This will further help reduce the amount of image data that's currently being held alive, by explicitly removing the `src` attribute.
Please note that this is mostly relevant for browsers which do not support `URL.createObjectURL`, or where `disableCreateObjectURL` was manually set by the user, since `blob:` URLs will be revoked (see the previous patch).
However, using `about:memory` (in Firefox) it does seem that this may also be generally helpful, given that calling `URL.revokeObjectURL` won't invalidate the image data itself (as far as I can tell).
Natively supported JPEG images are sent as-is, using a `blob:` or possibly a `data` URL, to the main-thread for loading/decoding.
However there's currently no attempt at releasing these resources, which are held alive by `blob:` URLs, which seems unfortunately given that images can be arbitrarily large.
As mentioned in https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL the lifetime of these URLs are tied to the document, hence they are not being removed when a page is cleaned-up/destroyed (e.g. when being removed from the `PDFPageViewBuffer` in the viewer).
This is easy to test with the help of `about:memory` (in Firefox), which clearly shows the number of `blob:` URLs becomming arbitrarily large *without* this patch. With this patch however the `blob:` URLs are immediately release upon clean-up as expected, and the memory consumption should thus be considerably reduced for long documents with (simple) JPEG images.
Note how `PDFDocumentProxy.destroy` is a nothing more than an alias for `PDFDocumentLoadingTask.destroy`. While removing the latter method would be a breaking API change, there's still room for at least some clean-up here.
The main changes in this patch are:
- Stop providing a `PDFDocumentLoadingTask` instance *separately* when creating a `PDFDocumentProxy`, since the loadingTask is already available through the `WorkerTransport` instance.
- Stop tracking the `PDFDocumentProxy` instance on the `WorkerTransport`, since that property is completely unused.
- Simplify the 'Multiple `getDocument` instances' unit-tests by only destroying *once*, rather than twice, for each document.
For Type3 fonts text-selection is often not that great, and there's a couple of heuristics used to try and improve things. This patch simple extends those heuristics a bit, and fixes a pre-existing "naive" array comparison, but this all feels a bit brittle to say the least.
The existing Type3 test-coverage isn't that great in general, and in particular Type3 `text` tests are few and far between, hence why this patch adds *two* different new `text` tests.
Notable changes:
- Remove the `return this;` from the `MurmurHash3_64.update` method, since it's completely unused and doesn't make a lot of sense.
- Remove the loop(s) from the `MurmurHash3_64.hexdigest` method, since creating a temporary array and then looping over it is wasteful given how simple this can be written with modern JavaScript.
Given that the function is (purposely) independent of the verbosity level and that its message is worded to only apply on the main-thread, there's no reason to duplicate this across the built `pdf.js`/`pdf.worker.js` files.
Currently for every single parsed/rendered page there's no less than *four* `Date.now()` calls being made on the worker-side. This seems totally unnecessary, since the result of these calls are, by default, not used for anything *unless* the verbosity level is set to `INFO`.
The default size of these canvases seem to be `300 x 150` (two orders of magnitude larger than the ones in PR 10597), which probably is sufficient enough to matter since there's one such canvas for each textLayer that's rendered in the viewer.
Also fixes the incorrect rejection reason, i.e. one using a string rather than an `Error`, in the `TextLayerRenderTask.cancel` method.
While this particular canvas may be small, there can still be an arbitrarily large number of them (one per page rendered), which can/will eventually add up memory wise. This can be easily avoided by using the `cachedCanvases` abstraction instead, which will ensure that the `isFontSubpixelAAEnabled` canvas is removed together with other temporary canvases in `CanvasGraphics.endDrawing`.
The `src/shared/util.js` file is being bundled into both the `pdf.js` and `pdf.worker.js` files, meaning that its code is by definition duplicated.
Some main-thread only utility functions have already been moved to a separate `src/display/display_utils.js` file, and this patch simply extends that concept to utility functions which are used *only* on the worker-thread.
Note in particular the `getInheritableProperty` function, which expects a `Dict` as input and thus *cannot* possibly ever be used on the main-thread.
This file (currently) contains not only DOM-specific helper functions/classes, but is used generally for various helper code relevant for main-thread functionality.
