
}
offset += width - blockWidth;
}
}
}
function transformTile(context, tile, c) {
var component = tile.components[c];
var codingStyleParameters = component.codingStyleParameters;
var quantizationParameters = component.quantizationParameters;
var decompositionLevelsCount =
codingStyleParameters.decompositionLevelsCount;
var spqcds = quantizationParameters.SPqcds;
var scalarExpounded = quantizationParameters.scalarExpounded;
var guardBits = quantizationParameters.guardBits;
var transformation = codingStyleParameters.transformation;
var segmentationSymbolUsed = codingStyleParameters.segmentationSymbolUsed;
var precision = context.components[c].precision;
var subbandCoefficients = [];
var k = 0, b = 0;
for (var i = 0; i <= decompositionLevelsCount; i++) {
var resolution = component.resolutions[i];
for (var j = 0, jj = resolution.subbands.length; j < jj; j++) {
var mu, epsilon;
if (!scalarExpounded) {
// formula E-5
mu = spqcds[0].mu;
epsilon = spqcds[0].epsilon + (i > 0 ? 1 - i : 0);
} else {
mu = spqcds[b].mu;
epsilon = spqcds[b].epsilon;
}
var subband = resolution.subbands[j];
var width = subband.tbx1 - subband.tbx0;
var height = subband.tby1 - subband.tby0;
var gainLog2 = SubbandsGainLog2[subband.type];
// calulate quantization coefficient (Section E.1.1.1)
var delta = Math.pow(2, (precision + gainLog2) - epsilon) *
(1 + mu / 2048);
var mb = (guardBits + epsilon - 1);
var coefficients = new Float32Array(width * height);
copyCoefficients(coefficients, subband.tbx0, subband.tby0,
width, height, delta, mb, subband.codeblocks, transformation,
segmentationSymbolUsed);
subbandCoefficients.push({
width: width,
height: height,
items: coefficients
});
b++;
}
}
var transformation = codingStyleParameters.transformation;
var transform = transformation == 0 ? new IrreversibleTransform() :
new ReversibleTransform();
var result = transform.calculate(subbandCoefficients,
component.tcx0, component.tcy0);
return {
left: component.tcx0,
top: component.tcy0,
width: result.width,
height: result.height,
items: result.items
};
}
function transformComponents(context) {
var siz = context.SIZ;
var components = context.components;
var componentsCount = siz.Csiz;
var resultImages = [];
for (var i = 0, ii = context.tiles.length; i < ii; i++) {
var tile = context.tiles[i];
var result = [];
for (var c = 0; c < componentsCount; c++) {
var image = transformTile(context, tile, c);
result.push(image);
}
// Section G.2.2 Inverse multi component transform
if (tile.codingStyleDefaultParameters.multipleComponentTransform) {
var y0items = result[0].items;
var y1items = result[1].items;
var y2items = result[2].items;
for (var j = 0, jj = y0items.length; j < jj; j++) {
var y0 = y0items[j], y1 = y1items[j], y2 = y2items[j];
var i1 = y0 - ((y2 + y1) >> 2);
y1items[j] = i1;
y0items[j] = y2 + i1;
y2items[j] = y1 + i1;
}
}
// Section G.1 DC level shifting to unsigned component values
for (var c = 0; c < componentsCount; c++) {
var component = components[c];
if (component.isSigned)
continue;
var offset = 1 << (component.precision - 1);
var tileImage = result[c];
var items = tileImage.items;
for (var j = 0, jj = items.length; j < jj; j++)
items[j] += offset;
}
// To simplify things: shift and clamp output to 8 bit unsigned
for (var c = 0; c < componentsCount; c++) {
var component = components[c];
var offset = component.isSigned ? 128 : 0;
var shift = component.precision - 8;
var tileImage = result[c];
var items = tileImage.items;
var data = new Uint8Array(items.length);
for (var j = 0, jj = items.length; j < jj; j++) {
var value = (items[j] >> shift) + offset;
data[j] = value < 0 ? 0 : value > 255 ? 255 : value;
}
result[c].items = data;
}
resultImages.push(result);
}
return resultImages;
}
function initializeTile(context, tileIndex) {
var siz = context.SIZ;
var componentsCount = siz.Csiz;
var tile = context.tiles[tileIndex];
var resultTiles = [];
for (var c = 0; c < componentsCount; c++) {
var component = tile.components[c];
var qcdOrQcc = c in context.currentTile.QCC ?
