pdf.js/src/core/jbig2.js
Jonas Jenwald e82ad79eb9 Conditionally bundle gulp image_decoders-specific code in src/core/jbig2.js (PR 9729 follow-up)
This method/function was added only for the `gulp image_decoders`-builds, and is completely unused elsewhere (e.g. in the Firefox PDF Viewer).
While this only reduces the size of the *built* `pdf.worker.js` file by a little over 1 kB, it can't hurt to remove completely unused code from the "normal" builds.
2022-06-05 15:38:28 +02:00

2576 lines
69 KiB
JavaScript

/* Copyright 2012 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import { BaseException, shadow } from "../shared/util.js";
import { log2, readInt8, readUint16, readUint32 } from "./core_utils.js";
import { ArithmeticDecoder } from "./arithmetic_decoder.js";
import { CCITTFaxDecoder } from "./ccitt.js";
class Jbig2Error extends BaseException {
constructor(msg) {
super(`JBIG2 error: ${msg}`, "Jbig2Error");
}
}
// Utility data structures
class ContextCache {
getContexts(id) {
if (id in this) {
return this[id];
}
return (this[id] = new Int8Array(1 << 16));
}
}
class DecodingContext {
constructor(data, start, end) {
this.data = data;
this.start = start;
this.end = end;
}
get decoder() {
const decoder = new ArithmeticDecoder(this.data, this.start, this.end);
return shadow(this, "decoder", decoder);
}
get contextCache() {
const cache = new ContextCache();
return shadow(this, "contextCache", cache);
}
}
// Annex A. Arithmetic Integer Decoding Procedure
// A.2 Procedure for decoding values
function decodeInteger(contextCache, procedure, decoder) {
const contexts = contextCache.getContexts(procedure);
let prev = 1;
function readBits(length) {
let v = 0;
for (let i = 0; i < length; i++) {
const bit = decoder.readBit(contexts, prev);
prev = prev < 256 ? (prev << 1) | bit : (((prev << 1) | bit) & 511) | 256;
v = (v << 1) | bit;
}
return v >>> 0;
}
const sign = readBits(1);
// prettier-ignore
/* eslint-disable no-nested-ternary */
const value = readBits(1) ?
(readBits(1) ?
(readBits(1) ?
(readBits(1) ?
(readBits(1) ?
(readBits(32) + 4436) :
readBits(12) + 340) :
readBits(8) + 84) :
readBits(6) + 20) :
readBits(4) + 4) :
readBits(2);
/* eslint-enable no-nested-ternary */
if (sign === 0) {
return value;
} else if (value > 0) {
return -value;
}
return null;
}
// A.3 The IAID decoding procedure
function decodeIAID(contextCache, decoder, codeLength) {
const contexts = contextCache.getContexts("IAID");
let prev = 1;
for (let i = 0; i < codeLength; i++) {
const bit = decoder.readBit(contexts, prev);
prev = (prev << 1) | bit;
}
if (codeLength < 31) {
return prev & ((1 << codeLength) - 1);
}
return prev & 0x7fffffff;
}
// 7.3 Segment types
const SegmentTypes = [
"SymbolDictionary",
null,
null,
null,
"IntermediateTextRegion",
null,
"ImmediateTextRegion",
"ImmediateLosslessTextRegion",
null,
null,
null,
null,
null,
null,
null,
null,
"PatternDictionary",
null,
null,
null,
"IntermediateHalftoneRegion",
null,
"ImmediateHalftoneRegion",
"ImmediateLosslessHalftoneRegion",
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
"IntermediateGenericRegion",
null,
"ImmediateGenericRegion",
"ImmediateLosslessGenericRegion",
"IntermediateGenericRefinementRegion",
null,
"ImmediateGenericRefinementRegion",
"ImmediateLosslessGenericRefinementRegion",
null,
null,
null,
null,
"PageInformation",
"EndOfPage",
"EndOfStripe",
"EndOfFile",
"Profiles",
"Tables",
null,
null,
null,
null,
null,
null,
null,
null,
"Extension",
];
const CodingTemplates = [
[
{ x: -1, y: -2 },
{ x: 0, y: -2 },
{ x: 1, y: -2 },
{ x: -2, y: -1 },
{ x: -1, y: -1 },
{ x: 0, y: -1 },
{ x: 1, y: -1 },
{ x: 2, y: -1 },
{ x: -4, y: 0 },
{ x: -3, y: 0 },
{ x: -2, y: 0 },
{ x: -1, y: 0 },
],
[
{ x: -1, y: -2 },
{ x: 0, y: -2 },
{ x: 1, y: -2 },
{ x: 2, y: -2 },
{ x: -2, y: -1 },
{ x: -1, y: -1 },
{ x: 0, y: -1 },
{ x: 1, y: -1 },
{ x: 2, y: -1 },
{ x: -3, y: 0 },
{ x: -2, y: 0 },
{ x: -1, y: 0 },
],
[
{ x: -1, y: -2 },
{ x: 0, y: -2 },
{ x: 1, y: -2 },
{ x: -2, y: -1 },
{ x: -1, y: -1 },
{ x: 0, y: -1 },
{ x: 1, y: -1 },
{ x: -2, y: 0 },
{ x: -1, y: 0 },
],
[
{ x: -3, y: -1 },
{ x: -2, y: -1 },
{ x: -1, y: -1 },
{ x: 0, y: -1 },
{ x: 1, y: -1 },
{ x: -4, y: 0 },
{ x: -3, y: 0 },
{ x: -2, y: 0 },
{ x: -1, y: 0 },
],
];
const RefinementTemplates = [
{
coding: [
{ x: 0, y: -1 },
{ x: 1, y: -1 },
{ x: -1, y: 0 },
],
reference: [
{ x: 0, y: -1 },
{ x: 1, y: -1 },
{ x: -1, y: 0 },
{ x: 0, y: 0 },
{ x: 1, y: 0 },
{ x: -1, y: 1 },
{ x: 0, y: 1 },
{ x: 1, y: 1 },
],
},
{
coding: [
{ x: -1, y: -1 },
{ x: 0, y: -1 },
{ x: 1, y: -1 },
{ x: -1, y: 0 },
],
reference: [
{ x: 0, y: -1 },
{ x: -1, y: 0 },
{ x: 0, y: 0 },
{ x: 1, y: 0 },
{ x: 0, y: 1 },
{ x: 1, y: 1 },
],
},
];
// See 6.2.5.7 Decoding the bitmap.
const ReusedContexts = [
0x9b25, // 10011 0110010 0101
0x0795, // 0011 110010 101
0x00e5, // 001 11001 01
0x0195, // 011001 0101
];
const RefinementReusedContexts = [
0x0020, // '000' + '0' (coding) + '00010000' + '0' (reference)
0x0008, // '0000' + '001000'
];
function decodeBitmapTemplate0(width, height, decodingContext) {
const decoder = decodingContext.decoder;
const contexts = decodingContext.contextCache.getContexts("GB");
const bitmap = [];
let contextLabel, i, j, pixel, row, row1, row2;
// ...ooooo....
