Modernize the ShadingIRs structure, in src/display/pattern_helper.js, to use standard classes

This patch replaces the old structure with an abstract base-class, which the new ShadingPattern classes then inherit from.
The old `createMeshCanvasClosure` can now be removed, since it's not necessary any more with modern JavaScript, and the `createMeshCanvas` function is now instead a method on the new `MeshShadingPattern` class (avoids unnecessary parameter passing).
This commit is contained in:
Jonas Jenwald 2021-05-15 13:25:10 +02:00
parent 40939d5955
commit a984431046
2 changed files with 309 additions and 308 deletions

View File

@ -27,7 +27,7 @@ import {
Util,
warn,
} from "../shared/util.js";
import { getShadingPatternFromIR, TilingPattern } from "./pattern_helper.js";
import { getShadingPattern, TilingPattern } from "./pattern_helper.js";
// <canvas> contexts store most of the state we need natively.
// However, PDF needs a bit more state, which we store here.
@ -1973,7 +1973,7 @@ const CanvasGraphics = (function CanvasGraphicsClosure() {
baseTransform
);
} else {
pattern = getShadingPatternFromIR(IR);
pattern = getShadingPattern(IR);
}
return pattern;
}
@ -2007,7 +2007,7 @@ const CanvasGraphics = (function CanvasGraphicsClosure() {
const ctx = this.ctx;
this.save();
const pattern = getShadingPatternFromIR(patternIR);
const pattern = getShadingPattern(patternIR);
ctx.fillStyle = pattern.getPattern(ctx, this, true);
const inv = ctx.mozCurrentTransformInverse;

View File

@ -13,9 +13,13 @@
* limitations under the License.
*/
import { FormatError, info, shadow, Util } from "../shared/util.js";
const ShadingIRs = {};
import {
FormatError,
info,
shadow,
unreachable,
Util,
} from "../shared/util.js";
let svgElement;
@ -41,249 +45,265 @@ function applyBoundingBox(ctx, bbox) {
ctx.clip(region);
}
ShadingIRs.RadialAxial = {
fromIR: function RadialAxial_fromIR(raw) {
const type = raw[1];
const bbox = raw[2];
const colorStops = raw[3];
const p0 = raw[4];
const p1 = raw[5];
const r0 = raw[6];
const r1 = raw[7];
const matrix = raw[8];
return {
getPattern: function RadialAxial_getPattern(ctx, owner, shadingFill) {
const tmpCanvas = owner.cachedCanvases.getCanvas(
"pattern",
ctx.canvas.width,
ctx.canvas.height,
true
);
const tmpCtx = tmpCanvas.context;
tmpCtx.clearRect(0, 0, tmpCtx.canvas.width, tmpCtx.canvas.height);
tmpCtx.beginPath();
tmpCtx.rect(0, 0, tmpCtx.canvas.width, tmpCtx.canvas.height);
if (!shadingFill) {
tmpCtx.setTransform.apply(tmpCtx, owner.baseTransform);
if (matrix) {
tmpCtx.transform.apply(tmpCtx, matrix);
}
} else {
tmpCtx.setTransform.apply(tmpCtx, ctx.mozCurrentTransform);
}
applyBoundingBox(tmpCtx, bbox);
let grad;
if (type === "axial") {
grad = tmpCtx.createLinearGradient(p0[0], p0[1], p1[0], p1[1]);
} else if (type === "radial") {
grad = tmpCtx.createRadialGradient(
p0[0],
p0[1],
r0,
p1[0],
p1[1],
r1
);
}
for (let i = 0, ii = colorStops.length; i < ii; ++i) {
const c = colorStops[i];
grad.addColorStop(c[0], c[1]);
}
tmpCtx.fillStyle = grad;
tmpCtx.fill();
const pattern = ctx.createPattern(tmpCanvas.canvas, "repeat");
pattern.setTransform(createMatrix(ctx.mozCurrentTransformInverse));
return pattern;
},
};
},
};
const createMeshCanvas = (function createMeshCanvasClosure() {
function drawTriangle(data, context, p1, p2, p3, c1, c2, c3) {
// Very basic Gouraud-shaded triangle rasterization algorithm.