context.currentTile.QCC[c] : context.currentTile.QCD;
component.quantizationParameters = qcdOrQcc;
var codOrCoc = c in context.currentTile.COC ?
context.currentTile.COC[c] : context.currentTile.COD;
component.codingStyleParameters = codOrCoc;
}
tile.codingStyleDefaultParameters = context.currentTile.COD;
}
// Section B.10.2 Tag trees
var TagTree = (function TagTreeClosure() {
function TagTree(width, height) {
var levelsLength = log2(Math.max(width, height)) + 1;
this.levels = [];
for (var i = 0; i < levelsLength; i++) {
var level = {
width: width,
height: height,
items: []
};
this.levels.push(level);
width = Math.ceil(width / 2);
height = Math.ceil(height / 2);
}
}
TagTree.prototype = {
reset: function TagTree_reset(i, j) {
var currentLevel = 0, value = 0;
while (currentLevel < this.levels.length) {
var level = this.levels[currentLevel];
var index = i + j * level.width;
if (index in level.items) {
value = level.items[index];
break;
}
level.index = index;
i >>= 1;
j >>= 1;
currentLevel++;
}
currentLevel--;
var level = this.levels[currentLevel];
level.items[level.index] = value;
this.currentLevel = currentLevel;
delete this.value;
},
incrementValue: function TagTree_incrementValue() {
var level = this.levels[this.currentLevel];
level.items[level.index]++;
},
nextLevel: function TagTree_nextLevel() {
var currentLevel = this.currentLevel;
var level = this.levels[currentLevel];
var value = level.items[level.index];
currentLevel--;
if (currentLevel < 0) {
this.value = value;
return false;
}
this.currentLevel = currentLevel;
var level = this.levels[currentLevel];
level.items[level.index] = value;
return true;
}
};
return TagTree;
})();
var InclusionTree = (function InclusionTreeClosure() {
function InclusionTree(width, height, defaultValue) {
var levelsLength = log2(Math.max(width, height)) + 1;
this.levels = [];
for (var i = 0; i < levelsLength; i++) {
var items = new Uint8Array(width * height);
for (var j = 0, jj = items.length; j < jj; j++)
items[j] = defaultValue;
var level = {
width: width,
height: height,
items: items
};
this.levels.push(level);
width = Math.ceil(width / 2);
height = Math.ceil(height / 2);
}
}
InclusionTree.prototype = {
reset: function InclusionTree_reset(i, j, stopValue) {
var currentLevel = 0;
while (currentLevel < this.levels.length) {
var level = this.levels[currentLevel];
var index = i + j * level.width;
level.index = index;
var value = level.items[index];
if (value == 0xFF)
break;
if (value > stopValue) {
this.currentLevel = currentLevel;
// already know about this one, propagating the value to top levels
this.propagateValues();
return false;
}
i >>= 1;
j >>= 1;
currentLevel++;
}
this.currentLevel = currentLevel - 1;
return true;
},
incrementValue: function InclusionTree_incrementValue(stopValue) {
var level = this.levels[this.currentLevel];
level.items[level.index] = stopValue + 1;
this.propagateValues();
},
propagateValues: function InclusionTree_propagateValues() {
var levelIndex = this.currentLevel;
var level = this.levels[levelIndex];
var currentValue = level.items[level.index];
while (--levelIndex >= 0) {
var level = this.levels[levelIndex];
level.items[level.index] = currentValue;
}
},
nextLevel: function InclusionTree_nextLevel() {
var currentLevel = this.currentLevel;
var level = this.levels[currentLevel];
var value = level.items[level.index];
level.items[level.index] = 0xFF;
currentLevel--;