// ..ooooooo... Context template for current pixel (X)
// .ooooX...... (concatenate values of 'o'-pixels to get contextLabel)
const OLD_PIXEL_MASK = 0x7bf7; // 01111 0111111 0111
for (i = 0; i < height; i++) {
row = bitmap[i] = new Uint8Array(width);
row1 = i < 1 ? row : bitmap[i - 1];
row2 = i < 2 ? row : bitmap[i - 2];
// At the beginning of each row:
// Fill contextLabel with pixels that are above/right of (X)
contextLabel =
(row2[0] << 13) |
(row2[1] << 12) |
(row2[2] << 11) |
(row1[0] << 7) |
(row1[1] << 6) |
(row1[2] << 5) |
(row1[3] << 4);
for (j = 0; j < width; j++) {
row[j] = pixel = decoder.readBit(contexts, contextLabel);
// At each pixel: Clear contextLabel pixels that are shifted
// out of the context, then add new ones.
contextLabel =
((contextLabel & OLD_PIXEL_MASK) << 1) |
(j + 3 < width ? row2[j + 3] << 11 : 0) |
(j + 4 < width ? row1[j + 4] << 4 : 0) |
pixel;
}
}
return bitmap;
}
// 6.2 Generic Region Decoding Procedure
function decodeBitmap(
mmr,
width,
height,
templateIndex,
prediction,
skip,
at,
decodingContext
) {
if (mmr) {
const input = new Reader(
decodingContext.data,
decodingContext.start,
decodingContext.end
);
return decodeMMRBitmap(input, width, height, false);
}
// Use optimized version for the most common case
if (
templateIndex === 0 &&
!skip &&
!prediction &&
at.length === 4 &&
at[0].x === 3 &&
at[0].y === -1 &&
at[1].x === -3 &&
at[1].y === -1 &&
at[2].x === 2 &&
at[2].y === -2 &&
at[3].x === -2 &&
at[3].y === -2
) {
return decodeBitmapTemplate0(width, height, decodingContext);
}
const useskip = !!skip;
const template = CodingTemplates[templateIndex].concat(at);
// Sorting is non-standard, and it is not required. But sorting increases
// the number of template bits that can be reused from the previous
// contextLabel in the main loop.
template.sort(function (a, b) {
return a.y - b.y || a.x - b.x;
});
const templateLength = template.length;
const templateX = new Int8Array(templateLength);
const templateY = new Int8Array(templateLength);
const changingTemplateEntries = [];
let reuseMask = 0,
minX = 0,
maxX = 0,
minY = 0;
let c, k;
for (k = 0; k < templateLength; k++) {
templateX[k] = template[k].x;
templateY[k] = template[k].y;
minX = Math.min(minX, template[k].x);
maxX = Math.max(maxX, template[k].x);
minY = Math.min(minY, template[k].y);
// Check if the template pixel appears in two consecutive context labels,
// so it can be reused. Otherwise, we add it to the list of changing
// template entries.
if (
k < templateLength - 1 &&
template[k].y === template[k + 1].y &&
template[k].x === template[k + 1].x - 1
) {
reuseMask |= 1 << (templateLength - 1 - k);
} else {
changingTemplateEntries.push(k);
}
}
const changingEntriesLength = changingTemplateEntries.length;
const changingTemplateX = new Int8Array(changingEntriesLength);
const changingTemplateY = new Int8Array(changingEntriesLength);
const changingTemplateBit = new Uint16Array(changingEntriesLength);
for (c = 0; c < changingEntriesLength; c++) {
k = changingTemplateEntries[c];
changingTemplateX[c] = template[k].x;
changingTemplateY[c] = template[k].y;
changingTemplateBit[c] = 1 << (templateLength - 1 - k);
}
// Get the safe bounding box edges from the width, height, minX, maxX, minY
const sbb_left = -minX;
const sbb_top = -minY;
const sbb_right = width - maxX;
const pseudoPixelContext = ReusedContexts[templateIndex];
let row = new Uint8Array(width);
const bitmap = [];
const decoder = decodingContext.decoder;
const contexts = decodingContext.contextCache.getContexts("GB");
let ltp = 0,
j,
i0,
j0,
contextLabel = 0,
bit,
shift;
for (let i = 0; i < height; i++) {
if (prediction) {
const sltp = decoder.readBit(contexts, pseudoPixelContext);
ltp ^= sltp;
if (ltp) {
bitmap.push(row); // duplicate previous row
continue;
}
}
row = new Uint8Array(row);
bitmap.push(row);
for (j = 0; j < width; j++) {
if (useskip && skip[i][j]) {
row[j] = 0;
continue;
}
// Are we in the middle of a scanline, so we can reuse contextLabel
// bits?
if (j >= sbb_left && j < sbb_right && i >= sbb_top) {
// If yes, we can just shift the bits that are reusable and only
// fetch the remaining ones.
contextLabel = (contextLabel << 1) & reuseMask;
for (k = 0; k < changingEntriesLength; k++) {
i0 = i + changingTemplateY[k];
j0 = j + changingTemplateX[k];
bit = bitmap[i0][j0];
if (bit) {
bit = changingTemplateBit[k];
contextLabel |= bit;
}
}
} else {
// compute the contextLabel from scratch
contextLabel = 0;
shift = templateLength - 1;
for (k = 0; k < templateLength; k++, shift--) {
j0 = j + templateX[k];
if (j0 >= 0 && j0 < width) {
i0 = i + templateY[k];
if (i0 >= 0) {
bit = bitmap[i0][j0];
if (bit) {
contextLabel |= bit << shift;
}
}
}
}
}
const pixel = decoder.readBit(contexts, contextLabel);
row[j] = pixel;
}
}
return bitmap;
}
// 6.3.2 Generic Refinement Region Decoding Procedure
function decodeRefinement(
width,
height,
templateIndex,
referenceBitmap,
offsetX,
offsetY,
prediction,
at,
decodingContext
) {
let codingTemplate = RefinementTemplates[templateIndex].coding;
if (templateIndex === 0) {
codingTemplate = codingTemplate.concat([at[0]]);
}
const codingTemplateLength = codingTemplate.length;
const codingTemplateX = new Int32Array(codingTemplateLength);
const codingTemplateY = new Int32Array(codingTemplateLength);
let k;
for (k = 0; k < codingTemplateLength; k++) {
codingTemplateX[k] = codingTemplate[k].x;
