The `RefSet` primitive predates ES6, so that most likely explains why an
object is used internally to track the entries. However, nowadays we can
use built-in JavaScript sets for this purpose. Built-in types are often
more efficient/optimized and using it makes the code a bit more clear
since we don't have to assign `true` to keys anymore just to indicate
their presence.
Both of the removed methods were added in PR 2719, however they are no longer used:
- It appears that `hasPendingRequests` was never used at all, even from the beginning.
- The only general PDF.js library usage of `abortAllRequests` was removed in PR 6879, which is now four years ago. (Originally the Firefox-specific network implementation, see https://searchfox.org/mozilla-central/source/browser/extensions/pdfjs/content/PdfJsNetwork.jsm, was shared with the `src/display/network.js` file and *there* this method is used. However, since all of the Firefox-specific code now lives directly in mozilla-central, that's not relevant for the removal in this patch.)
After PRs 10727 and 11912, the code responsible for sending the decoded image data to the main-thread has now become a fair bit more involved the previously.
To reduce the amount of duplication here, the actual code responsible for sending the data is thus extracted into a new helper method instead.
Avoid calling Math.pow if possible when calculating the transfer
function of the CalRGB color space since calling Math.pow is expensive.
If the value of color is larger than the threshold, 0.99554525,
the final result of the transform is larger that 254.5
since ((1 + 0.055) * 0.99554525 ** (1 / 2.4) - 0.055) * 255 === 254.50000003134699
In the old code the use of an Array meant that we had to *manually* track the `numChunksLoaded` property, given that simply using the Array `length` wouldn't have worked since there's no guarantee that the data is loaded in order when e.g. range requests are in use.
Tracking closely related state *separately* in this manner never seem like a good idea, and we can now instead utilize a Set to avoid that.
On ISO/IEC 10918-6:2013 (E), section 6.1: (http://www.itu.int/rec/T-REC-T.872-201206-I/en)
"Images encoded with three components are assumed to be RGB data encoded as YCbCr unless the image contains an APP14 marker segment as specified in 6.5.3, in which case the colour encoding is considered either RGB or YCbCr according to the application data of the APP14 marker segment"
But common jpeg libraries consider RGB too if components index are ASCII R (0x52), G (0x47) and B (0x42): https://stackoverflow.com/questions/50798014/determining-color-space-for-jpeg/50861048
Issue #11931
Using `require.resolve("worker-loader")` to check if `worker-loader` is installed causes webpack to include `worker-loader` in the output bundle, which is not the intended effect. Aside from increasing the bundle size unnecessarily, it also causes errors for webpack configs with targets that don't have node's built-in modules.
These errors can be fixed by configuring webpack `externals` to exclude `worker-loader`, but it's more difficult to figure out this solution than to figure out that `worker-loader` needs to be installed (even without this explicit error message).
To solve this, the explicit check for `worker-loader` has been removed. An alternative solution would be to use webpack's `resolveWeak`. Documentation has also been added in `examples/webpack` to help users.
Since *inline* images, i.e. those defined inside of `/Contents` streams, are by their very definition page-specific it thus seem like a good idea to actually enforce that they won't accidentally end up in the `GlobalImageCache`.
When converting this file to use standard `import`/`export` statements, I sorted the exports in the same order as the imports to simplify things.
However, looking at the list of `export`ed properties it probably doesn't hurt to add a couple of comments to clarify from where specifically the `export`s originated.
By updating to the new major version of Acorn, we'll get support for newer ECMAScript features as they become available (although some features are currently also blocked by ESLint support and/or SystemJS usage).
Please see https://github.com/acornjs/acorn/releases/tag/7.2.0 for details.
It turns out that `getTextContent` suffers from *similar* problems with repeated images as `getOperatorList`; please see the previous patch.
While only `/XObject` resources of the `Form`-type will actually be *parsed* in `PartialEvaluator.getTextContent`, since those are the only ones that may contain text, we're still forced to fetch repeated image resources where the name differs (but not the reference).
Obviously it's less bad in this case, since we're not actually parsing `/XObject`s of e.g. the `Image`-type. However, you still want to avoid even fetching the data whenever possible, since `Stream`s are not cached on the `XRef` instance (given their potential size) and the lookup can thus be somewhat expensive in general.
To address these issues, we can simply replace the exiting name-only caching in `PartialEvaluator.getTextContent` with a new cache backed by `LocalImageCache` instead.
Currently the local `imageCache`, as used in `PartialEvaluator.getOperatorList`, will miss certain cases of repeated images because the caching is *only* done by name (usually using a format such as e.g. "Im0", "Im1", ...).
However, in some PDF documents the `/XObject` dictionaries many contain hundreds (or even thousands) of distinctly named images, despite them referring to only a handful of actual image objects (via the XRef table).
With these changes we'll now cache *local* images using both name and (where applicable) reference, thus improving re-usage of images resources even further.
This patch was tested using the PDF file from [bug 857031](https://bugzilla.mozilla.org/show_bug.cgi?id=857031), i.e. https://bug857031.bmoattachments.org/attachment.cgi?id=732270, with the following manifest file:
```
[
{ "id": "bug857031",
"file": "../web/pdfs/bug857031.pdf",
"md5": "",
"rounds": 250,
"lastPage": 1,
"type": "eq"
}
]
```
which gave the following results when comparing this patch against the `master` branch:
```
-- Grouped By browser, page, stat --
browser | page | stat | Count | Baseline(ms) | Current(ms) | +/- | % | Result(P<.05)
------- | ---- | ------------ | ----- | ------------ | ----------- | --- | ----- | -------------
firefox | 0 | Overall | 250 | 2749 | 2656 | -93 | -3.38 | faster
firefox | 0 | Page Request | 250 | 3 | 4 | 1 | 50.14 | slower
firefox | 0 | Rendering | 250 | 2746 | 2652 | -94 | -3.44 | faster
```
While this is certainly an improvement, since we now avoid re-parsing ~1000 images on the first page, all of the image resources are small enough that the total rendering time doesn't improve that much in this particular case.