if (currentLevel < 0)
return false;
this.currentLevel = currentLevel;
var level = this.levels[currentLevel];
level.items[level.index] = value;
return true;
}
};
return InclusionTree;
})();
// Implements C.3. Arithmetic decoding procedures
var ArithmeticDecoder = (function ArithmeticDecoderClosure() {
var QeTable = [
{qe: 0x5601, nmps: 1, nlps: 1, switchFlag: 1},
{qe: 0x3401, nmps: 2, nlps: 6, switchFlag: 0},
{qe: 0x1801, nmps: 3, nlps: 9, switchFlag: 0},
{qe: 0x0AC1, nmps: 4, nlps: 12, switchFlag: 0},
{qe: 0x0521, nmps: 5, nlps: 29, switchFlag: 0},
{qe: 0x0221, nmps: 38, nlps: 33, switchFlag: 0},
{qe: 0x5601, nmps: 7, nlps: 6, switchFlag: 1},
{qe: 0x5401, nmps: 8, nlps: 14, switchFlag: 0},
{qe: 0x4801, nmps: 9, nlps: 14, switchFlag: 0},
{qe: 0x3801, nmps: 10, nlps: 14, switchFlag: 0},
{qe: 0x3001, nmps: 11, nlps: 17, switchFlag: 0},
{qe: 0x2401, nmps: 12, nlps: 18, switchFlag: 0},
{qe: 0x1C01, nmps: 13, nlps: 20, switchFlag: 0},
{qe: 0x1601, nmps: 29, nlps: 21, switchFlag: 0},
{qe: 0x5601, nmps: 15, nlps: 14, switchFlag: 1},
{qe: 0x5401, nmps: 16, nlps: 14, switchFlag: 0},
{qe: 0x5101, nmps: 17, nlps: 15, switchFlag: 0},
{qe: 0x4801, nmps: 18, nlps: 16, switchFlag: 0},
{qe: 0x3801, nmps: 19, nlps: 17, switchFlag: 0},
{qe: 0x3401, nmps: 20, nlps: 18, switchFlag: 0},
{qe: 0x3001, nmps: 21, nlps: 19, switchFlag: 0},
{qe: 0x2801, nmps: 22, nlps: 19, switchFlag: 0},
{qe: 0x2401, nmps: 23, nlps: 20, switchFlag: 0},
{qe: 0x2201, nmps: 24, nlps: 21, switchFlag: 0},
{qe: 0x1C01, nmps: 25, nlps: 22, switchFlag: 0},
{qe: 0x1801, nmps: 26, nlps: 23, switchFlag: 0},
{qe: 0x1601, nmps: 27, nlps: 24, switchFlag: 0},
{qe: 0x1401, nmps: 28, nlps: 25, switchFlag: 0},
{qe: 0x1201, nmps: 29, nlps: 26, switchFlag: 0},
{qe: 0x1101, nmps: 30, nlps: 27, switchFlag: 0},
{qe: 0x0AC1, nmps: 31, nlps: 28, switchFlag: 0},
{qe: 0x09C1, nmps: 32, nlps: 29, switchFlag: 0},
{qe: 0x08A1, nmps: 33, nlps: 30, switchFlag: 0},
{qe: 0x0521, nmps: 34, nlps: 31, switchFlag: 0},
{qe: 0x0441, nmps: 35, nlps: 32, switchFlag: 0},
{qe: 0x02A1, nmps: 36, nlps: 33, switchFlag: 0},
{qe: 0x0221, nmps: 37, nlps: 34, switchFlag: 0},
{qe: 0x0141, nmps: 38, nlps: 35, switchFlag: 0},
{qe: 0x0111, nmps: 39, nlps: 36, switchFlag: 0},
{qe: 0x0085, nmps: 40, nlps: 37, switchFlag: 0},
{qe: 0x0049, nmps: 41, nlps: 38, switchFlag: 0},
{qe: 0x0025, nmps: 42, nlps: 39, switchFlag: 0},
{qe: 0x0015, nmps: 43, nlps: 40, switchFlag: 0},
{qe: 0x0009, nmps: 44, nlps: 41, switchFlag: 0},
{qe: 0x0005, nmps: 45, nlps: 42, switchFlag: 0},
{qe: 0x0001, nmps: 45, nlps: 43, switchFlag: 0},
{qe: 0x5601, nmps: 46, nlps: 46, switchFlag: 0}
];
function ArithmeticDecoder(data, start, end) {
this.data = data;
this.bp = start;
this.dataEnd = end;
this.chigh = data[start];
this.clow = 0;
this.byteIn();
this.chigh = ((this.chigh << 7) & 0xFFFF) | ((this.clow >> 9) & 0x7F);
this.clow = (this.clow << 7) & 0xFFFF;
this.ct -= 7;
this.a = 0x8000;
}
ArithmeticDecoder.prototype = {
byteIn: function ArithmeticDecoder_byteIn() {
var data = this.data;
var bp = this.bp;
if (data[bp] == 0xFF) {
var b1 = data[bp + 1];
if (b1 > 0x8F) {
this.clow += 0xFF00;
this.ct = 8;
} else {
bp++;
this.clow += (data[bp] << 9);
this.ct = 7;
this.bp = bp;
}
} else {
bp++;
this.clow += bp < this.dataEnd ? (data[bp] << 8) : 0xFF00;
this.ct = 8;
this.bp = bp;
}
if (this.clow > 0xFFFF) {
this.chigh += (this.clow >> 16);
this.clow &= 0xFFFF;
}
},