codingTemplateY[k] = codingTemplate[k].y;
}
let referenceTemplate = RefinementTemplates[templateIndex].reference;
if (templateIndex === 0) {
referenceTemplate = referenceTemplate.concat([at[1]]);
}
const referenceTemplateLength = referenceTemplate.length;
const referenceTemplateX = new Int32Array(referenceTemplateLength);
const referenceTemplateY = new Int32Array(referenceTemplateLength);
for (k = 0; k < referenceTemplateLength; k++) {
referenceTemplateX[k] = referenceTemplate[k].x;
referenceTemplateY[k] = referenceTemplate[k].y;
}
const referenceWidth = referenceBitmap[0].length;
const referenceHeight = referenceBitmap.length;
const pseudoPixelContext = RefinementReusedContexts[templateIndex];
const bitmap = [];
const decoder = decodingContext.decoder;
const contexts = decodingContext.contextCache.getContexts("GR");
let ltp = 0;
for (let i = 0; i < height; i++) {
if (prediction) {
const sltp = decoder.readBit(contexts, pseudoPixelContext);
ltp ^= sltp;
if (ltp) {
throw new Jbig2Error("prediction is not supported");
}
}
const row = new Uint8Array(width);
bitmap.push(row);
for (let j = 0; j < width; j++) {
let i0, j0;
let contextLabel = 0;
for (k = 0; k < codingTemplateLength; k++) {
i0 = i + codingTemplateY[k];
j0 = j + codingTemplateX[k];
if (i0 < 0 || j0 < 0 || j0 >= width) {
contextLabel <<= 1; // out of bound pixel
} else {
contextLabel = (contextLabel << 1) | bitmap[i0][j0];
}
}
for (k = 0; k < referenceTemplateLength; k++) {
i0 = i + referenceTemplateY[k] - offsetY;
j0 = j + referenceTemplateX[k] - offsetX;
if (i0 < 0 || i0 >= referenceHeight || j0 < 0 || j0 >= referenceWidth) {
contextLabel <<= 1; // out of bound pixel
} else {
contextLabel = (contextLabel << 1) | referenceBitmap[i0][j0];
}
}
const pixel = decoder.readBit(contexts, contextLabel);
row[j] = pixel;
}
}
return bitmap;
}
// 6.5.5 Decoding the symbol dictionary
function decodeSymbolDictionary(
huffman,
refinement,
symbols,
numberOfNewSymbols,
numberOfExportedSymbols,
huffmanTables,
templateIndex,
at,
refinementTemplateIndex,
refinementAt,
decodingContext,
huffmanInput
) {
if (huffman && refinement) {
throw new Jbig2Error("symbol refinement with Huffman is not supported");
}
const newSymbols = [];
let currentHeight = 0;
let symbolCodeLength = log2(symbols.length + numberOfNewSymbols);
const decoder = decodingContext.decoder;
const contextCache = decodingContext.contextCache;
let tableB1, symbolWidths;
if (huffman) {
tableB1 = getStandardTable(1); // standard table B.1
symbolWidths = [];
symbolCodeLength = Math.max(symbolCodeLength, 1); // 6.5.8.2.3
}
while (newSymbols.length < numberOfNewSymbols) {
const deltaHeight = huffman
? huffmanTables.tableDeltaHeight.decode(huffmanInput)
: decodeInteger(contextCache, "IADH", decoder); // 6.5.6
currentHeight += deltaHeight;
let currentWidth = 0,
totalWidth = 0;
const firstSymbol = huffman ? symbolWidths.length : 0;
while (true) {
const deltaWidth = huffman
? huffmanTables.tableDeltaWidth.decode(huffmanInput)
: decodeInteger(contextCache, "IADW", decoder); // 6.5.7
if (deltaWidth === null) {
break; // OOB
}
currentWidth += deltaWidth;
totalWidth += currentWidth;
let bitmap;
if (refinement) {
// 6.5.8.2 Refinement/aggregate-coded symbol bitmap
const numberOfInstances = decodeInteger(contextCache, "IAAI", decoder);
if (numberOfInstances > 1) {
bitmap = decodeTextRegion(
huffman,
refinement,
currentWidth,
currentHeight,
0,
numberOfInstances,
1, // strip size
symbols.concat(newSymbols),
symbolCodeLength,
0, // transposed
0, // ds offset
1, // top left 7.4.3.1.1
0, // OR operator
huffmanTables,
refinementTemplateIndex,
refinementAt,
decodingContext,
0,
huffmanInput
);
} else {
const symbolId = decodeIAID(contextCache, decoder, symbolCodeLength);
const rdx = decodeInteger(contextCache, "IARDX", decoder); // 6.4.11.3
const rdy = decodeInteger(contextCache, "IARDY", decoder); // 6.4.11.4
const symbol =
symbolId < symbols.length
? symbols[symbolId]
: newSymbols[symbolId - symbols.length];
bitmap = decodeRefinement(
currentWidth,
currentHeight,
refinementTemplateIndex,
symbol,
rdx,
rdy,
false,
refinementAt,
decodingContext
);
}
newSymbols.push(bitmap);
} else if (huffman) {
// Store only symbol width and decode a collective bitmap when the
// height class is done.
symbolWidths.push(currentWidth);
} else {
// 6.5.8.1 Direct-coded symbol bitmap
bitmap = decodeBitmap(
false,
currentWidth,
currentHeight,
templateIndex,
false,
null,
at,
decodingContext
);
newSymbols.push(bitmap);
}
}
if (huffman && !refinement) {
// 6.5.9 Height class collective bitmap
const bitmapSize = huffmanTables.tableBitmapSize.decode(huffmanInput);
huffmanInput.byteAlign();
let collectiveBitmap;
if (bitmapSize === 0) {
// Uncompressed collective bitmap
collectiveBitmap = readUncompressedBitmap(
huffmanInput,
totalWidth,
currentHeight
);
} else {
// MMR collective bitmap
const originalEnd = huffmanInput.end;
const bitmapEnd = huffmanInput.position + bitmapSize;
huffmanInput.end = bitmapEnd;
collectiveBitmap = decodeMMRBitmap(
huffmanInput,
totalWidth,
currentHeight,
false
);
huffmanInput.end = originalEnd;
huffmanInput.position = bitmapEnd;
}
const numberOfSymbolsDecoded = symbolWidths.length;
if (firstSymbol === numberOfSymbolsDecoded - 1) {
// collectiveBitmap is a single symbol.
newSymbols.push(collectiveBitmap);
} else {
// Divide collectiveBitmap into symbols.