const coords = context.coords,
colors = context.colors;
const bytes = data.data,
rowSize = data.width * 4;
let tmp;
if (coords[p1 + 1] > coords[p2 + 1]) {
tmp = p1;
p1 = p2;
p2 = tmp;
tmp = c1;
c1 = c2;
c2 = tmp;
class BaseShadingPattern {
constructor() {
if (this.constructor === BaseShadingPattern) {
unreachable("Cannot initialize BaseShadingPattern.");
}
if (coords[p2 + 1] > coords[p3 + 1]) {
tmp = p2;
p2 = p3;
p3 = tmp;
tmp = c2;
c2 = c3;
c3 = tmp;
}
if (coords[p1 + 1] > coords[p2 + 1]) {
tmp = p1;
p1 = p2;
p2 = tmp;
tmp = c1;
c1 = c2;
c2 = tmp;
}
const x1 = (coords[p1] + context.offsetX) * context.scaleX;
const y1 = (coords[p1 + 1] + context.offsetY) * context.scaleY;
const x2 = (coords[p2] + context.offsetX) * context.scaleX;
const y2 = (coords[p2 + 1] + context.offsetY) * context.scaleY;
const x3 = (coords[p3] + context.offsetX) * context.scaleX;
const y3 = (coords[p3 + 1] + context.offsetY) * context.scaleY;
if (y1 >= y3) {
return;
}
const c1r = colors[c1],
c1g = colors[c1 + 1],
c1b = colors[c1 + 2];
const c2r = colors[c2],
c2g = colors[c2 + 1],
c2b = colors[c2 + 2];
const c3r = colors[c3],
c3g = colors[c3 + 1],
c3b = colors[c3 + 2];
}
const minY = Math.round(y1),
maxY = Math.round(y3);
let xa, car, cag, cab;
let xb, cbr, cbg, cbb;
for (let y = minY; y <= maxY; y++) {
if (y < y2) {
let k;
if (y < y1) {
k = 0;
} else if (y1 === y2) {
k = 1;
} else {
k = (y1 - y) / (y1 - y2);
}
xa = x1 - (x1 - x2) * k;
car = c1r - (c1r - c2r) * k;
cag = c1g - (c1g - c2g) * k;
cab = c1b - (c1b - c2b) * k;
} else {
let k;
if (y > y3) {
k = 1;
} else if (y2 === y3) {
k = 0;
} else {
k = (y2 - y) / (y2 - y3);
}
xa = x2 - (x2 - x3) * k;
car = c2r - (c2r - c3r) * k;
cag = c2g - (c2g - c3g) * k;
cab = c2b - (c2b - c3b) * k;
getPattern() {
unreachable("Abstract method `getPattern` called.");
}
}
class RadialAxialShadingPattern extends BaseShadingPattern {
constructor(IR) {
super();
this._type = IR[1];
this._bbox = IR[2];
this._colorStops = IR[3];
this._p0 = IR[4];
this._p1 = IR[5];
this._r0 = IR[6];
this._r1 = IR[7];
this._matrix = IR[8];
}
getPattern(ctx, owner, shadingFill) {
const tmpCanvas = owner.cachedCanvases.getCanvas(
"pattern",
ctx.canvas.width,
ctx.canvas.height,
true
);
const tmpCtx = tmpCanvas.context;
tmpCtx.clearRect(0, 0, tmpCtx.canvas.width, tmpCtx.canvas.height);
tmpCtx.beginPath();
tmpCtx.rect(0, 0, tmpCtx.canvas.width, tmpCtx.canvas.height);
if (!shadingFill) {
tmpCtx.setTransform.apply(tmpCtx, owner.baseTransform);
if (this._matrix) {
tmpCtx.transform.apply(tmpCtx, this._matrix);
}
} else {
tmpCtx.setTransform.apply(tmpCtx, ctx.mozCurrentTransform);
}
applyBoundingBox(tmpCtx, this._bbox);
let grad;
if (this._type === "axial") {
grad = tmpCtx.createLinearGradient(
this._p0[0],
this._p0[1],
this._p1[0],
this._p1[1]
);
} else if (this._type === "radial") {
grad = tmpCtx.createRadialGradient(
this._p0[0],
this._p0[1],
this._r0,
this._p1[0],
this._p1[1],
this._r1
);
}
for (const colorStop of this._colorStops) {
grad.addColorStop(colorStop[0], colorStop[1]);
}
tmpCtx.fillStyle = grad;
tmpCtx.fill();
const pattern = ctx.createPattern(tmpCanvas.canvas, "repeat");
pattern.setTransform(createMatrix(ctx.mozCurrentTransformInverse));
return pattern;
}
}
function drawTriangle(data, context, p1, p2, p3, c1, c2, c3) {
// Very basic Gouraud-shaded triangle rasterization algorithm.