readBit: function ArithmeticDecoder_readBit(cx) {
var qeIcx = QeTable[cx.index].qe;
this.a -= qeIcx;
if (this.chigh < qeIcx) {
var d = this.exchangeLps(cx);
this.renormD();
return d;
} else {
this.chigh -= qeIcx;
if ((this.a & 0x8000) == 0) {
var d = this.exchangeMps(cx);
this.renormD();
return d;
} else {
return cx.mps;
}
}
},
renormD: function ArithmeticDecoder_renormD() {
do {
if (this.ct == 0)
this.byteIn();
this.a <<= 1;
this.chigh = ((this.chigh << 1) & 0xFFFF) | ((this.clow >> 15) & 1);
this.clow = (this.clow << 1) & 0xFFFF;
this.ct--;
} while ((this.a & 0x8000) == 0);
},
exchangeMps: function ArithmeticDecoder_exchangeMps(cx) {
var d;
var qeTableIcx = QeTable[cx.index];
if (this.a < qeTableIcx.qe) {
d = 1 - cx.mps;
if (qeTableIcx.switchFlag == 1) {
cx.mps = 1 - cx.mps;
}
cx.index = qeTableIcx.nlps;
} else {
d = cx.mps;
cx.index = qeTableIcx.nmps;
}
return d;
},
exchangeLps: function ArithmeticDecoder_exchangeLps(cx) {
var d;
var qeTableIcx = QeTable[cx.index];
if (this.a < qeTableIcx.qe) {
this.a = qeTableIcx.qe;
d = cx.mps;
cx.index = qeTableIcx.nmps;
} else {
this.a = qeTableIcx.qe;
d = 1 - cx.mps;
if (qeTableIcx.switchFlag == 1) {
cx.mps = 1 - cx.mps;
}
cx.index = qeTableIcx.nlps;
}
return d;
}
};
return ArithmeticDecoder;
})();
// Section D. Coefficient bit modeling
var BitModel = (function BitModelClosure() {
// Table D-1
// The index is binary presentation: 0dddvvhh, ddd - sum of Di (0..4),
// vv - sum of Vi (0..2), and hh - sum of Hi (0..2)
var LLAndLHContextsLabel = new Uint8Array([
0, 5, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 1, 6, 8, 0, 3, 7, 8, 0, 4,
7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6,
8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8
]);
var HLContextLabel = new Uint8Array([
0, 3, 4, 0, 5, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 1, 3, 4, 0, 6, 7, 7, 0, 8,
8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3,
4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8
]);
var HHContextLabel = new Uint8Array([
0, 1, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 4, 5, 0, 4, 5, 5, 0, 5,
5, 5, 0, 0, 0, 0, 0, 6, 7, 7, 0, 7, 7, 7, 0, 7, 7, 7, 0, 0, 0, 0, 0, 8, 8,
8, 0, 8, 8, 8, 0, 8, 8, 8, 0, 0, 0, 0, 0, 8, 8, 8, 0, 8, 8, 8, 0, 8, 8, 8
]);
// Table D-2
function calcSignContribution(significance0, sign0, significance1, sign1) {
if (significance1) {
if (!sign1)
return significance0 ? (!sign0 ? 1 : 0) : 1;
else
return significance0 ? (!sign0 ? 0 : -1) : -1;
} else
return significance0 ? (!sign0 ? 1 : -1) : 0;
}
// Table D-3
var SignContextLabels = [
{contextLabel: 13, xorBit: 0},
{contextLabel: 12, xorBit: 0},
{contextLabel: 11, xorBit: 0},
{contextLabel: 10, xorBit: 0},
{contextLabel: 9, xorBit: 0},
{contextLabel: 10, xorBit: 1},
{contextLabel: 11, xorBit: 1},
{contextLabel: 12, xorBit: 1},
{contextLabel: 13, xorBit: 1}
];
function BitModel(width, height, subband, zeroBitPlanes) {
this.width = width;
this.height = height;
this.contextLabelTable = subband == 'HH' ? HHContextLabel :
subband == 'HL' ? HLContextLabel : LLAndLHContextsLabel;
var coefficientCount = width * height;
// coefficients outside the encoding region treated as insignificant
// add border state cells for significanceState
this.neighborsSignificance = new Uint8Array(coefficientCount);
this.coefficentsSign = new Uint8Array(coefficientCount);
this.coefficentsMagnitude = new Uint32Array(coefficientCount);