let i,
y,
xMin = 0,
xMax,
bitmapWidth,
symbolBitmap;
for (i = firstSymbol; i < numberOfSymbolsDecoded; i++) {
bitmapWidth = symbolWidths[i];
xMax = xMin + bitmapWidth;
symbolBitmap = [];
for (y = 0; y < currentHeight; y++) {
symbolBitmap.push(collectiveBitmap[y].subarray(xMin, xMax));
}
newSymbols.push(symbolBitmap);
xMin = xMax;
}
}
}
}
// 6.5.10 Exported symbols
const exportedSymbols = [],
flags = [];
let currentFlag = false,
i,
ii;
const totalSymbolsLength = symbols.length + numberOfNewSymbols;
while (flags.length < totalSymbolsLength) {
let runLength = huffman
? tableB1.decode(huffmanInput)
: decodeInteger(contextCache, "IAEX", decoder);
while (runLength--) {
flags.push(currentFlag);
}
currentFlag = !currentFlag;
}
for (i = 0, ii = symbols.length; i < ii; i++) {
if (flags[i]) {
exportedSymbols.push(symbols[i]);
}
}
for (let j = 0; j < numberOfNewSymbols; i++, j++) {
if (flags[i]) {
exportedSymbols.push(newSymbols[j]);
}
}
return exportedSymbols;
}
function decodeTextRegion(
huffman,
refinement,
width,
height,
defaultPixelValue,
numberOfSymbolInstances,
stripSize,
inputSymbols,
symbolCodeLength,
transposed,
dsOffset,
referenceCorner,
combinationOperator,
huffmanTables,
refinementTemplateIndex,
refinementAt,
decodingContext,
logStripSize,
huffmanInput
) {
if (huffman && refinement) {
throw new Jbig2Error("refinement with Huffman is not supported");
}
// Prepare bitmap
const bitmap = [];
let i, row;
for (i = 0; i < height; i++) {
row = new Uint8Array(width);
if (defaultPixelValue) {
for (let j = 0; j < width; j++) {
row[j] = defaultPixelValue;
}
}
bitmap.push(row);
}
const decoder = decodingContext.decoder;
const contextCache = decodingContext.contextCache;
let stripT = huffman
? -huffmanTables.tableDeltaT.decode(huffmanInput)
: -decodeInteger(contextCache, "IADT", decoder); // 6.4.6
let firstS = 0;
i = 0;
while (i < numberOfSymbolInstances) {
const deltaT = huffman
? huffmanTables.tableDeltaT.decode(huffmanInput)
: decodeInteger(contextCache, "IADT", decoder); // 6.4.6
stripT += deltaT;
const deltaFirstS = huffman
? huffmanTables.tableFirstS.decode(huffmanInput)
: decodeInteger(contextCache, "IAFS", decoder); // 6.4.7
firstS += deltaFirstS;
let currentS = firstS;
do {
let currentT = 0; // 6.4.9
if (stripSize > 1) {
currentT = huffman
? huffmanInput.readBits(logStripSize)
: decodeInteger(contextCache, "IAIT", decoder);
}
const t = stripSize * stripT + currentT;
const symbolId = huffman
? huffmanTables.symbolIDTable.decode(huffmanInput)
: decodeIAID(contextCache, decoder, symbolCodeLength);
const applyRefinement =
refinement &&
(huffman
? huffmanInput.readBit()
: decodeInteger(contextCache, "IARI", decoder));
let symbolBitmap = inputSymbols[symbolId];
let symbolWidth = symbolBitmap[0].length;
let symbolHeight = symbolBitmap.length;
if (applyRefinement) {
const rdw = decodeInteger(contextCache, "IARDW", decoder); // 6.4.11.1
const rdh = decodeInteger(contextCache, "IARDH", decoder); // 6.4.11.2
const rdx = decodeInteger(contextCache, "IARDX", decoder); // 6.4.11.3
const rdy = decodeInteger(contextCache, "IARDY", decoder); // 6.4.11.4
symbolWidth += rdw;
symbolHeight += rdh;
symbolBitmap = decodeRefinement(
symbolWidth,
symbolHeight,
refinementTemplateIndex,
symbolBitmap,
(rdw >> 1) + rdx,
(rdh >> 1) + rdy,
false,
refinementAt,
decodingContext
);
}
const offsetT = t - (referenceCorner & 1 ? 0 : symbolHeight - 1);
const offsetS = currentS - (referenceCorner & 2 ? symbolWidth - 1 : 0);
let s2, t2, symbolRow;
if (transposed) {
// Place Symbol Bitmap from T1,S1
for (s2 = 0; s2 < symbolHeight; s2++) {
row = bitmap[offsetS + s2];
if (!row) {
continue;
}
symbolRow = symbolBitmap[s2];
// To ignore Parts of Symbol bitmap which goes
// outside bitmap region
const maxWidth = Math.min(width - offsetT, symbolWidth);
switch (combinationOperator) {
case 0: // OR
for (t2 = 0; t2 < maxWidth; t2++) {
row[offsetT + t2] |= symbolRow[t2];
}
break;
case 2: // XOR
for (t2 = 0; t2 < maxWidth; t2++) {
row[offsetT + t2] ^= symbolRow[t2];
}
break;
default:
throw new Jbig2Error(
`operator ${combinationOperator} is not supported`
);
}
}
currentS += symbolHeight - 1;
} else {
for (t2 = 0; t2 < symbolHeight; t2++) {
row = bitmap[offsetT + t2];
if (!row) {
continue;
}
symbolRow = symbolBitmap[t2];
switch (combinationOperator) {
case 0: // OR
for (s2 = 0; s2 < symbolWidth; s2++) {
row[offsetS + s2] |= symbolRow[s2];
}
break;
case 2: // XOR
for (s2 = 0; s2 < symbolWidth; s2++) {
row[offsetS + s2] ^= symbolRow[s2];
}
break;
default:
throw new Jbig2Error(
`operator ${combinationOperator} is not supported`
);
}
}
currentS += symbolWidth - 1;
}
i++;
const deltaS = huffman
? huffmanTables.tableDeltaS.decode(huffmanInput)
: decodeInteger(contextCache, "IADS", decoder); // 6.4.8
if (deltaS === null) {
break; // OOB
}
currentS += deltaS + dsOffset;
} while (true);
}
return bitmap;
}
function decodePatternDictionary(
mmr,
patternWidth,
patternHeight,
maxPatternIndex,
template,
decodingContext
) {
const at = [];
if (!mmr) {
at.push({
x: -patternWidth,
y: 0,
});
if (template === 0) {
at.push(
{
x: -3,
y: -1,
},
{
x: 2,
y: -2,
},
{
x: -2,
y: -2,
}
);
}
}
const collectiveWidth = (maxPatternIndex + 1) * patternWidth;
const collectiveBitmap = decodeBitmap(
mmr,
collectiveWidth,
patternHeight,
template,
false,
null,
at,
decodingContext
);
// Divide collective bitmap into patterns.
const patterns = [];
for (let i = 0; i <= maxPatternIndex; i++) {
const patternBitmap = [];
const xMin = patternWidth * i;
const xMax = xMin + patternWidth;
for (let y = 0; y < patternHeight; y++) {
patternBitmap.push(collectiveBitmap[y].subarray(xMin, xMax));
}
patterns.push(patternBitmap);
}
return patterns;
}
function decodeHalftoneRegion(
mmr,
patterns,
template,
regionWidth,
regionHeight,
defaultPixelValue,
enableSkip,
combinationOperator,
gridWidth,
gridHeight,
gridOffsetX,
gridOffsetY,
gridVectorX,
gridVectorY,
decodingContext
) {
const skip = null;
if (enableSkip) {
throw new Jbig2Error("skip is not supported");
}
if (combinationOperator !== 0) {
throw new Jbig2Error(
`operator "${combinationOperator}" is not supported in halftone region`
);
}
// Prepare bitmap.
const regionBitmap = [];
let i, j, row;
for (i = 0; i < regionHeight; i++) {
row = new Uint8Array(regionWidth);
if (defaultPixelValue) {
for (j = 0; j < regionWidth; j++) {
row[j] = defaultPixelValue;
}
}
regionBitmap.push(row);
}
const numberOfPatterns = patterns.length;
const pattern0 = patterns[0];
const patternWidth = pattern0[0].length,
patternHeight = pattern0.length;
const bitsPerValue = log2(numberOfPatterns);
const at = [];
if (!mmr) {
at.push({
x: template <= 1 ? 3 : 2,
y: -1,
});
if (template === 0) {
at.push(
{
x: -3,
y: -1,
},
{
x: 2,
y: -2,
},
{
x: -2,
y: -2,
}
);
}
}
// Annex C. Gray-scale Image Decoding Procedure.
const grayScaleBitPlanes = [];
let mmrInput, bitmap;
if (mmr) {
// MMR bit planes are in one continuous stream. Only EOFB codes indicate
// the end of each bitmap, so EOFBs must be decoded.
