Note that compared other structures, such as e.g. Images and ColorSpaces, `Function`s are not referred to by name, which however does bring the advantage of being able to share the cache for an *entire* page.
Furthermore, similar to ColorSpaces, the parsing of individual `Function`s are generally fast enough to not really warrant trying to cache them in any "smarter" way than by reference. (Hence trying to do caching similar to e.g. Fonts would most likely be a losing proposition, given the amount of data lookup/parsing that'd be required.)
Originally I tried implementing this similar to e.g. the recently added ColorSpace caching (and in a couple of different ways), however it unfortunately turned out to be quite ugly/unwieldy given the sheer number of functions/methods where you'd thus need to pass in a `LocalFunctionCache` instance. (Also, the affected functions/methods didn't exactly have short signatures as-is.)
After going back and forth on this for a while it seemed to me that the simplest, or least "invasive" if you will, solution would be if each `PartialEvaluator` instance had its *own* `PDFFunctionFactory` instance (since the latter is already passed to all of the required code). This way each `PDFFunctionFactory` instances could have a local `Function` cache, without it being necessary to provide a `LocalFunctionCache` instance manually at every `PDFFunctionFactory.{create, createFromArray}` call-site.
Obviously, with this patch, there's now (potentially) more `PDFFunctionFactory` instances than before when the entire document shared just one. However, each such instance is really quite small and it's also tied to a `PartialEvaluator` instance and those are *not* kept alive and/or cached. To reduce the impact of these changes, I've tried to make as many of these structures as possible *lazily initialized*, specifically:
- The `PDFFunctionFactory`, on `PartialEvaluator` instances, since not all kinds of general parsing actually requires it. For example: `getTextContent` calls won't cause any `Function` to be parsed, and even some `getOperatorList` calls won't trigger `Function` parsing (if a page contains e.g. no Patterns or "complex" ColorSpaces).
- The `LocalFunctionCache`, on `PDFFunctionFactory` instances, since only certain parsing requires it. Generally speaking, only e.g. Patterns, "complex" ColorSpaces, and/or (some) SoftMasks will trigger any `Function` parsing.
To put these changes into perspective, when loading/rendering all (14) pages of the default `tracemonkey.pdf` file there's now a total of 6 `PDFFunctionFactory` and 1 `LocalFunctionCache` instances created thanks to the lazy initialization.
(If you instead would keep the document-"global" `PDFFunctionFactory` instance and pass around `LocalFunctionCache` instances everywhere, the numbers for the `tracemonkey.pdf` file would be instead be something like 1 `PDFFunctionFactory` and 6 `LocalFunctionCache` instances.)
All-in-all, I thus don't think that the `PDFFunctionFactory` changes should be generally problematic.
With these changes, we can also modify (some) call-sites to pass in a `Reference` rather than the actual `Function` data. This is nice since `Function`s can also be `Streams`, which are not cached on the `XRef` instance (given their potential size), and this way we can avoid unnecessary lookups and thus save some additional time/resources.
Obviously I had intended to include (standard) benchmark results with these changes, but for reasons I don't really understand the test run-time (even with `master`) of the document in issue 2541 is quite a bit slower than in the development viewer.
However, logging the time it takes for the relevant `PDFFunctionFactory`/`PDFFunction ` parsing shows that it takes *approximately* `0.5 ms` for the `Function` in question. Looking up a cached `Function`, on the other hand, is *one order of magnitude faster* which does add up when the same `Function` is invoked close to 2000 times.
Apparently I completely overlooked the fact that with the changes in PR 11069 these properties became *completely* unused, and consequently they thus ought to be removed.
When "Cleanup" is triggered, you obviously need to remove all globally cached data on *both* the main- and worker-threads.
However, the current the implementation of the `GlobalImageCache.clear` method also means that we lose *all* information about which images were cached and not just their data. This thus has the somewhat unfortunate side-effect of requiring images, which were previously known to be "global", to *again* having to reach `NUM_PAGES_THRESHOLD` before being cached again.
To avoid doing unnecessary parsing after "Cleanup", we can thus let `GlobalImageCache.clear` keep track of which images were cached while still removing their actual data. This should not have any significant impact on memory usage, since the only extra thing being kept is a `RefSetCache` (essentially an Object) with a couple of `Set`s containing only integers.