this.processingFlags = new Uint8Array(coefficientCount);
var bitsDecoded = new Uint8Array(this.width * this.height);
for (var i = 0, ii = bitsDecoded.length; i < ii; i++)
bitsDecoded[i] = zeroBitPlanes;
this.bitsDecoded = bitsDecoded;
this.reset();
}
BitModel.prototype = {
setDecoder: function BitModel_setDecoder(decoder) {
this.decoder = decoder;
},
reset: function BitModel_reset() {
this.uniformContext = {index: 46, mps: 0};
this.runLengthContext = {index: 3, mps: 0};
this.contexts = [];
this.contexts.push({index: 4, mps: 0});
for (var i = 1; i <= 16; i++)
this.contexts.push({index: 0, mps: 0});
},
setNeighborsSignificance:
function BitModel_setNeighborsSignificance(row, column) {
var neighborsSignificance = this.neighborsSignificance;
var width = this.width, height = this.height;
var index = row * width + column;
if (row > 0) {
if (column > 0)
neighborsSignificance[index - width - 1] += 0x10;
if (column + 1 < width)
neighborsSignificance[index - width + 1] += 0x10;
neighborsSignificance[index - width] += 0x04;
}
if (row + 1 < height) {
if (column > 0)
neighborsSignificance[index + width - 1] += 0x10;
if (column + 1 < width)
neighborsSignificance[index + width + 1] += 0x10;
neighborsSignificance[index + width] += 0x04;
}
if (column > 0)
neighborsSignificance[index - 1] += 0x01;
if (column + 1 < width)
neighborsSignificance[index + 1] += 0x01;
neighborsSignificance[index] |= 0x80;
},
runSignificancePropogationPass:
function BitModel_runSignificancePropogationPass() {
var decoder = this.decoder;
var width = this.width, height = this.height;
var coefficentsMagnitude = this.coefficentsMagnitude;
var coefficentsSign = this.coefficentsSign;
var contextLabels = this.contextLabels;
var neighborsSignificance = this.neighborsSignificance;
var processingFlags = this.processingFlags;
var contexts = this.contexts;
var labels = this.contextLabelTable;
var bitsDecoded = this.bitsDecoded;
// clear processed flag
var processedInverseMask = ~1;
var processedMask = 1;
var firstMagnitudeBitMask = 2;
for (var q = 0, qq = width * height; q < qq; q++)
processingFlags[q] &= processedInverseMask;
for (var i0 = 0; i0 < height; i0 += 4) {
for (var j = 0; j < width; j++) {
var index = i0 * width + j;
for (var i1 = 0; i1 < 4; i1++, index += width) {
var i = i0 + i1;
if (i >= height)
break;
if (coefficentsMagnitude[index] || !neighborsSignificance[index])
continue;
var contextLabel = labels[neighborsSignificance[index]];
var cx = contexts[contextLabel];
var decision = decoder.readBit(cx);
if (decision) {
var sign = this.decodeSignBit(i, j);
coefficentsSign[index] = sign;
coefficentsMagnitude[index] = 1;
this.setNeighborsSignificance(i, j);
processingFlags[index] |= firstMagnitudeBitMask;
}
bitsDecoded[index]++;
processingFlags[index] |= processedMask;
}
}
}
},
decodeSignBit: function BitModel_decodeSignBit(row, column) {
var width = this.width, height = this.height;
var index = row * width + column;
var coefficentsMagnitude = this.coefficentsMagnitude;
var coefficentsSign = this.coefficentsSign;
var horizontalContribution = calcSignContribution(
column > 0 && coefficentsMagnitude[index - 1],
coefficentsSign[index - 1],
column + 1 < width && coefficentsMagnitude[index + 1],
coefficentsSign[index + 1]);
var verticalContribution = calcSignContribution(
row > 0 && coefficentsMagnitude[index - width],
coefficentsSign[index - width],
