Convert Util
to a class with static methods
Also replaces `var` with `const` in all the relevant code.
This commit is contained in:
parent
7ee370a394
commit
f6c4a1f080
@ -627,22 +627,20 @@ function isEvalSupported() {
|
||||
}
|
||||
}
|
||||
|
||||
var Util = (function UtilClosure() {
|
||||
function Util() {}
|
||||
const rgbBuf = ['rgb(', 0, ',', 0, ',', 0, ')'];
|
||||
|
||||
var rgbBuf = ['rgb(', 0, ',', 0, ',', 0, ')'];
|
||||
|
||||
// makeCssRgb() can be called thousands of times. Using |rgbBuf| avoids
|
||||
class Util {
|
||||
// makeCssRgb() can be called thousands of times. Using ´rgbBuf` avoids
|
||||
// creating many intermediate strings.
|
||||
Util.makeCssRgb = function Util_makeCssRgb(r, g, b) {
|
||||
static makeCssRgb(r, g, b) {
|
||||
rgbBuf[1] = r;
|
||||
rgbBuf[3] = g;
|
||||
rgbBuf[5] = b;
|
||||
return rgbBuf.join('');
|
||||
};
|
||||
}
|
||||
|
||||
// Concatenates two transformation matrices together and returns the result.
|
||||
Util.transform = function Util_transform(m1, m2) {
|
||||
static transform(m1, m2) {
|
||||
return [
|
||||
m1[0] * m2[0] + m1[2] * m2[1],
|
||||
m1[1] * m2[0] + m1[3] * m2[1],
|
||||
@ -651,44 +649,42 @@ var Util = (function UtilClosure() {
|
||||
m1[0] * m2[4] + m1[2] * m2[5] + m1[4],
|
||||
m1[1] * m2[4] + m1[3] * m2[5] + m1[5]
|
||||
];
|
||||
};
|
||||
}
|
||||
|
||||
// For 2d affine transforms
|
||||
Util.applyTransform = function Util_applyTransform(p, m) {
|
||||
var xt = p[0] * m[0] + p[1] * m[2] + m[4];
|
||||
var yt = p[0] * m[1] + p[1] * m[3] + m[5];
|
||||
static applyTransform(p, m) {
|
||||
const xt = p[0] * m[0] + p[1] * m[2] + m[4];
|
||||
const yt = p[0] * m[1] + p[1] * m[3] + m[5];
|
||||
return [xt, yt];
|
||||
};
|
||||
}
|
||||
|
||||
Util.applyInverseTransform = function Util_applyInverseTransform(p, m) {
|
||||
var d = m[0] * m[3] - m[1] * m[2];
|
||||
var xt = (p[0] * m[3] - p[1] * m[2] + m[2] * m[5] - m[4] * m[3]) / d;
|
||||
var yt = (-p[0] * m[1] + p[1] * m[0] + m[4] * m[1] - m[5] * m[0]) / d;
|
||||
static applyInverseTransform(p, m) {
|
||||
const d = m[0] * m[3] - m[1] * m[2];
|
||||
const xt = (p[0] * m[3] - p[1] * m[2] + m[2] * m[5] - m[4] * m[3]) / d;
|
||||
const yt = (-p[0] * m[1] + p[1] * m[0] + m[4] * m[1] - m[5] * m[0]) / d;
|
||||
return [xt, yt];
|
||||
};
|
||||
}
|
||||
|
||||
// Applies the transform to the rectangle and finds the minimum axially
|
||||
// aligned bounding box.
|
||||
Util.getAxialAlignedBoundingBox =
|
||||
function Util_getAxialAlignedBoundingBox(r, m) {
|
||||
|
||||
var p1 = Util.applyTransform(r, m);
|
||||
var p2 = Util.applyTransform(r.slice(2, 4), m);
|
||||
var p3 = Util.applyTransform([r[0], r[3]], m);
|
||||
var p4 = Util.applyTransform([r[2], r[1]], m);
|
||||
static getAxialAlignedBoundingBox(r, m) {
|
||||
const p1 = Util.applyTransform(r, m);
|
||||
const p2 = Util.applyTransform(r.slice(2, 4), m);
|
||||
const p3 = Util.applyTransform([r[0], r[3]], m);
|
||||
const p4 = Util.applyTransform([r[2], r[1]], m);
|
||||
return [
|
||||
Math.min(p1[0], p2[0], p3[0], p4[0]),
|
||||
Math.min(p1[1], p2[1], p3[1], p4[1]),
|
||||
Math.max(p1[0], p2[0], p3[0], p4[0]),
|
||||
Math.max(p1[1], p2[1], p3[1], p4[1])
|
||||
];
|
||||
};
|
||||
}
|
||||
|
||||
Util.inverseTransform = function Util_inverseTransform(m) {
|
||||
var d = m[0] * m[3] - m[1] * m[2];
|
||||
static inverseTransform(m) {
|
||||
const d = m[0] * m[3] - m[1] * m[2];
|
||||
return [m[3] / d, -m[1] / d, -m[2] / d, m[0] / d,
|
||||
(m[2] * m[5] - m[4] * m[3]) / d, (m[4] * m[1] - m[5] * m[0]) / d];
|
||||
};
|
||||
}
|
||||
|
||||
// Apply a generic 3d matrix M on a 3-vector v:
|
||||
// | a b c | | X |
|
||||
@ -696,44 +692,42 @@ var Util = (function UtilClosure() {
|
||||
// | g h i | | Z |
|
||||
// M is assumed to be serialized as [a,b,c,d,e,f,g,h,i],
|
||||
// with v as [X,Y,Z]
|
||||
Util.apply3dTransform = function Util_apply3dTransform(m, v) {
|
||||
static apply3dTransform(m, v) {
|
||||
return [
|
||||
m[0] * v[0] + m[1] * v[1] + m[2] * v[2],
|
||||
m[3] * v[0] + m[4] * v[1] + m[5] * v[2],
|
||||
m[6] * v[0] + m[7] * v[1] + m[8] * v[2]
|
||||
];
|
||||
};
|
||||
}
|
||||
|
||||
// This calculation uses Singular Value Decomposition.