mmrInput = new Reader(
decodingContext.data,
decodingContext.start,
decodingContext.end
);
}
for (i = bitsPerValue - 1; i >= 0; i--) {
if (mmr) {
bitmap = decodeMMRBitmap(mmrInput, gridWidth, gridHeight, true);
} else {
bitmap = decodeBitmap(
false,
gridWidth,
gridHeight,
template,
false,
skip,
at,
decodingContext
);
}
grayScaleBitPlanes[i] = bitmap;
}
// 6.6.5.2 Rendering the patterns.
let mg, ng, bit, patternIndex, patternBitmap, x, y, patternRow, regionRow;
for (mg = 0; mg < gridHeight; mg++) {
for (ng = 0; ng < gridWidth; ng++) {
bit = 0;
patternIndex = 0;
for (j = bitsPerValue - 1; j >= 0; j--) {
bit ^= grayScaleBitPlanes[j][mg][ng]; // Gray decoding
patternIndex |= bit << j;
}
patternBitmap = patterns[patternIndex];
x = (gridOffsetX + mg * gridVectorY + ng * gridVectorX) >> 8;
y = (gridOffsetY + mg * gridVectorX - ng * gridVectorY) >> 8;
// Draw patternBitmap at (x, y).
if (
x >= 0 &&
x + patternWidth <= regionWidth &&
y >= 0 &&
y + patternHeight <= regionHeight
) {
for (i = 0; i < patternHeight; i++) {
regionRow = regionBitmap[y + i];
patternRow = patternBitmap[i];
for (j = 0; j < patternWidth; j++) {
regionRow[x + j] |= patternRow[j];
}
}
} else {
let regionX, regionY;
for (i = 0; i < patternHeight; i++) {
regionY = y + i;
if (regionY < 0 || regionY >= regionHeight) {
continue;
}
regionRow = regionBitmap[regionY];
patternRow = patternBitmap[i];
for (j = 0; j < patternWidth; j++) {
regionX = x + j;
if (regionX >= 0 && regionX < regionWidth) {
regionRow[regionX] |= patternRow[j];
}
}
}
}
}
}
return regionBitmap;
}
function readSegmentHeader(data, start) {
const segmentHeader = {};
segmentHeader.number = readUint32(data, start);
const flags = data[start + 4];
const segmentType = flags & 0x3f;
if (!SegmentTypes[segmentType]) {
throw new Jbig2Error("invalid segment type: " + segmentType);
}
segmentHeader.type = segmentType;
segmentHeader.typeName = SegmentTypes[segmentType];
segmentHeader.deferredNonRetain = !!(flags & 0x80);
const pageAssociationFieldSize = !!(flags & 0x40);
const referredFlags = data[start + 5];
let referredToCount = (referredFlags >> 5) & 7;
const retainBits = [referredFlags & 31];
let position = start + 6;
if (referredFlags === 7) {
referredToCount = readUint32(data, position - 1) & 0x1fffffff;
position += 3;
let bytes = (referredToCount + 7) >> 3;
retainBits[0] = data[position++];
while (--bytes > 0) {
retainBits.push(data[position++]);
}
} else if (referredFlags === 5 || referredFlags === 6) {
throw new Jbig2Error("invalid referred-to flags");
}
segmentHeader.retainBits = retainBits;
let referredToSegmentNumberSize = 4;
if (segmentHeader.number <= 256) {
referredToSegmentNumberSize = 1;
} else if (segmentHeader.number <= 65536) {
referredToSegmentNumberSize = 2;
}
const referredTo = [];
let i, ii;
for (i = 0; i < referredToCount; i++) {
let number;
if (referredToSegmentNumberSize === 1) {
number = data[position];
} else if (referredToSegmentNumberSize === 2) {
number = readUint16(data, position);
} else {
number = readUint32(data, position);
}
referredTo.push(number);
position += referredToSegmentNumberSize;
}
segmentHeader.referredTo = referredTo;
if (!pageAssociationFieldSize) {
segmentHeader.pageAssociation = data[position++];
} else {
segmentHeader.pageAssociation = readUint32(data, position);
position += 4;
}
segmentHeader.length = readUint32(data, position);
position += 4;
if (segmentHeader.length === 0xffffffff) {
// 7.2.7 Segment data length, unknown segment length
if (segmentType === 38) {
// ImmediateGenericRegion
const genericRegionInfo = readRegionSegmentInformation(data, position);
const genericRegionSegmentFlags =
data[position + RegionSegmentInformationFieldLength];
const genericRegionMmr = !!(genericRegionSegmentFlags & 1);
// searching for the segment end
const searchPatternLength = 6;
const searchPattern = new Uint8Array(searchPatternLength);
if (!genericRegionMmr) {
searchPattern[0] = 0xff;
searchPattern[1] = 0xac;
}
searchPattern[2] = (genericRegionInfo.height >>> 24) & 0xff;
searchPattern[3] = (genericRegionInfo.height >> 16) & 0xff;
searchPattern[4] = (genericRegionInfo.height >> 8) & 0xff;
searchPattern[5] = genericRegionInfo.height & 0xff;
for (i = position, ii = data.length; i < ii; i++) {
let j = 0;
while (j < searchPatternLength && searchPattern[j] === data[i + j]) {
j++;
}
if (j === searchPatternLength) {
segmentHeader.length = i + searchPatternLength;
break;
}
}
if (segmentHeader.length === 0xffffffff) {
throw new Jbig2Error("segment end was not found");
}
} else {
throw new Jbig2Error("invalid unknown segment length");
}
}
segmentHeader.headerEnd = position;
return segmentHeader;
}
function readSegments(header, data, start, end) {
const segments = [];
let position = start;
while (position < end) {
const segmentHeader = readSegmentHeader(data, position);
position = segmentHeader.headerEnd;
const segment = {
header: segmentHeader,
data,
};
if (!header.randomAccess) {
segment.start = position;
position += segmentHeader.length;
segment.end = position;
}
segments.push(segment);
if (segmentHeader.type === 51) {
break; // end of file is found
}
}
if (header.randomAccess) {
for (let i = 0, ii = segments.length; i < ii; i++) {
segments[i].start = position;
position += segments[i].header.length;
segments[i].end = position;
}
}
return segments;
}
// 7.4.1 Region segment information field
function readRegionSegmentInformation(data, start) {
return {
width: readUint32(data, start),
height: readUint32(data, start + 4),
x: readUint32(data, start + 8),
y: readUint32(data, start + 12),
combinationOperator: data[start + 16] & 7,
};
}
const RegionSegmentInformationFieldLength = 17;
function processSegment(segment, visitor) {
const header = segment.header;
const data = segment.data,
end = segment.end;
let position = segment.start;
let args, at, i, atLength;
switch (header.type) {
case 0: // SymbolDictionary
// 7.4.2 Symbol dictionary segment syntax
const dictionary = {};
const dictionaryFlags = readUint16(data, position); // 7.4.2.1.1
dictionary.huffman = !!(dictionaryFlags & 1);
dictionary.refinement = !!(dictionaryFlags & 2);
dictionary.huffmanDHSelector = (dictionaryFlags >> 2) & 3;
dictionary.huffmanDWSelector = (dictionaryFlags >> 4) & 3;
dictionary.bitmapSizeSelector = (dictionaryFlags >> 6) & 1;