row + 1 < height && coefficentsMagnitude[index + width],
coefficentsSign[index + width]);
var contextLabelAndXor = SignContextLabels[
3 * (1 - horizontalContribution) + (1 - verticalContribution)];
var contextLabel = contextLabelAndXor.contextLabel;
var cx = this.contexts[contextLabel];
var decoded = this.decoder.readBit(cx);
return decoded ^ contextLabelAndXor.xorBit;
},
runMagnitudeRefinementPass:
function BitModel_runMagnitudeRefinementPass() {
var decoder = this.decoder;
var width = this.width, height = this.height;
var coefficentsMagnitude = this.coefficentsMagnitude;
var neighborsSignificance = this.neighborsSignificance;
var contexts = this.contexts;
var bitsDecoded = this.bitsDecoded;
var processingFlags = this.processingFlags;
var processedMask = 1;
var firstMagnitudeBitMask = 2;
for (var i0 = 0; i0 < height; i0 += 4) {
for (var j = 0; j < width; j++) {
for (var i1 = 0; i1 < 4; i1++) {
var i = i0 + i1;
if (i >= height)
break;
var index = i * width + j;
// significant but not those that have just become
if (!coefficentsMagnitude[index] ||
(processingFlags[index] & processedMask) != 0)
continue;
var contextLabel = 16;
if ((processingFlags[index] &
firstMagnitudeBitMask) != 0) {
processingFlags[i * width + j] ^= firstMagnitudeBitMask;
// first refinement
var significance = neighborsSignificance[index];
var sumOfSignificance = (significance & 3) +
((significance >> 2) & 3) + ((significance >> 4) & 7);
contextLabel = sumOfSignificance >= 1 ? 15 : 14;
}
var cx = contexts[contextLabel];
var bit = decoder.readBit(cx);
coefficentsMagnitude[index] =
(coefficentsMagnitude[index] << 1) | bit;
bitsDecoded[index]++;
processingFlags[index] |= processedMask;
}
}
}
},
runCleanupPass: function BitModel_runCleanupPass() {
var decoder = this.decoder;
var width = this.width, height = this.height;
var neighborsSignificance = this.neighborsSignificance;
var significanceState = this.significanceState;
var coefficentsMagnitude = this.coefficentsMagnitude;
var coefficentsSign = this.coefficentsSign;
var contexts = this.contexts;
var labels = this.contextLabelTable;
var bitsDecoded = this.bitsDecoded;
var processingFlags = this.processingFlags;
var processedMask = 1;
var firstMagnitudeBitMask = 2;
var oneRowDown = width;
var twoRowsDown = width * 2;
var threeRowsDown = width * 3;
for (var i0 = 0; i0 < height; i0 += 4) {
for (var j = 0; j < width; j++) {
var index0 = i0 * width + j;
// using the property: labels[neighborsSignificance[index]] == 0
// when neighborsSignificance[index] == 0
var allEmpty = i0 + 3 < height &&
processingFlags[index0] == 0 &&
processingFlags[index0 + oneRowDown] == 0 &&
processingFlags[index0 + twoRowsDown] == 0 &&
processingFlags[index0 + threeRowsDown] == 0 &&
neighborsSignificance[index0] == 0 &&
neighborsSignificance[index0 + oneRowDown] == 0 &&
neighborsSignificance[index0 + twoRowsDown] == 0 &&
neighborsSignificance[index0 + threeRowsDown] == 0;
var i1 = 0, index = index0;
var cx, i;
if (allEmpty) {
cx = this.runLengthContext;
var hasSignificantCoefficent = decoder.readBit(cx);
if (!hasSignificantCoefficent) {
bitsDecoded[index0]++;
bitsDecoded[index0 + oneRowDown]++;
bitsDecoded[index0 + twoRowsDown]++;
bitsDecoded[index0 + threeRowsDown]++;
continue; // next column
}
cx = this.uniformContext;
i1 = (decoder.readBit(cx) << 1) | decoder.readBit(cx);
i = i0 + i1;
index += i1 * width;
var sign = this.decodeSignBit(i, j);