Currently image resources, as opposed to e.g. font resources, are handled exclusively on a page-specific basis. Generally speaking this makes sense, since pages are separate from each other, however there's PDF documents where many (or even all) pages actually references exactly the same image resources (through the XRef table). Hence, in some cases, we're decoding the *same* images over and over for every page which is obviously slow and wasting both CPU and memory resources better used elsewhere.[1]
Obviously we cannot simply treat all image resources as-if they're used throughout the entire PDF document, since that would end up increasing memory usage too much.[2]
However, by introducing a `GlobalImageCache` in the worker we can track image resources that appear on more than one page. Hence we can switch image resources from being page-specific to being document-specific, once the image resource has been seen on more than a certain number of pages.
In many cases, such as e.g. the referenced issue, this patch will thus lead to reduced memory usage for image resources. Scrolling through all pages of the document, there's now only a few main-thread copies of the same image data, as opposed to one for each rendered page (i.e. there could theoretically be *twenty* copies of the image data).
While this obviously benefit both CPU and memory usage in this case, for *very* large image data this patch *may* possibly increase persistent main-thread memory usage a tiny bit. Thus to avoid negatively affecting memory usage too much in general, particularly on the main-thread, the `GlobalImageCache` will *only* cache a certain number of image resources at the document level and simply fallback to the default behaviour.
Unfortunately the asynchronous nature of the code, with ranged/streamed loading of data, actually makes all of this much more complicated than if all data could be assumed to be immediately available.[3]
*Please note:* The patch will lead to *small* movement in some existing test-cases, since we're now using the built-in PDF.js JPEG decoder more. This was done in order to simplify the overall implementation, especially on the main-thread, by limiting it to only the `OPS.paintImageXObject` operator.
---
[1] There's e.g. PDF documents that use the same image as background on all pages.
[2] Given that data stored in the `commonObjs`, on the main-thread, are only cleared manually through `PDFDocumentProxy.cleanup`. This as opposed to data stored in the `objs` of each page, which is automatically removed when the page is cleaned-up e.g. by being evicted from the cache in the default viewer.
[3] If the latter case were true, we could simply check for repeat images *before* parsing started and thus avoid handling *any* duplicate image resources.
While working on PR 11872, it occurred to me that it probably wouldn't be a bad idea to change the `_parsedAnnotations` getter to handle errors individually for each annotation. This way, one broken/corrupt annotation won't prevent the rest of them from being e.g. fetched through the API.
Having `assert` calls without a message string isn't very helpful when debugging, and it turns out that it's easy enough to make use of ESLint to enforce better `assert` call-sites.
In a couple of cases the `assert` calls were changed to "regular" throwing of errors instead, since that seemed more appropriate.
Please find additional details about the ESLint rule at https://eslint.org/docs/rules/no-restricted-syntax
This should ensure that a page will always render successfully, even if there's errors during the Annotation fetching/parsing.
Additionally the `OperatorList.addOpList` method is also adjusted to ignore invalid data, to make it slightly more robust.
*Please note:* These changes were done automatically, using the `gulp lint --fix` command.
This rule is already enabled in mozilla-central, see https://searchfox.org/mozilla-central/rev/567b68b8ff4b6d607ba34a6f1926873d21a7b4d7/tools/lint/eslint/eslint-plugin-mozilla/lib/configs/recommended.js#103-104
The main advantage, besides improved consistency, of this rule is that it reduces the size of the code (by 3 bytes for each case). In the PDF.js code-base there's close to 8000 instances being fixed by the `dot-notation` ESLint rule, which end up reducing the size of even the *built* files significantly; the total size of the `gulp mozcentral` build target changes from `3 247 456` to `3 224 278` bytes, which is a *reduction* of `23 178` bytes (or ~0.7%) for a completely mechanical change.
A large number of these changes affect the (large) lookup tables used on the worker-thread, but given that they are still initialized lazily I don't *think* that the new formatting this patch introduces should undo any of the improvements from PR 6915.
Please find additional details about the ESLint rule at https://eslint.org/docs/rules/dot-notation
Please note that these changes were done automatically, using `gulp lint --fix`.