|
||||
// The SVD can be represented with formula A = USV. We are interested in the
|
||||
// matrix S here because it represents the scale values.
|
||||
Util.singularValueDecompose2dScale =
|
||||
function Util_singularValueDecompose2dScale(m) {
|
||||
|
||||
var transpose = [m[0], m[2], m[1], m[3]];
|
||||
static singularValueDecompose2dScale(m) {
|
||||
const transpose = [m[0], m[2], m[1], m[3]];
|
||||
|
||||
// Multiply matrix m with its transpose.
|
||||
var a = m[0] * transpose[0] + m[1] * transpose[2];
|
||||
var b = m[0] * transpose[1] + m[1] * transpose[3];
|
||||
var c = m[2] * transpose[0] + m[3] * transpose[2];
|
||||
var d = m[2] * transpose[1] + m[3] * transpose[3];
|
||||
const a = m[0] * transpose[0] + m[1] * transpose[2];
|
||||
const b = m[0] * transpose[1] + m[1] * transpose[3];
|
||||
const c = m[2] * transpose[0] + m[3] * transpose[2];
|
||||
const d = m[2] * transpose[1] + m[3] * transpose[3];
|
||||
|
||||
// Solve the second degree polynomial to get roots.
|
||||
var first = (a + d) / 2;
|
||||
var second = Math.sqrt((a + d) * (a + d) - 4 * (a * d - c * b)) / 2;
|
||||
var sx = first + second || 1;
|
||||
var sy = first - second || 1;
|
||||
const first = (a + d) / 2;
|
||||
const second = Math.sqrt((a + d) * (a + d) - 4 * (a * d - c * b)) / 2;
|
||||
const sx = first + second || 1;
|
||||
const sy = first - second || 1;
|
||||
|
||||
// Scale values are the square roots of the eigenvalues.
|
||||
return [Math.sqrt(sx), Math.sqrt(sy)];
|
||||
};
|
||||
}
|
||||
|
||||
// Normalize rectangle rect=[x1, y1, x2, y2] so that (x1,y1) < (x2,y2)
|
||||
// For coordinate systems whose origin lies in the bottom-left, this
|
||||
// means normalization to (BL,TR) ordering. For systems with origin in the
|
||||
// top-left, this means (TL,BR) ordering.
|
||||
Util.normalizeRect = function Util_normalizeRect(rect) {
|
||||
var r = rect.slice(0); // clone rect
|
||||
static normalizeRect(rect) {
|
||||
const r = rect.slice(0); // clone rect
|
||||
if (rect[0] > rect[2]) {
|
||||
r[0] = rect[2];
|
||||
r[2] = rect[0];
|
||||
@ -743,20 +737,20 @@ var Util = (function UtilClosure() {
|
||||
r[3] = rect[1];
|
||||
}
|
||||
return r;
|
||||
};
|
||||
}
|
||||
|
||||
// Returns a rectangle [x1, y1, x2, y2] corresponding to the
|
||||
// intersection of rect1 and rect2. If no intersection, returns 'false'
|
||||
// The rectangle coordinates of rect1, rect2 should be [x1, y1, x2, y2]
|
||||
Util.intersect = function Util_intersect(rect1, rect2) {
|
||||
static intersect(rect1, rect2) {
|
||||
function compare(a, b) {
|
||||
return a - b;
|
||||
}
|
||||
|
||||
// Order points along the axes
|
||||
var orderedX = [rect1[0], rect1[2], rect2[0], rect2[2]].sort(compare),
|
||||
orderedY = [rect1[1], rect1[3], rect2[1], rect2[3]].sort(compare),
|
||||
result = [];
|
||||
const orderedX = [rect1[0], rect1[2], rect2[0], rect2[2]].sort(compare);
|
||||
const orderedY = [rect1[1], rect1[3], rect2[1], rect2[3]].sort(compare);
|
||||
const result = [];
|
||||
|
||||
rect1 = Util.normalizeRect(rect1);
|
||||
rect2 = Util.normalizeRect(rect2);
|
||||
@ -782,10 +776,8 @@ var Util = (function UtilClosure() {
|
||||
}
|
||||
|
||||
return result;
|
||||
};
|
||||
|
||||
return Util;
|
||||
})();
|
||||
}
|
||||
}
|
||||
|
||||
const PDFStringTranslateTable = [
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
|
Loading…
x
Reference in New Issue
Block a user