*Hopefully this patch makes sense, since I cannot claim to fully understand this function.*
With the changes made in PR 3354 *some* Type3 glyph outlines are no longer rendering correctly, since the final paths were being accidentally ignored.
The fact that Type3 fonts are not very common in PDF documents, and that most Type3 glyphs are unaffected by this regression, probably explains why this has gone unnoticed since 2013.
After PR 9340 all glyphs are now re-mapped to a Private Use Area (PUA) which means that if a font fails to load, for whatever reason[1], all glyphs in the font will now render as Unicode glyph outlines.
This obviously doesn't look good, to say the least, and might be seen as a "regression" since previously many glyphs were left in their original positions which provided a slightly better fallback[2].
Hence this patch, which implements a *general* fallback to the PDF.js built-in font renderer for fonts that fail to load (i.e. are rejected by the sanitizer). One caveat here is that this only works for the Font Loading API, since it's easy to handle errors in that case[3].
The solution implemented in this patch does *not* in any way delay the loading of valid fonts, which was the problem with my previous attempt at a solution, and will only require a bit of extra work/waiting for those fonts that actually fail to load.
*Please note:* This patch doesn't fix any of the underlying PDF.js font conversion bugs that's responsible for creating corrupt font files, however it does *improve* rendering in a number of cases; refer to this possibly incomplete list:
[Bug 1524888](https://bugzilla.mozilla.org/show_bug.cgi?id=1524888)
Issue 10175
Issue 10232
---
[1] Usually because the PDF.js font conversion code wasn't able to parse the font file correctly.
[2] Glyphs fell back to some default font, which while not accurate was more useful than the current state.
[3] Furthermore I'm not sure how to implement this generally, assuming that's even possible, and don't really have time/interest to look into it either.
- The only existing call-site, of this method, is never passing more than *one* font at a time anyway.
- As far as I can remember, this functionality has never actually been used (caveat: I didn't check the git history).
- This allows simplification of the method, especially by making use of the fact that it's now asynchronous.
- It should be just as easy to call `BaseFontLoader.bind` from within a loop, rather than having the loop in the method itself.
Currently all fonts are using the `_queueLoadingCallback` method to determine when they have been loaded[1]. However in most cases this is just adding unnecessary overhead, especially with `BaseFontLoader.bind` now being asynchronous, given how fonts are loaded:
- For fonts loaded using the Font Loading API, it's already possible to easily tell when a font has been loaded simply by checking the `loaded` promise on the FontFace object itself.
- For browsers, e.g. Firefox, which support synchronous font loading it's already assumed that fonts are immediately available.
Hence the `_queueLoadingCallback` method is moved into the `GenericFontLoader`, such that it's only utilized for fonts which are loaded using CSS.
---
[1] In the "fonts loaded using CSS" case, this is already a hack anyway as outlined in the comments.
pdf.js had a problem when copying characters on supplementary planes
(0xPPXXXX where PP is nonzero). This is because certain methods of
PartialEvaluator use classic String.fromCharCode instead of ES6's
String.fromCodePoint.
Despite the fact that readToUnicode method *tried* to parse out-of-UCS2
code points by parsing UTF-16BE, it was inadequate because
String.fromCharCode only supports UCS-2 range of Unicode.
Unsurprisingly IE11 doesn't support this, so a polyfill is needed since otherwise the sidebar can no longer be opened.
Also, simplifies the existing `classList.toggle` polyfill.
This polyfill is currently used in only *one* file, i.e. `src/display/api.js`, and only when trying to build a *fallback* `workerSrc` path.
Given that the global `workerSrc` should *always* be set[1] when using the PDF.js library[2], and that the fallback `workerSrc` should only be regarded as a best-effort solution anyway, there isn't a particularily strong reason to keep the compatibility code in my opinion.
---
[1] Other supported options include setting the global `workerPort`, or passing in a `PDFWorker` instance as part of the `getDocument` call.
[2] Which is clearly mentioned in the JSDocs in `src/display/worker_options.js`.
This piggybacks of the existing `cancel` functionality, to ensure that any pending operations are closed *and* that any temporary canvases are actually being removed.
Also simplifies `finishPaintTask` in `PDFPageView.draw` slightly, by converting it to an async function.
All objects in the PDF document follow this pattern:
```
0000000001 0 obj
<<
% Some content here...