const coords = context.coords,
colors = context.colors;
const bytes = data.data,
rowSize = data.width * 4;
let tmp;
if (coords[p1 + 1] > coords[p2 + 1]) {
tmp = p1;
p1 = p2;
p2 = tmp;
tmp = c1;
c1 = c2;
c2 = tmp;
}
if (coords[p2 + 1] > coords[p3 + 1]) {
tmp = p2;
p2 = p3;
p3 = tmp;
tmp = c2;
c2 = c3;
c3 = tmp;
}
if (coords[p1 + 1] > coords[p2 + 1]) {
tmp = p1;
p1 = p2;
p2 = tmp;
tmp = c1;
c1 = c2;
c2 = tmp;
}
const x1 = (coords[p1] + context.offsetX) * context.scaleX;
const y1 = (coords[p1 + 1] + context.offsetY) * context.scaleY;
const x2 = (coords[p2] + context.offsetX) * context.scaleX;
const y2 = (coords[p2 + 1] + context.offsetY) * context.scaleY;
const x3 = (coords[p3] + context.offsetX) * context.scaleX;
const y3 = (coords[p3 + 1] + context.offsetY) * context.scaleY;
if (y1 >= y3) {
return;
}
const c1r = colors[c1],
c1g = colors[c1 + 1],
c1b = colors[c1 + 2];
const c2r = colors[c2],
c2g = colors[c2 + 1],
c2b = colors[c2 + 2];
const c3r = colors[c3],
c3g = colors[c3 + 1],
c3b = colors[c3 + 2];
const minY = Math.round(y1),
maxY = Math.round(y3);
let xa, car, cag, cab;
let xb, cbr, cbg, cbb;
for (let y = minY; y <= maxY; y++) {
if (y < y2) {
let k;
if (y < y1) {
k = 0;
} else if (y > y3) {
} else if (y1 === y2) {
k = 1;
} else {
k = (y1 - y) / (y1 - y3);
k = (y1 - y) / (y1 - y2);
}
xb = x1 - (x1 - x3) * k;
cbr = c1r - (c1r - c3r) * k;
cbg = c1g - (c1g - c3g) * k;
cbb = c1b - (c1b - c3b) * k;
const x1_ = Math.round(Math.min(xa, xb));
const x2_ = Math.round(Math.max(xa, xb));
let j = rowSize * y + x1_ * 4;
for (let x = x1_; x <= x2_; x++) {
k = (xa - x) / (xa - xb);
if (k < 0) {
k = 0;
} else if (k > 1) {
k = 1;
}
bytes[j++] = (car - (car - cbr) * k) | 0;
bytes[j++] = (cag - (cag - cbg) * k) | 0;
bytes[j++] = (cab - (cab - cbb) * k) | 0;
bytes[j++] = 255;
xa = x1 - (x1 - x2) * k;
car = c1r - (c1r - c2r) * k;
cag = c1g - (c1g - c2g) * k;
cab = c1b - (c1b - c2b) * k;
} else {
let k;
if (y > y3) {
k = 1;
} else if (y2 === y3) {
k = 0;
} else {
k = (y2 - y) / (y2 - y3);
}
xa = x2 - (x2 - x3) * k;
car = c2r - (c2r - c3r) * k;
cag = c2g - (c2g - c3g) * k;
cab = c2b - (c2b - c3b) * k;
}
let k;
if (y < y1) {
k = 0;
} else if (y > y3) {
k = 1;
} else {
k = (y1 - y) / (y1 - y3);
}
xb = x1 - (x1 - x3) * k;
cbr = c1r - (c1r - c3r) * k;
cbg = c1g - (c1g - c3g) * k;
cbb = c1b - (c1b - c3b) * k;
const x1_ = Math.round(Math.min(xa, xb));
const x2_ = Math.round(Math.max(xa, xb));
let j = rowSize * y + x1_ * 4;
for (let x = x1_; x <= x2_; x++) {
k = (xa - x) / (xa - xb);
if (k < 0) {
k = 0;
} else if (k > 1) {
k = 1;
}
bytes[j++] = (car - (car - cbr) * k) | 0;
bytes[j++] = (cag - (cag - cbg) * k) | 0;
bytes[j++] = (cab - (cab - cbb) * k) | 0;
bytes[j++] = 255;
}
}
}
function drawFigure(data, figure, context) {
const ps = figure.coords;
const cs = figure.colors;
let i, ii;
switch (figure.type) {
case "lattice":
const verticesPerRow = figure.verticesPerRow;
const rows = Math.floor(ps.length / verticesPerRow) - 1;
const cols = verticesPerRow - 1;
for (i = 0; i < rows; i++) {
let q = i * verticesPerRow;
for (let j = 0; j < cols; j++, q++) {
drawTriangle(
data,
context,
ps[q],
ps[q + 1],
ps[q + verticesPerRow],
cs[q],
cs[q + 1],
cs[q + verticesPerRow]
);
drawTriangle(
data,
context,
ps[q + verticesPerRow + 1],
ps[q + 1],
ps[q + verticesPerRow],
cs[q + verticesPerRow + 1],
cs[q + 1],
cs[q + verticesPerRow]
);
}
}
break;
case "triangles":
for (i = 0, ii = ps.length; i < ii; i += 3) {
function drawFigure(data, figure, context) {
const ps = figure.coords;
const cs = figure.colors;
let i, ii;
switch (figure.type) {
case "lattice":