dictionary.aggregationInstancesSelector = (dictionaryFlags >> 7) & 1;
dictionary.bitmapCodingContextUsed = !!(dictionaryFlags & 256);
dictionary.bitmapCodingContextRetained = !!(dictionaryFlags & 512);
dictionary.template = (dictionaryFlags >> 10) & 3;
dictionary.refinementTemplate = (dictionaryFlags >> 12) & 1;
position += 2;
if (!dictionary.huffman) {
atLength = dictionary.template === 0 ? 4 : 1;
at = [];
for (i = 0; i < atLength; i++) {
at.push({
x: readInt8(data, position),
y: readInt8(data, position + 1),
});
position += 2;
}
dictionary.at = at;
}
if (dictionary.refinement && !dictionary.refinementTemplate) {
at = [];
for (i = 0; i < 2; i++) {
at.push({
x: readInt8(data, position),
y: readInt8(data, position + 1),
});
position += 2;
}
dictionary.refinementAt = at;
}
dictionary.numberOfExportedSymbols = readUint32(data, position);
position += 4;
dictionary.numberOfNewSymbols = readUint32(data, position);
position += 4;
args = [
dictionary,
header.number,
header.referredTo,
data,
position,
end,
];
break;
case 6: // ImmediateTextRegion
case 7: // ImmediateLosslessTextRegion
const textRegion = {};
textRegion.info = readRegionSegmentInformation(data, position);
position += RegionSegmentInformationFieldLength;
const textRegionSegmentFlags = readUint16(data, position);
position += 2;
textRegion.huffman = !!(textRegionSegmentFlags & 1);
textRegion.refinement = !!(textRegionSegmentFlags & 2);
textRegion.logStripSize = (textRegionSegmentFlags >> 2) & 3;
textRegion.stripSize = 1 << textRegion.logStripSize;
textRegion.referenceCorner = (textRegionSegmentFlags >> 4) & 3;
textRegion.transposed = !!(textRegionSegmentFlags & 64);
textRegion.combinationOperator = (textRegionSegmentFlags >> 7) & 3;
textRegion.defaultPixelValue = (textRegionSegmentFlags >> 9) & 1;
textRegion.dsOffset = (textRegionSegmentFlags << 17) >> 27;
textRegion.refinementTemplate = (textRegionSegmentFlags >> 15) & 1;
if (textRegion.huffman) {
const textRegionHuffmanFlags = readUint16(data, position);
position += 2;
textRegion.huffmanFS = textRegionHuffmanFlags & 3;
textRegion.huffmanDS = (textRegionHuffmanFlags >> 2) & 3;
textRegion.huffmanDT = (textRegionHuffmanFlags >> 4) & 3;
textRegion.huffmanRefinementDW = (textRegionHuffmanFlags >> 6) & 3;
textRegion.huffmanRefinementDH = (textRegionHuffmanFlags >> 8) & 3;
textRegion.huffmanRefinementDX = (textRegionHuffmanFlags >> 10) & 3;
textRegion.huffmanRefinementDY = (textRegionHuffmanFlags >> 12) & 3;
textRegion.huffmanRefinementSizeSelector = !!(
textRegionHuffmanFlags & 0x4000
);
}
if (textRegion.refinement && !textRegion.refinementTemplate) {
at = [];
for (i = 0; i < 2; i++) {
at.push({
x: readInt8(data, position),
y: readInt8(data, position + 1),
});
position += 2;
}
textRegion.refinementAt = at;
}
textRegion.numberOfSymbolInstances = readUint32(data, position);
position += 4;
args = [textRegion, header.referredTo, data, position, end];
break;
case 16: // PatternDictionary
// 7.4.4. Pattern dictionary segment syntax
const patternDictionary = {};
const patternDictionaryFlags = data[position++];
patternDictionary.mmr = !!(patternDictionaryFlags & 1);
patternDictionary.template = (patternDictionaryFlags >> 1) & 3;
patternDictionary.patternWidth = data[position++];
patternDictionary.patternHeight = data[position++];
patternDictionary.maxPatternIndex = readUint32(data, position);
position += 4;
args = [patternDictionary, header.number, data, position, end];
break;
case 22: // ImmediateHalftoneRegion
case 23: // ImmediateLosslessHalftoneRegion
// 7.4.5 Halftone region segment syntax
const halftoneRegion = {};
halftoneRegion.info = readRegionSegmentInformation(data, position);
position += RegionSegmentInformationFieldLength;
const halftoneRegionFlags = data[position++];
halftoneRegion.mmr = !!(halftoneRegionFlags & 1);
halftoneRegion.template = (halftoneRegionFlags >> 1) & 3;
halftoneRegion.enableSkip = !!(halftoneRegionFlags & 8);
halftoneRegion.combinationOperator = (halftoneRegionFlags >> 4) & 7;
halftoneRegion.defaultPixelValue = (halftoneRegionFlags >> 7) & 1;
halftoneRegion.gridWidth = readUint32(data, position);
position += 4;
halftoneRegion.gridHeight = readUint32(data, position);
position += 4;
halftoneRegion.gridOffsetX = readUint32(data, position) & 0xffffffff;
position += 4;
halftoneRegion.gridOffsetY = readUint32(data, position) & 0xffffffff;
position += 4;
halftoneRegion.gridVectorX = readUint16(data, position);
position += 2;
halftoneRegion.gridVectorY = readUint16(data, position);
position += 2;
args = [halftoneRegion, header.referredTo, data, position, end];
break;
case 38: // ImmediateGenericRegion
case 39: // ImmediateLosslessGenericRegion
const genericRegion = {};
genericRegion.info = readRegionSegmentInformation(data, position);
position += RegionSegmentInformationFieldLength;
const genericRegionSegmentFlags = data[position++];
genericRegion.mmr = !!(genericRegionSegmentFlags & 1);
genericRegion.template = (genericRegionSegmentFlags >> 1) & 3;
genericRegion.prediction = !!(genericRegionSegmentFlags & 8);
if (!genericRegion.mmr) {
atLength = genericRegion.template === 0 ? 4 : 1;
at = [];
for (i = 0; i < atLength; i++) {
at.push({
x: readInt8(data, position),
y: readInt8(data, position + 1),
});
position += 2;
}
genericRegion.at = at;
}
args = [genericRegion, data, position, end];
break;
case 48: // PageInformation
const pageInfo = {
width: readUint32(data, position),
height: readUint32(data, position + 4),
resolutionX: readUint32(data, position + 8),
resolutionY: readUint32(data, position + 12),
};
if (pageInfo.height === 0xffffffff) {
delete pageInfo.height;
}
const pageSegmentFlags = data[position + 16];
readUint16(data, position + 17); // pageStripingInformation
pageInfo.lossless = !!(pageSegmentFlags & 1);
pageInfo.refinement = !!(pageSegmentFlags & 2);
pageInfo.defaultPixelValue = (pageSegmentFlags >> 2) & 1;
pageInfo.combinationOperator = (pageSegmentFlags >> 3) & 3;
pageInfo.requiresBuffer = !!(pageSegmentFlags & 32);
pageInfo.combinationOperatorOverride = !!(pageSegmentFlags & 64);
args = [pageInfo];
break;
case 49: // EndOfPage
break;
case 50: // EndOfStripe
break;
case 51: // EndOfFile
break;
case 53: // Tables
args = [header.number, data, position, end];
break;
case 62: // 7.4.15 defines 2 extension types which
// are comments and can be ignored.