>>
endobj
0000000002 0 obj
<<
% More content here...
endobj
```
Based on the discussion in https://bugzilla.mozilla.org/show_bug.cgi?id=1521413, this patch simply removes the `ReadableStream` polyfill completely from MOZCENTRAL builds.
With this patch, the size of the `gulp mozcentral` build target is thus further reduced (building on PR 10470):
| | `build/mozcentral`
|-------|-------------------
|master | 3 339 666
|patch | 3 209 572
With https://bugzilla.mozilla.org/show_bug.cgi?id=1505122 landing in Firefox 65, the native `ReadableStream` implementation is now enabled by default in Firefox.
Obviously it would be nice to simply stop bundling the polyfill in MOZCENTRAL builds altogether, however given that it's still possible to disable[1] `ReadableStream` this is probably not a good idea just yet.
Nonetheless, now that native support is available, it seems unnecessary (and wasteful) to keep bundling the polyfill twice[2] in MOZCENTRAL builds. Hence this patch, which contains a suggest approach for packing the polyfill in a *separate* file which is then *only* loaded if/when needed.
With this patch, the size of the `gulp mozcentral` build target is thus reduced accordingly:
| | `build/mozcentral`
|-------|-------------------
|master | 3 461 089
|patch | 3 340 268
Besides the PDF.js files taking up less space in Firefox this way, the additional benefit is that there's (by default) less code that needs to be loaded and parsed when the PDF Viewer is used which also cannot hurt.
---
[1] In `about:config`, by toggling the `javascript.options.streams` preference.
[2] Once in the `build/pdf.js` file, and once in the `build/pdf.worker.js` file.
In many cases in the code you don't actually care about the index itself, but rather just want to know if something exists in a String/Array or if a String starts in a particular way. With modern JavaScript functionality, it's thus possible to remove a number of existing `indexOf` cases.
This will allow the Metadata to be successfully extracted from the PDF file in issue 10395.
Furthermore, this patch also fixes a bug in `Metadata.get` which causes the method to return `null` rather than an empty string or zero (since either ought to be allowed).
The error was triggered for a particular set of metadata, where an end tag was encountered without the corresponding begin tag being present in the data.
(The patch also fixes a minor oversight, from a recent PR, in the `SimpleDOMNode.nextSibling` method.)
Given that the issue, as filed, is incomplete since no PDF file was provided for debugging, this patch is really the best that we can do here. *Please note:* This patch will *not* enable the Metadata to be successfully parsed, but it should at least prevent the errors.
This method creates quite a few intermediate strings on each call and
it's called often, even for smaller documents like the Tracemonkey
document. Scrolling from top to bottom in that document resulted in
14126 strings being created in this method. With this commit applied,
this is reduced to 2018 strings.
This method creates quite a few intermediate strings on each call and
it's called often, even for smaller documents like the Tracemonkey
document. Scrolling from top to bottom in that document resulted in
12936 strings being created in this method. With this commit applied,
this is reduced to 3610 strings.
The `toString` method always creates two string objects (for the 'R'
character and for the `num` concatenation) and in the worst case
creates three string objects (one more for the `gen` concatenation).
For the Tracemonkey paper alone, this resulted in 12000 string
objects when scrolling from the top to the bottom of the document.
Since this is a hot function, it's worth minimizing the number of string
objects, especially for large documents, to reduce peak memory usage.
This commit refactors the `toString` method to always create only one
string object.
For PDF documents with sufficiently broken XRef tables, it's usually quite obvious when you need to fallback to indexing the entire file. However, for certain kinds of corrupted PDF documents the XRef table will, for all intents and purposes, appear to be valid. It's not until you actually try to fetch various objects that things will start to break, which is the case in the referenced issues[1].
Since there's generally a real effort being in made PDF.js to load even corrupt PDF documents, this patch contains a suggested approach to attempt to do a bit more validation of the XRef table during the initial document loading phase.
Here the choice is made to attempt to load the *first* page, as a basic sanity check of the validity of the XRef table. Please note that attempting to load a more-or-less arbitrarily chosen object without any context of what it's supposed to be isn't a very useful, which is why this particular choice was made.