const verticesPerRow = figure.verticesPerRow;
const rows = Math.floor(ps.length / verticesPerRow) - 1;
const cols = verticesPerRow - 1;
for (i = 0; i < rows; i++) {
let q = i * verticesPerRow;
for (let j = 0; j < cols; j++, q++) {
drawTriangle(
data,
context,
ps[i],
ps[i + 1],
ps[i + 2],
cs[i],
cs[i + 1],
cs[i + 2]
ps[q],
ps[q + 1],
ps[q + verticesPerRow],
cs[q],
cs[q + 1],
cs[q + verticesPerRow]
);
drawTriangle(
data,
context,
ps[q + verticesPerRow + 1],
ps[q + 1],
ps[q + verticesPerRow],
cs[q + verticesPerRow + 1],
cs[q + 1],
cs[q + verticesPerRow]
);
}
break;
default:
throw new Error("illegal figure");
}
}
break;
case "triangles":
for (i = 0, ii = ps.length; i < ii; i += 3) {
drawTriangle(
data,
context,
ps[i],
ps[i + 1],
ps[i + 2],
cs[i],
cs[i + 1],
cs[i + 2]
);
}
break;
default:
throw new Error("illegal figure");
}
}
class MeshShadingPattern extends BaseShadingPattern {
constructor(IR) {
super();
this._coords = IR[2];
this._colors = IR[3];
this._figures = IR[4];
this._bounds = IR[5];
this._matrix = IR[6];
this._bbox = IR[7];
this._background = IR[8];
}
// eslint-disable-next-line no-shadow
function createMeshCanvas(
bounds,
combinesScale,
coords,
colors,
figures,
backgroundColor,
cachedCanvases
) {
_createMeshCanvas(combinedScale, backgroundColor, cachedCanvases) {
// we will increase scale on some weird factor to let antialiasing take
// care of "rough" edges
const EXPECTED_SCALE = 1.1;
@ -293,25 +313,25 @@ const createMeshCanvas = (function createMeshCanvasClosure() {
// createPattern with 'no-repeat' will bleed edges across entire area.
const BORDER_SIZE = 2;
const offsetX = Math.floor(bounds[0]);
const offsetY = Math.floor(bounds[1]);
const boundsWidth = Math.ceil(bounds[2]) - offsetX;
const boundsHeight = Math.ceil(bounds[3]) - offsetY;
const offsetX = Math.floor(this._bounds[0]);
const offsetY = Math.floor(this._bounds[1]);
const boundsWidth = Math.ceil(this._bounds[2]) - offsetX;
const boundsHeight = Math.ceil(this._bounds[3]) - offsetY;
const width = Math.min(
Math.ceil(Math.abs(boundsWidth * combinesScale[0] * EXPECTED_SCALE)),
Math.ceil(Math.abs(boundsWidth * combinedScale[0] * EXPECTED_SCALE)),
MAX_PATTERN_SIZE
);
const height = Math.min(
Math.ceil(Math.abs(boundsHeight * combinesScale[1] * EXPECTED_SCALE)),
Math.ceil(Math.abs(boundsHeight * combinedScale[1] * EXPECTED_SCALE)),
MAX_PATTERN_SIZE
);
const scaleX = boundsWidth / width;
const scaleY = boundsHeight / height;
const context = {
coords,
colors,
coords: this._coords,
colors: this._colors,
offsetX: -offsetX,
offsetY: -offsetY,
scaleX: 1 / scaleX,
@ -339,8 +359,8 @@ const createMeshCanvas = (function createMeshCanvasClosure() {
bytes[i + 3] = 255;
}
}
for (let i = 0, ii = figures.length; i < ii; i++) {
drawFigure(data, figures[i], context);
for (const figure of this._figures) {
drawFigure(data, figure, context);
}
tmpCtx.putImageData(data, BORDER_SIZE, BORDER_SIZE);
const canvas = tmpCanvas.canvas;
@ -353,81 +373,62 @@ const createMeshCanvas = (function createMeshCanvasClosure() {
scaleY,
};
}
return createMeshCanvas;
})();
ShadingIRs.Mesh = {
fromIR: function Mesh_fromIR(raw) {
// var type = raw[1];
const coords = raw[2];
const colors = raw[3];
const figures = raw[4];
const bounds = raw[5];
const matrix = raw[6];
const bbox = raw[7];
const background = raw[8];
return {
getPattern: function Mesh_getPattern(ctx, owner, shadingFill) {
applyBoundingBox(ctx, bbox);
let scale;
if (shadingFill) {
scale = Util.singularValueDecompose2dScale(ctx.mozCurrentTransform);
} else {
// Obtain scale from matrix and current transformation matrix.