break;
default:
throw new Jbig2Error(
`segment type ${header.typeName}(${header.type}) is not implemented`
);
}
const callbackName = "on" + header.typeName;
if (callbackName in visitor) {
visitor[callbackName].apply(visitor, args);
}
}
function processSegments(segments, visitor) {
for (let i = 0, ii = segments.length; i < ii; i++) {
processSegment(segments[i], visitor);
}
}
function parseJbig2Chunks(chunks) {
const visitor = new SimpleSegmentVisitor();
for (let i = 0, ii = chunks.length; i < ii; i++) {
const chunk = chunks[i];
const segments = readSegments({}, chunk.data, chunk.start, chunk.end);
processSegments(segments, visitor);
}
return visitor.buffer;
}
function parseJbig2(data) {
if (typeof PDFJSDev === "undefined" || !PDFJSDev.test("IMAGE_DECODERS")) {
throw new Error("Not implemented: parseJbig2");
}
const end = data.length;
let position = 0;
if (
data[position] !== 0x97 ||
data[position + 1] !== 0x4a ||
data[position + 2] !== 0x42 ||
data[position + 3] !== 0x32 ||
data[position + 4] !== 0x0d ||
data[position + 5] !== 0x0a ||
data[position + 6] !== 0x1a ||
data[position + 7] !== 0x0a
) {
throw new Jbig2Error("parseJbig2 - invalid header.");
}
const header = Object.create(null);
position += 8;
const flags = data[position++];
header.randomAccess = !(flags & 1);
if (!(flags & 2)) {
header.numberOfPages = readUint32(data, position);
position += 4;
}
const segments = readSegments(header, data, position, end);
const visitor = new SimpleSegmentVisitor();
processSegments(segments, visitor);
const { width, height } = visitor.currentPageInfo;
const bitPacked = visitor.buffer;
const imgData = new Uint8ClampedArray(width * height);
let q = 0,
k = 0;
for (let i = 0; i < height; i++) {
let mask = 0,
buffer;
for (let j = 0; j < width; j++) {
if (!mask) {
mask = 128;
buffer = bitPacked[k++];
}
imgData[q++] = buffer & mask ? 0 : 255;
mask >>= 1;
}
}
return { imgData, width, height };
}
class SimpleSegmentVisitor {
onPageInformation(info) {
this.currentPageInfo = info;
const rowSize = (info.width + 7) >> 3;
const buffer = new Uint8ClampedArray(rowSize * info.height);
// The contents of ArrayBuffers are initialized to 0.
// Fill the buffer with 0xFF only if info.defaultPixelValue is set
if (info.defaultPixelValue) {
buffer.fill(0xff);
}
this.buffer = buffer;
}
drawBitmap(regionInfo, bitmap) {
const pageInfo = this.currentPageInfo;
const width = regionInfo.width,
height = regionInfo.height;
const rowSize = (pageInfo.width + 7) >> 3;
const combinationOperator = pageInfo.combinationOperatorOverride
? regionInfo.combinationOperator
: pageInfo.combinationOperator;
const buffer = this.buffer;
const mask0 = 128 >> (regionInfo.x & 7);
let offset0 = regionInfo.y * rowSize + (regionInfo.x >> 3);
let i, j, mask, offset;
switch (combinationOperator) {
case 0: // OR
for (i = 0; i < height; i++) {
mask = mask0;
offset = offset0;
for (j = 0; j < width; j++) {
if (bitmap[i][j]) {
buffer[offset] |= mask;
}
mask >>= 1;
if (!mask) {
mask = 128;
offset++;
}
}
offset0 += rowSize;
}
break;
case 2: // XOR
for (i = 0; i < height; i++) {
mask = mask0;
offset = offset0;
for (j = 0; j < width; j++) {
if (bitmap[i][j]) {
buffer[offset] ^= mask;
}
mask >>= 1;
if (!mask) {
mask = 128;
offset++;
}
}
offset0 += rowSize;
}
break;
default:
throw new Jbig2Error(
`operator ${combinationOperator} is not supported`
);
}
}
onImmediateGenericRegion(region, data, start, end) {
const regionInfo = region.info;
const decodingContext = new DecodingContext(data, start, end);
const bitmap = decodeBitmap(
region.mmr,
regionInfo.width,
regionInfo.height,
region.template,
region.prediction,
null,
region.at,
decodingContext
);
this.drawBitmap(regionInfo, bitmap);
}
onImmediateLosslessGenericRegion() {
this.onImmediateGenericRegion.apply(this, arguments);
}
onSymbolDictionary(
dictionary,
currentSegment,
referredSegments,
data,
start,
end
) {
let huffmanTables, huffmanInput;
if (dictionary.huffman) {
huffmanTables = getSymbolDictionaryHuffmanTables(
dictionary,
referredSegments,
this.customTables
);
huffmanInput = new Reader(data, start, end);
}
// Combines exported symbols from all referred segments
let symbols = this.symbols;
if (!symbols) {
this.symbols = symbols = {};
}
let inputSymbols = [];
for (let i = 0, ii = referredSegments.length; i < ii; i++) {
const referredSymbols = symbols[referredSegments[i]];
// referredSymbols is undefined when we have a reference to a Tables
// segment instead of a SymbolDictionary.
if (referredSymbols) {
inputSymbols = inputSymbols.concat(referredSymbols);
}
}
const decodingContext = new DecodingContext(data, start, end);
symbols[currentSegment] = decodeSymbolDictionary(
dictionary.huffman,
dictionary.refinement,
inputSymbols,
dictionary.numberOfNewSymbols,
dictionary.numberOfExportedSymbols,
huffmanTables,
dictionary.template,
dictionary.at,
dictionary.refinementTemplate,
dictionary.refinementAt,
decodingContext,
huffmanInput
);
}
onImmediateTextRegion(region, referredSegments, data, start, end) {
const regionInfo = region.info;
let huffmanTables, huffmanInput;
// Combines exported symbols from all referred segments
const symbols = this.symbols;
let inputSymbols = [];
for (let i = 0, ii = referredSegments.length; i < ii; i++) {
const referredSymbols = symbols[referredSegments[i]];
// referredSymbols is undefined when we have a reference to a Tables
// segment instead of a SymbolDictionary.
if (referredSymbols) {
inputSymbols = inputSymbols.concat(referredSymbols);
}
}
const symbolCodeLength = log2(inputSymbols.length);
if (region.huffman) {
huffmanInput = new Reader(data, start, end);
huffmanTables = getTextRegionHuffmanTables(
region,
referredSegments,
this.customTables,
inputSymbols.length,
huffmanInput
);
}
const decodingContext = new DecodingContext(data, start, end);
const bitmap = decodeTextRegion(
region.huffman,
region.refinement,
regionInfo.width,
regionInfo.height,
region.defaultPixelValue,
region.numberOfSymbolInstances,
region.stripSize,
inputSymbols,
symbolCodeLength,
region.transposed,
region.dsOffset,
region.referenceCorner,
region.combinationOperator,
huffmanTables,
region.refinementTemplate,
region.refinementAt,
decodingContext,
region.logStripSize,
huffmanInput
);
this.drawBitmap(regionInfo, bitmap);
}
onImmediateLosslessTextRegion() {
this.onImmediateTextRegion.apply(this, arguments);
}
onPatternDictionary(dictionary, currentSegment, data, start, end) {
let patterns = this.patterns;
if (!patterns) {
this.patterns = patterns = {};
}
const decodingContext = new DecodingContext(data, start, end);
patterns[currentSegment] = decodePatternDictionary(
dictionary.mmr,
dictionary.patternWidth,
dictionary.patternHeight,
dictionary.maxPatternIndex,
dictionary.template,
decodingContext
);
}
onImmediateHalftoneRegion(region, referredSegments, data, start, end) {
// HalftoneRegion refers to exactly one PatternDictionary.