Given that the major version number was increased, there's a fair number of (primarily whitespace) changes; please see https://prettier.io/blog/2020/03/21/2.0.0.html
In order to reduce the size of these changes somewhat, this patch maintains the old "arrowParens" style for now (once mozilla-central updates Prettier we can simply choose the same formatting, assuming it will differ here).
*This is part of a series of patches that will try to split PR 11566 into smaller chunks, to make reviewing more feasible.*
Once all the code has been fixed, we'll be able to eventually enable the ESLint no-shadow rule; see https://eslint.org/docs/rules/no-shadow
Trying to enable the ESLint rule `no-shadow`, against the `master` branch, would result in a fair number of errors in the `Glyph` class in `src/core/fonts.js`.
Since the glyphs are exposed through the API, we can't very well change the `isSpace` property on `Glyph` instances. Thus the best approach seems, at least to me, to simply rename the `isSpace` helper function to `isWhiteSpace` which shouldn't cause any issues given that it's only used in the `src/core/` folder.
While it would be nice to change the `PDFFormatVersion` property, as returned through `PDFDocumentProxy.getMetadata`, to a number (rather than a string) that would unfortunately be a breaking API change.
However, it does seem like a good idea to at least *validate* the PDF header version on the worker-thread, rather than potentially returning an arbitrary string.
This is beneficial in situations where the Worker is being re-used, for example with fake workers, since it ensures that things like font resources are actually released.
In order to eventually get rid of SystemJS and start using native `import`s instead, we'll need to provide "complete" file identifiers since otherwise there'll be MIME type errors when attempting to use `import`.
This patch makes the follow changes:
- Remove no longer necessary inline `// eslint-disable-...` comments.
- Fix `// eslint-disable-...` comments that Prettier moved down, thus causing new linting errors.
- Concatenate strings which now fit on just one line.
- Fix comments that are now too long.
- Finally, and most importantly, adjust comments that Prettier moved down, since the new positions often is confusing or outright wrong.
Note that Prettier, purposely, has only limited [configuration options](https://prettier.io/docs/en/options.html). The configuration file is based on [the one in `mozilla central`](https://searchfox.org/mozilla-central/source/.prettierrc) with just a few additions (to avoid future breakage if the defaults ever changes).
Prettier is being used for a couple of reasons:
- To be consistent with `mozilla-central`, where Prettier is already in use across the tree.
- To ensure a *consistent* coding style everywhere, which is automatically enforced during linting (since Prettier is used as an ESLint plugin). This thus ends "all" formatting disussions once and for all, removing the need for review comments on most stylistic matters.
Many ESLint options are now redundant, and I've tried my best to remove all the now unnecessary options (but I may have missed some).
Note also that since Prettier considers the `printWidth` option as a guide, rather than a hard rule, this patch resorts to a small hack in the ESLint config to ensure that *comments* won't become too long.
*Please note:* This patch is generated automatically, by appending the `--fix` argument to the ESLint call used in the `gulp lint` task. It will thus require some additional clean-up, which will be done in a *separate* commit.
(On a more personal note, I'll readily admit that some of the changes Prettier makes are *extremely* ugly. However, in the name of consistency we'll probably have to live with that.)
There's a fair number of (primarily) `Array`s/`TypedArray`s whose formatting we don't want disturb, since in many cases that would lead to the code becoming much more difficult to read and/or break existing inline comments.
*Please note:* It may be a good idea to look through these cases individually, and possibly re-write some of the them (especially the `String` ones) to reduce the need for all of these ignore commands.
During initial parsing of every PDF document we're currently creating a few `1 kB` strings, in order to find certain commands needed for initialization.
This seems inefficient, not to mention completely unnecessary, since we can just as well search through the raw bytes directly instead (similar to other parts of the code-base). One small complication here is the need to support backwards search, which does add some amount of "duplication" to this function.
The main benefits here are:
- No longer necessary to allocate *temporary* `1 kB` strings during initial parsing, thus saving some memory.
- In practice, for well-formed PDF documents, the number of iterations required to find the commands are usually very low. (For the `tracemonkey.pdf` file, there's a *total* of only 30 loop iterations.)