scale = Util.singularValueDecompose2dScale(owner.baseTransform);
if (matrix) {
const matrixScale = Util.singularValueDecompose2dScale(matrix);
scale = [scale[0] * matrixScale[0], scale[1] * matrixScale[1]];
}
}
getPattern(ctx, owner, shadingFill) {
applyBoundingBox(ctx, this._bbox);
let scale;
if (shadingFill) {
scale = Util.singularValueDecompose2dScale(ctx.mozCurrentTransform);
} else {
// Obtain scale from matrix and current transformation matrix.
scale = Util.singularValueDecompose2dScale(owner.baseTransform);
if (this._matrix) {
const matrixScale = Util.singularValueDecompose2dScale(this._matrix);
scale = [scale[0] * matrixScale[0], scale[1] * matrixScale[1]];
}
}
// Rasterizing on the main thread since sending/queue large canvases
// might cause OOM.
const temporaryPatternCanvas = createMeshCanvas(
bounds,
scale,
coords,
colors,
figures,
shadingFill ? null : background,
owner.cachedCanvases
);
// Rasterizing on the main thread since sending/queue large canvases
// might cause OOM.
const temporaryPatternCanvas = this._createMeshCanvas(
scale,
shadingFill ? null : this._background,
owner.cachedCanvases
);
if (!shadingFill) {
ctx.setTransform.apply(ctx, owner.baseTransform);
if (matrix) {
ctx.transform.apply(ctx, matrix);
}
}
if (!shadingFill) {
ctx.setTransform.apply(ctx, owner.baseTransform);
if (this._matrix) {
ctx.transform.apply(ctx, this._matrix);
}
}
ctx.translate(
temporaryPatternCanvas.offsetX,
temporaryPatternCanvas.offsetY
);
ctx.scale(temporaryPatternCanvas.scaleX, temporaryPatternCanvas.scaleY);
ctx.translate(
temporaryPatternCanvas.offsetX,
temporaryPatternCanvas.offsetY
);
ctx.scale(temporaryPatternCanvas.scaleX, temporaryPatternCanvas.scaleY);
return ctx.createPattern(temporaryPatternCanvas.canvas, "no-repeat");
},
};
},
};
ShadingIRs.Dummy = {
fromIR: function Dummy_fromIR() {
return {
getPattern: function Dummy_fromIR_getPattern() {
return "hotpink";
},
};
},
};
function getShadingPatternFromIR(raw) {
const shadingIR = ShadingIRs[raw[0]];
if (!shadingIR) {
throw new Error(`Unknown IR type: ${raw[0]}`);
return ctx.createPattern(temporaryPatternCanvas.canvas, "no-repeat");
}
return shadingIR.fromIR(raw);
}
class DummyShadingPattern extends BaseShadingPattern {
getPattern() {
return "hotpink";
}
}
function getShadingPattern(IR) {
switch (IR[0]) {
case "RadialAxial":
return new RadialAxialShadingPattern(IR);
case "Mesh":
return new MeshShadingPattern(IR);
case "Dummy":
return new DummyShadingPattern();
}
throw new Error(`Unknown IR type: ${IR[0]}`);
}
const PaintType = {
@ -624,4 +625,4 @@ class TilingPattern {
}
}
export { getShadingPatternFromIR, TilingPattern };
export { getShadingPattern, TilingPattern };