coefficentsSign[index] = sign;
coefficentsMagnitude[index] = 1;
this.setNeighborsSignificance(i, j);
processingFlags[index] |= firstMagnitudeBitMask;
index = index0;
for (var i2 = i0; i2 <= i; i2++, index += width)
bitsDecoded[index]++;
i1++;
}
for (; i1 < 4; i1++, index += width) {
i = i0 + i1;
if (i >= height)
break;
if (coefficentsMagnitude[index] ||
(processingFlags[index] & processedMask) != 0)
continue;
var contextLabel = labels[neighborsSignificance[index]];
cx = contexts[contextLabel];
var decision = decoder.readBit(cx);
if (decision == 1) {
var sign = this.decodeSignBit(i, j);
coefficentsSign[index] = sign;
coefficentsMagnitude[index] = 1;
this.setNeighborsSignificance(i, j);
processingFlags[index] |= firstMagnitudeBitMask;
}
bitsDecoded[index]++;
}
}
}
},
checkSegmentationSymbol: function BitModel_checkSegmentationSymbol() {
var decoder = this.decoder;
var cx = this.uniformContext;
var symbol = (decoder.readBit(cx) << 3) | (decoder.readBit(cx) << 2) |
(decoder.readBit(cx) << 1) | decoder.readBit(cx);
if (symbol != 0xA)
throw 'Invalid segmentation symbol';
}
};
return BitModel;
})();
// Section F, Discrete wavelet transofrmation
var Transform = (function TransformClosure() {
function Transform() {
}
Transform.prototype.calculate =
function transformCalculate(subbands, u0, v0) {
var ll = subbands[0];
for (var i = 1, ii = subbands.length, j = 1; i < ii; i += 3, j++) {
ll = this.iterate(ll, subbands[i], subbands[i + 1],
subbands[i + 2], u0, v0);
}
return ll;
};
Transform.prototype.iterate = function Transform_iterate(ll, hl, lh, hh,
u0, v0) {
var llWidth = ll.width, llHeight = ll.height, llItems = ll.items;
var hlWidth = hl.width, hlHeight = hl.height, hlItems = hl.items;
var lhWidth = lh.width, lhHeight = lh.height, lhItems = lh.items;
var hhWidth = hh.width, hhHeight = hh.height, hhItems = hh.items;
// Section F.3.3 interleave
var width = llWidth + hlWidth;
var height = llHeight + lhHeight;
var items = new Float32Array(width * height);
for (var i = 0, ii = llHeight; i < ii; i++) {
var k = i * llWidth, l = i * 2 * width;
for (var j = 0, jj = llWidth; j < jj; j++, k++, l += 2)
items[l] = llItems[k];
}
for (var i = 0, ii = hlHeight; i < ii; i++) {
var k = i * hlWidth, l = i * 2 * width + 1;
for (var j = 0, jj = hlWidth; j < jj; j++, k++, l += 2)
items[l] = hlItems[k];
}
for (var i = 0, ii = lhHeight; i < ii; i++) {
var k = i * lhWidth, l = (i * 2 + 1) * width;
for (var j = 0, jj = lhWidth; j < jj; j++, k++, l += 2)
items[l] = lhItems[k];
}
for (var i = 0, ii = hhHeight; i < ii; i++) {
var k = i * hhWidth, l = (i * 2 + 1) * width + 1;
for (var j = 0, jj = hhWidth; j < jj; j++, k++, l += 2)
items[l] = hhItems[k];
}
var bufferPadding = 4;
var bufferLength = new Float32Array(Math.max(width, height) +
2 * bufferPadding);
var buffer = new Float32Array(bufferLength);
var bufferOut = new Float32Array(bufferLength);
// Section F.3.4 HOR_SR
for (var v = 0; v < height; v++) {
if (width == 1) {
// if width = 1, when u0 even keep items as is, when odd divide by 2
if ((u0 % 1) != 0) {
items[v * width] /= 2;
}
continue;
}
var k = v * width;
var l = bufferPadding;
for (var u = 0; u < width; u++, k++, l++)
buffer[l] = items[k];
// Section F.3.7 extending... using max extension of 4
var i1 = bufferPadding - 1, j1 = bufferPadding + 1;
var i2 = bufferPadding + width - 2, j2 = bufferPadding + width;
buffer[i1--] = buffer[j1++];
buffer[j2++] = buffer[i2--];