Given that the error in question is surfaced on the API-side, this patch makes the following changes:
- Updates the wording such that it'll hopefully be slightly easier for users to understand.
- Changes the plain `Error` to an `InvalidPDFException` instead, since that should work better with the existing Error handling.
- Adds a unit-test which loads an empty PDF document (and also improves a pre-existing `InvalidPDFException` message and its test-case).
Given how this method is currently used there shouldn't be any fonts loaded at the point in time where it's called, but it does seem like a bad idea to assume that that's always going to be the case. Since `PDFDocument.checkFirstPage` is already asynchronous, it's easy enough to simply await `Catalog.cleanup` here.
(The patch also makes a tiny simplification in a loop in `Catalog.cleanup`.)
The contents of this comment hasn't been correct for *years*, ever since the library was properly split into main/worker-threads, so it's probably high time for this to be updated.
For documents with a Linearization dictionary the computed `startXRef` position will be relative to the raw file, rather than the actual PDF document itself (which begins with `%PDF-`).
Hence it's necessary to subtract `stream.start` in this case, since otherwise the `XRef.readXRef` method will increment the position too far resulting in parsing errors.
*Please note:* The majority of this patch was written by Yury, and it's simply been rebased and slightly extended to prevent issues when dealing with `RenderingCancelledException`.
By leveraging streams this (finally) provides a simple way in which parsing can be aborted on the worker-thread, which will ultimately help save resources.
With this patch worker-thread parsing will *only* be aborted when the document is destroyed, and not when rendering is cancelled. There's a couple of reasons for this:
- The API currently expects the *entire* OperatorList to be extracted, or an Error to occur, once it's been started. Hence additional re-factoring/re-writing of the API code will be necessary to properly support cancelling and re-starting of OperatorList parsing in cases where the `lastChunk` hasn't yet been seen.
- Even with the above addressed, immediately cancelling when encountering a `RenderingCancelledException` will lead to worse performance in e.g. the default viewer. When zooming and/or rotation of the document occurs it's very likely that `cancel` will be (almost) immediately followed by a new `render` call. In that case you'd obviously *not* want to abort parsing on the worker-thread, since then you'd risk throwing away a partially parsed Page and thus be forced to re-parse it again which will regress perceived performance.
- This patch is already *somewhat* risky, given that it touches fundamentally important/critical code, and trying to keep it somewhat small should hopefully reduce the risk of regressions (and simplify reviewing as well).
Time permitting, once this has landed and been in Nightly for awhile, I'll try to work on the remaining points outlined above.
Co-Authored-By: Yury Delendik <ydelendik@mozilla.com>
Co-Authored-By: Jonas Jenwald <jonas.jenwald@gmail.com>
Looking at this again, it struck me that added functionality in `Util.intersect` is probably more confusing than helpful in general; sorry about the churn in this code!
Based on the parameter name you'd probably expect it to only match when the intersection is `[0, 0, 0, 0]` and not when only one component is zero, hence the `skipEmpty` parameter thus feels too tightly coupled to the `Page.view` getter.
This is based on a real-world PDF file I encountered very recently[1], although I'm currently unable to recall where I saw it.
Note that different PDF viewers handle these sort of errors differently, with Adobe Reader outright failing to render the attached PDF file whereas PDFium mostly handles it "correctly".
The patch makes the following notable changes:
- Refactor the `cropBox` and `mediaBox` getters, on the `Page`, to reduce unnecessary duplication. (This will also help in the future, if support for extracting additional page bounding boxes are added to the API.)
- Ensure that the page bounding boxes, i.e. `cropBox` and `mediaBox`, are never empty to prevent issues/weirdness in the viewer.
- Ensure that the `view` getter on the `Page` will never return an empty intersection of the `cropBox` and `mediaBox`.
- Add an *optional* parameter to `Util.intersect`, to allow checking that the computed intersection isn't actually empty.
- Change `Util.intersect` to have consistent return types, since Arrays are of type `Object` and falling back to returning a `Boolean` thus seem strange.
---
[1] In that case I believe that only the `cropBox` was empty, but it seemed like a good idea to attempt to fix a bunch of related cases all at once.