In pathological cases, such as e.g. the PDF document in issue 4958, the improvements with this patch can be very significant. Looking for example at page 2, from issue 4958, the rendering time drops from ~60 seconds with `master` to ~30 seconds with this patch (obviously still slow, but it really showcases the potential of this patch nicely).
Finally, note that there's also potential for additional improvements by re-using `LocalImageCache` instances for e.g. /XObject data of the `Form`-type. However, given that recent changes in this area I purposely didn't want to complicate *this* patch more than necessary.
In the PDF file from the issue below, the fill alpha (`ca`) is set
before drawing the circles using the `setGState` operator. Doing so
causes the global alpha to be set on the canvas' context for the canvas
back-end, but this was not handled in the SVG back-end. This patch fixes
that by taking the fill opacity into account when drawing shading
patterns in the same way as done elsewhere so it is only included if the
value is non-default.
Fixes#11812.
When "Cleanup" is triggered, you obviously need to remove all globally cached data on *both* the main- and worker-threads.
However, the current the implementation of the `GlobalImageCache.clear` method also means that we lose *all* information about which images were cached and not just their data. This thus has the somewhat unfortunate side-effect of requiring images, which were previously known to be "global", to *again* having to reach `NUM_PAGES_THRESHOLD` before being cached again.
To avoid doing unnecessary parsing after "Cleanup", we can thus let `GlobalImageCache.clear` keep track of which images were cached while still removing their actual data. This should not have any significant impact on memory usage, since the only extra thing being kept is a `RefSetCache` (essentially an Object) with a couple of `Set`s containing only integers.
With the changes made in the previous patch, the `web/app_options.js` file no longer depends on anything *except* files residing in the `web/` folder. Hence the `gulp default_preferences` task can now be further simplified and thus becomes even faster than before; see also PR 11724.
With the changes in previous patches, the `disableCreateObjectURL` option/functionality is no longer used for anything in the API and/or in the Worker code.
Note however that there's some functionality, mainly related to file loading/downloading, in the GENERIC version of the default viewer which still depends on this option.
Hence the `disableCreateObjectURL` option (and related compatibility code) is moved into the viewer, see e.g. `web/app_options.js`, such that it's still available in the default viewer.
Currently some JPEG images are decoded by the built-in PDF.js decoder in `src/core/jpg.js`, while others attempt to use the browser JPEG decoder. This inconsistency seem unfortunate for a number of reasons:
- It adds, compared to the other image formats supported in the PDF specification, a fair amount of code/complexity to the image handling in the PDF.js library.
- The PDF specification support JPEG images with features, e.g. certain ColorSpaces, that browsers are unable to decode natively. Hence, determining if a JPEG image is possible to decode natively in the browser require a non-trivial amount of parsing. In particular, we're parsing (part of) the raw JPEG data to extract certain marker data and we also need to parse the ColorSpace for the JPEG image.
- While some JPEG images may, for all intents and purposes, appear to be natively supported there's still cases where the browser may fail to decode some JPEG images. In order to support those cases, we've had to implement a fallback to the PDF.js JPEG decoder if there's any issues during the native decoding. This also means that it's no longer possible to simply send the JPEG image to the main-thread and continue parsing, but you now need to actually wait for the main-thread to indicate success/failure first.
In practice this means that there's a code-path where the worker-thread is forced to wait for the main-thread, while the reverse should *always* be the case.
- The native decoding, for anything except the *simplest* of JPEG images, result in increased peak memory usage because there's a handful of short-lived copies of the JPEG data (see PR 11707).
Furthermore this also leads to data being *parsed* on the main-thread, rather than the worker-thread, which you usually want to avoid for e.g. performance and UI-reponsiveness reasons.
- Not all environments, e.g. Node.js, fully support native JPEG decoding. This has, historically, lead to some issues and support requests.
- Different browsers may use different JPEG decoders, possibly leading to images being rendered slightly differently depending on the platform/browser where the PDF.js library is used.
Originally the implementation in `src/core/jpg.js` were unable to handle all of the JPEG images in the test-suite, but over the last couple of years I've fixed (hopefully) all of those issues.
At this point in time, there's two kinds of failure with this patch:
- Changes which are basically imperceivable to the naked eye, where some pixels in the images are essentially off-by-one (in all components), which could probably be attributed to things such as different rounding behaviour in the browser/PDF.js JPEG decoder.
This type of "failure" accounts for the *vast* majority of the total number of changes in the reference tests.
- Changes where the JPEG images now looks *ever so slightly* blurrier than with the native browser decoder. For quite some time I've just assumed that this pointed to a general deficiency in the `src/core/jpg.js` implementation, however I've discovered when comparing two viewers side-by-side that the differences vanish at higher zoom levels (usually around 200% is enough).
Basically if you disable [this downscaling in canvas.js](8fb82e939c/src/display/canvas.js (L2356-L2395)), which is what happens when zooming in, the differences simply vanish!
Hence I'm pretty satisfied that there's no significant problems with the `src/core/jpg.js` implementation, and the problems are rather tied to the general quality of the downscaling algorithm used. It could even be seen as a positive that *all* images now share the same downscaling behaviour, since this actually fixes one old bug; see issue 7041.