buffer[i1--] = buffer[j1++];
buffer[j2++] = buffer[i2--];
buffer[i1--] = buffer[j1++];
buffer[j2++] = buffer[i2--];
buffer[i1--] = buffer[j1++];
buffer[j2++] = buffer[i2--];
this.filter(buffer, bufferPadding, width, u0, bufferOut);
k = v * width;
l = bufferPadding;
for (var u = 0; u < width; u++, k++, l++)
items[k] = bufferOut[l];
}
// Section F.3.5 VER_SR
for (var u = 0; u < width; u++) {
if (height == 1) {
// if height = 1, when v0 even keep items as is, when odd divide by 2
if ((v0 % 1) != 0) {
items[u] /= 2;
}
continue;
}
var k = u;
var l = bufferPadding;
for (var v = 0; v < height; v++, k += width, l++)
buffer[l] = items[k];
// Section F.3.7 extending... using max extension of 4
var i1 = bufferPadding - 1, j1 = bufferPadding + 1;
var i2 = bufferPadding + height - 2, j2 = bufferPadding + height;
buffer[i1--] = buffer[j1++];
buffer[j2++] = buffer[i2--];
buffer[i1--] = buffer[j1++];
buffer[j2++] = buffer[i2--];
buffer[i1--] = buffer[j1++];
buffer[j2++] = buffer[i2--];
buffer[i1--] = buffer[j1++];
buffer[j2++] = buffer[i2--];
this.filter(buffer, bufferPadding, height, v0, bufferOut);
k = u;
l = bufferPadding;
for (var v = 0; v < height; v++, k += width, l++)
items[k] = bufferOut[l];
}
return {
width: width,
height: height,
items: items
};
};
return Transform;
})();
// Section 3.8.2 Irreversible 9-7 filter
var IrreversibleTransform = (function IrreversibleTransformClosure() {
function IrreversibleTransform() {
Transform.call(this);
}
IrreversibleTransform.prototype = Object.create(Transform.prototype);
IrreversibleTransform.prototype.filter =
function irreversibleTransformFilter(y, offset, length, i0, x) {
var i0_ = Math.floor(i0 / 2);
var i1_ = Math.floor((i0 + length) / 2);
var offset_ = offset - (i0 % 1);
var alpha = -1.586134342059924;
var beta = -0.052980118572961;
var gamma = 0.882911075530934;
var delta = 0.443506852043971;
var K = 1.230174104914001;
var K_ = 1 / K;
// step 1
var j = offset_ - 2;
for (var n = i0_ - 1, nn = i1_ + 2; n < nn; n++, j += 2)
x[j] = K * y[j];
// step 2
var j = offset_ - 3;
for (var n = i0_ - 2, nn = i1_ + 2; n < nn; n++, j += 2)
x[j] = K_ * y[j];
// step 3
var j = offset_ - 2;
for (var n = i0_ - 1, nn = i1_ + 2; n < nn; n++, j += 2)
x[j] -= delta * (x[j - 1] + x[j + 1]);
// step 4
var j = offset_ - 1;
for (var n = i0_ - 1, nn = i1_ + 1; n < nn; n++, j += 2)
x[j] -= gamma * (x[j - 1] + x[j + 1]);
// step 5
var j = offset_;
for (var n = i0_, nn = i1_ + 1; n < nn; n++, j += 2)
x[j] -= beta * (x[j - 1] + x[j + 1]);
// step 6
var j = offset_ + 1;
for (var n = i0_, nn = i1_; n < nn; n++, j += 2)
x[j] -= alpha * (x[j - 1] + x[j + 1]);
};
return IrreversibleTransform;
})();
// Section 3.8.1 Reversible 5-3 filter
var ReversibleTransform = (function ReversibleTransformClosure() {
function ReversibleTransform() {
Transform.call(this);
}
ReversibleTransform.prototype = Object.create(Transform.prototype);
ReversibleTransform.prototype.filter =
function reversibleTransformFilter(y, offset, length, i0, x) {
var i0_ = Math.floor(i0 / 2);
var i1_ = Math.floor((i0 + length) / 2);
var offset_ = offset - (i0 % 1);
for (var n = i0_, nn = i1_ + 1, j = offset_; n < nn; n++, j += 2)
x[j] = y[j] - Math.floor((y[j - 1] + y[j + 1] + 2) / 4);
for (var n = i0_, nn = i1_, j = offset_ + 1; n < nn; n++, j += 2)
x[j] = y[j] + Math.floor((x[j - 1] + x[j + 1]) / 2);
};
return ReversibleTransform;
})();
return JpxImage;
})();