The current code will only consider the `cropBox` and `mediaBox` as equal when they both point to the *same* underlying Array. In the case where a PDF file actually specifies both boxes independently, with the exact same values in each, the comparison will currently fail and lead to an unneeded intersection computation.
The way that this method handles documents without an `ID` entry in the Trailer dictionary feels overly complicated to me. Hence this patch adds `getByteRange` methods to the various Stream implementations[1], and utilize that rather than manually calling `ensureRange` when computing a fallback `fingerprint`.
---
[1] Note that `PDFDocument` is only ever initialized with either a `Stream` or a `ChunkedStream`, hence why the `DecodeStream.getByteRange` method isn't implemented.
*Please note:* A a similar change was attempted in PR 5005, but it was subsequently backed out in PR 5069.
Unfortunately I don't think anyone ever tried to debug *exactly* why it didn't work, since it ought to have worked, and having re-tested this now I'm not able to reproduce the problem any more. However, given just how inefficient the current code is, with thousands of strictly unnecessary function calls for each `find` invocation, I'd really like to try fixing this again.
This is similar to the existing caching used to reduced the number of `Cmd` and `Name` objects.
With the `tracemonkey.pdf` file, this patch changes the number of `Ref` objects as follows (in the default viewer):
| | Loading the first page | Loading *all* the pages |
|----------|------------------------|-------------------------|
| `master` | 332 | 3265 |
| `patch` | 163 | 996 |
This way we can avoid manually building a "document id" in multiple places in `evaluator.js`, and it also let's us avoid passing in an otherwise unnecessary `PDFManager` instance when creating a `PartialEvaluator`.
The `src/shared/util.js` file is being bundled into both the `pdf.js` and `pdf.worker.js` files, meaning that its code is by definition duplicated.
Some main-thread only utility functions have already been moved to a separate `src/display/display_utils.js` file, and this patch simply extends that concept to utility functions which are used *only* on the worker-thread.
Note in particular the `getInheritableProperty` function, which expects a `Dict` as input and thus *cannot* possibly ever be used on the main-thread.
After PR 9340 all glyphs are now re-mapped to a Private Use Area (PUA) which means that if a font fails to load, for whatever reason[1], all glyphs in the font will now render as Unicode glyph outlines.
This obviously doesn't look good, to say the least, and might be seen as a "regression" since previously many glyphs were left in their original positions which provided a slightly better fallback[2].
Hence this patch, which implements a *general* fallback to the PDF.js built-in font renderer for fonts that fail to load (i.e. are rejected by the sanitizer). One caveat here is that this only works for the Font Loading API, since it's easy to handle errors in that case[3].
The solution implemented in this patch does *not* in any way delay the loading of valid fonts, which was the problem with my previous attempt at a solution, and will only require a bit of extra work/waiting for those fonts that actually fail to load.
*Please note:* This patch doesn't fix any of the underlying PDF.js font conversion bugs that's responsible for creating corrupt font files, however it does *improve* rendering in a number of cases; refer to this possibly incomplete list:
[Bug 1524888](https://bugzilla.mozilla.org/show_bug.cgi?id=1524888)
Issue 10175
Issue 10232
---
[1] Usually because the PDF.js font conversion code wasn't able to parse the font file correctly.
[2] Glyphs fell back to some default font, which while not accurate was more useful than the current state.
[3] Furthermore I'm not sure how to implement this generally, assuming that's even possible, and don't really have time/interest to look into it either.
For PDF documents with sufficiently broken XRef tables, it's usually quite obvious when you need to fallback to indexing the entire file. However, for certain kinds of corrupted PDF documents the XRef table will, for all intents and purposes, appear to be valid. It's not until you actually try to fetch various objects that things will start to break, which is the case in the referenced issues[1].
Since there's generally a real effort being in made PDF.js to load even corrupt PDF documents, this patch contains a suggested approach to attempt to do a bit more validation of the XRef table during the initial document loading phase.
Here the choice is made to attempt to load the *first* page, as a basic sanity check of the validity of the XRef table. Please note that attempting to load a more-or-less arbitrarily chosen object without any context of what it's supposed to be isn't a very useful, which is why this particular choice was made.
Obviously, just because the first page can be loaded successfully that doesn't guarantee that the *entire* XRef table is valid, however if even the first page fails to load you can be reasonably sure that the document is *not* valid[2].