Obviously, just because the first page can be loaded successfully that doesn't guarantee that the *entire* XRef table is valid, however if even the first page fails to load you can be reasonably sure that the document is *not* valid[2].
Even though this patch won't cause any significant increase in the amount of parsing required during initial loading of the document[3], it will require loading of more data upfront which thus delays the initial `getDocument` call.
Whether or not this is a problem depends very much on what you actually measure, please consider the following examples:
```javascript
console.time('first');
getDocument(...).promise.then((pdfDocument) => {
console.timeEnd('first');
});
console.time('second');
getDocument(...).promise.then((pdfDocument) => {
pdfDocument.getPage(1).then((pdfPage) => { // Note: the API uses `pageNumber >= 1`, the Worker uses `pageIndex >= 0`.
console.timeEnd('second');
});
});
```
The first case is pretty much guaranteed to show a small regression, however the second case won't be affected at all since the Worker caches the result of `getPage` calls. Again, please remember that the second case is what matters for the standard PDF.js use-case which is why I'm hoping that this patch is deemed acceptable.
---
[1] In issue 7496, the problem is that the document is edited without the XRef table being correctly updated.
In issue 10326, the generator was sorting the XRef table according to the offsets rather than the objects.
[2] The idea of checking the first page in particular came from the "standard" use-case for the PDF.js library, i.e. the default viewer, where a failure to load the first page basically means that nothing will work; note how `{BaseViewer, PDFThumbnailViewer}.setDocument` depends completely on being able to fetch the *first* page.
[3] The only extra parsing is caused by, potentially, having to traverse *part* of the `Pages` tree to find the first page.
If, as PR 10368 suggests, more parameters should be added to `getViewport` I think that it would be a mistake to not change the signature *first* to avoid needlessly unwieldy call-sites.
To not break any existing code and third-party use-cases, this is obviously implemented with a deprecation warning *and* with a working fallback[1] for the old method signature.
---
[1] This is limited to `GENERIC` builds, which should be sufficient.
Note that the OpenAction dictionary may contain other information besides just a destination array, e.g. instructions for auto-printing[1].
Given first of all that an arbitrary `Dict` cannot be sent from the Worker (since cloning would fail), and second of all that the data obviously needs to be validated, this patch purposely only adds support for fetching a destination from the OpenAction entry[2].
---
[1] This information is, currently in PDF.js, being included through the `getJavaScript` API method.
[2] This significantly reduces the complexity of the implementation, which seems fine for now. If there's ever need for other kinds of OpenAction to be fetched, additional API methods could/should be implemented as necessary (could e.g. follow the `getOpenActionWhatever` naming scheme).
The custom entries, provided that they exist *and* that their types are safe to include, are exposed through a new `Custom` infoDict entry to clearly separate them from the standard ones.
Fixes 5970.
Fixes 10344.
Given that Signature (Widget) annotations are currently not supported, since they cannot be validated, simply ignoring the `fieldValue` seems OK for now considering that attempting to blindly include unparsed/unvalidated data isn't very useful.
Fixes 10347.
The intent of the code, based on existing comments, is to perform a binary search. However, because of what appears to be a typo in the code responsible for computing the current search index, this code is always checking *every* entry (albeit only at the "final" node) starting from the last one.
According to the specification, see https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#G6.2384179, the keys of NameTree/NumberTree should be ordered.
For corrupt PDF files, which violate this assumption, we thus need to fallback to an exhaustive search in order to e.g. find all destinations.
*Please note:* Given that this only implements a fallback for the "final" node of the Tree, there's obviously a risk that the patch isn't sufficient for dealing with all kinds of out-of-order corruption. However, this kind of problem should be rare in practice, and without a real-world test-case it's difficult to implement a completely general solution (and there's obviously a question if you'd even want to).
This changes all occurrences of `var` to `let`/`const` in this code, and updates the signature of the constructor to use object destructuring for better readability (and self documentation).
Also, `useRequestAnimationFrame` is changed to a parameter and the `typeof window` check is now done *once* rather than at every `_scheduleNext` call.
This changes all occurrences of `var` to `let`/`const` in this code, and updates the signatures of a couple of methods to use object destructuring.
Finally, when creating `InternalRenderTask` instances *only* the necessary parameter are now provided, since passing through the `RenderParameters` as-is seems completely unnecessary.