Even though this patch won't cause any significant increase in the amount of parsing required during initial loading of the document[3], it will require loading of more data upfront which thus delays the initial `getDocument` call.
Whether or not this is a problem depends very much on what you actually measure, please consider the following examples:
```javascript
console.time('first');
getDocument(...).promise.then((pdfDocument) => {
console.timeEnd('first');
});
console.time('second');
getDocument(...).promise.then((pdfDocument) => {
pdfDocument.getPage(1).then((pdfPage) => { // Note: the API uses `pageNumber >= 1`, the Worker uses `pageIndex >= 0`.
console.timeEnd('second');
});
});
```
The first case is pretty much guaranteed to show a small regression, however the second case won't be affected at all since the Worker caches the result of `getPage` calls. Again, please remember that the second case is what matters for the standard PDF.js use-case which is why I'm hoping that this patch is deemed acceptable.
---
[1] In issue 7496, the problem is that the document is edited without the XRef table being correctly updated.
In issue 10326, the generator was sorting the XRef table according to the offsets rather than the objects.
[2] The idea of checking the first page in particular came from the "standard" use-case for the PDF.js library, i.e. the default viewer, where a failure to load the first page basically means that nothing will work; note how `{BaseViewer, PDFThumbnailViewer}.setDocument` depends completely on being able to fetch the *first* page.
[3] The only extra parsing is caused by, potentially, having to traverse *part* of the `Pages` tree to find the first page.
The custom entries, provided that they exist *and* that their types are safe to include, are exposed through a new `Custom` infoDict entry to clearly separate them from the standard ones.
Fixes 5970.
Fixes 10344.
Not only is this method completely unused *now*, looking through the history of the code it never appears to have been used for anything either.
Years ago `mainXRefEntriesOffset` was included when creating `XRef` instances, however it wasn't actually used for anything (the parameter was never checked, nor assigned to a property on `XRef`).
If this method ever becomes useful (again) it's easy enough to restore it thanks to version control, but including dead code in the builds just seems wasteful.
This commit is the first step towards implementing parsing for the
appearance streams of annotations.
Co-authored-by: Jonas Jenwald <jonas.jenwald@gmail.com>
Co-authored-by: Tim van der Meij <timvandermeij@gmail.com>
[api-minor] Add an `IsLinearized` property to the `PDFDocument.documentInfo` getter, to allow accessing the linearization status through the API (via `PDFDocumentProxy.getMetadata`)
Since PDF.js already supports range requests and streaming, not to mention chunked rendering, attempting to use the `Linearization` dictionary in `PDFDocument.getPage` probably isn't going to improve performance in any noticeable way.
Nonetheless, when `Linearization` data is available, it will allow looking up the first Page *directly* without having to descend into the `Pages` tree to find the correct object.
There was a (somewhat) recent question on IRC about accessing the linearization status of a PDF document, and this patch contains a simple way to expose that through already existing API methods.
Please note that during setup/parsing in `PDFDocument` the linearization data is already being fetched and parsed, provided of course that it exists. Hence this patch will *not* cause any additional data to be loaded.
With this file now being a proper (ES6) module, it's no longer (technically) necessary for this structure to be lazily initialized. Considering its size, and simplicity, I therefore cannot see the harm in letting `DocumentInfoValidators` just be simple Object instead.
While I'm not aware of any bugs caused by the current code, it cannot hurt to add an `isDict` check in `PDFDocument.documentInfo` (since the current code assumes that `infoDict` being defined implies it also being a Dictionary).
Finally, the patch also converts a couple of `var` to `let`/`const`.
Note first of all that `PDFDocument` will be initialized with either a `Stream` or a `ChunkedStream`, and that both of these have `length` getters. Secondly, the `PDFDocument` constructor will assert that the `stream` has a non-zero (and positive) length. Hence there's no point in checking `stream.length` in the `linearization` getter.
This function combines the logic of two separate methods into one.
The loop limit is also a good thing to have for the calls in
`src/core/annotation.js`.
Moreover, since this is important functionality, a set of unit tests and
documentation is added.
It's only used in two places in the class and those callsites can
directly get the information from the dictionary, which is more readable
and avoids an additional method call.