const patterns = this.patterns[referredSegments[0]];
const regionInfo = region.info;
const decodingContext = new DecodingContext(data, start, end);
const bitmap = decodeHalftoneRegion(
region.mmr,
patterns,
region.template,
regionInfo.width,
regionInfo.height,
region.defaultPixelValue,
region.enableSkip,
region.combinationOperator,
region.gridWidth,
region.gridHeight,
region.gridOffsetX,
region.gridOffsetY,
region.gridVectorX,
region.gridVectorY,
decodingContext
);
this.drawBitmap(regionInfo, bitmap);
}
onImmediateLosslessHalftoneRegion() {
this.onImmediateHalftoneRegion.apply(this, arguments);
}
onTables(currentSegment, data, start, end) {
let customTables = this.customTables;
if (!customTables) {
this.customTables = customTables = {};
}
customTables[currentSegment] = decodeTablesSegment(data, start, end);
}
}
class HuffmanLine {
constructor(lineData) {
if (lineData.length === 2) {
// OOB line.
this.isOOB = true;
this.rangeLow = 0;
this.prefixLength = lineData[0];
this.rangeLength = 0;
this.prefixCode = lineData[1];
this.isLowerRange = false;
} else {
// Normal, upper range or lower range line.
// Upper range lines are processed like normal lines.
this.isOOB = false;
this.rangeLow = lineData[0];
this.prefixLength = lineData[1];
this.rangeLength = lineData[2];
this.prefixCode = lineData[3];
this.isLowerRange = lineData[4] === "lower";
}
}
}
class HuffmanTreeNode {
constructor(line) {
this.children = [];
if (line) {
// Leaf node
this.isLeaf = true;
this.rangeLength = line.rangeLength;
this.rangeLow = line.rangeLow;
this.isLowerRange = line.isLowerRange;
this.isOOB = line.isOOB;
} else {
// Intermediate or root node
this.isLeaf = false;
}
}
buildTree(line, shift) {
const bit = (line.prefixCode >> shift) & 1;
if (shift <= 0) {
// Create a leaf node.
this.children[bit] = new HuffmanTreeNode(line);
} else {
// Create an intermediate node and continue recursively.
let node = this.children[bit];
if (!node) {
this.children[bit] = node = new HuffmanTreeNode(null);
}
node.buildTree(line, shift - 1);
}
}
decodeNode(reader) {
if (this.isLeaf) {
if (this.isOOB) {
return null;
}
const htOffset = reader.readBits(this.rangeLength);
return this.rangeLow + (this.isLowerRange ? -htOffset : htOffset);
}
const node = this.children[reader.readBit()];
if (!node) {
throw new Jbig2Error("invalid Huffman data");
}
return node.decodeNode(reader);
}
}
class HuffmanTable {
constructor(lines, prefixCodesDone) {
if (!prefixCodesDone) {
this.assignPrefixCodes(lines);
}
// Create Huffman tree.
this.rootNode = new HuffmanTreeNode(null);
for (let i = 0, ii = lines.length; i < ii; i++) {
const line = lines[i];
if (line.prefixLength > 0) {
this.rootNode.buildTree(line, line.prefixLength - 1);
}
}
}
decode(reader) {
return this.rootNode.decodeNode(reader);
}
assignPrefixCodes(lines) {
// Annex B.3 Assigning the prefix codes.
const linesLength = lines.length;
let prefixLengthMax = 0;
for (let i = 0; i < linesLength; i++) {
prefixLengthMax = Math.max(prefixLengthMax, lines[i].prefixLength);
}
const histogram = new Uint32Array(prefixLengthMax + 1);
for (let i = 0; i < linesLength; i++) {
histogram[lines[i].prefixLength]++;
}
let currentLength = 1,
firstCode = 0,
currentCode,
currentTemp,
line;
histogram[0] = 0;
while (currentLength <= prefixLengthMax) {
firstCode = (firstCode + histogram[currentLength - 1]) << 1;
currentCode = firstCode;
currentTemp = 0;
while (currentTemp < linesLength) {
line = lines[currentTemp];
if (line.prefixLength === currentLength) {
line.prefixCode = currentCode;
currentCode++;
}
currentTemp++;
}
currentLength++;
}
}
}
function decodeTablesSegment(data, start, end) {
// Decodes a Tables segment, i.e., a custom Huffman table.
// Annex B.2 Code table structure.
const flags = data[start];
const lowestValue = readUint32(data, start + 1) & 0xffffffff;
const highestValue = readUint32(data, start + 5) & 0xffffffff;
const reader = new Reader(data, start + 9, end);
const prefixSizeBits = ((flags >> 1) & 7) + 1;
const rangeSizeBits = ((flags >> 4) & 7) + 1;
const lines = [];
let prefixLength,
rangeLength,
currentRangeLow = lowestValue;
// Normal table lines
do {
prefixLength = reader.readBits(prefixSizeBits);
rangeLength = reader.readBits(rangeSizeBits);
lines.push(
new HuffmanLine([currentRangeLow, prefixLength, rangeLength, 0])
);
currentRangeLow += 1 << rangeLength;
} while (currentRangeLow < highestValue);
// Lower range table line
prefixLength = reader.readBits(prefixSizeBits);
lines.push(new HuffmanLine([lowestValue - 1, prefixLength, 32, 0, "lower"]));
// Upper range table line
prefixLength = reader.readBits(prefixSizeBits);
lines.push(new HuffmanLine([highestValue, prefixLength, 32, 0]));
if (flags & 1) {
// Out-of-band table line
prefixLength = reader.readBits(prefixSizeBits);
lines.push(new HuffmanLine([prefixLength, 0]));
}
return new HuffmanTable(lines, false);
}
const standardTablesCache = {};
function getStandardTable(number) {
// Annex B.5 Standard Huffman tables.
let table = standardTablesCache[number];
if (table) {
return table;
}
let lines;
switch (number) {
case 1:
lines = [
[0, 1, 4, 0x0],
[16, 2, 8, 0x2],
[272, 3, 16, 0x6],
[65808, 3, 32, 0x7], // upper
];
break;
case 2:
lines = [
[0, 1, 0, 0x0],
[1, 2, 0, 0x2],
[2, 3, 0, 0x6],
[3, 4, 3, 0xe],
[11, 5, 6, 0x1e],
[75, 6, 32, 0x3e], // upper
[6, 0x3f], // OOB
];
break;
case 3:
lines = [
[-256, 8, 8, 0xfe],
[0, 1, 0, 0x0],
[1, 2, 0, 0x2],
[2, 3, 0, 0x6],
[3, 4, 3, 0xe],
[11, 5, 6, 0x1e],
[-257, 8, 32, 0xff, "lower"],
[75, 7, 32, 0x7e], // upper
[6, 0x3e], // OOB
];
break;
case 4:
lines = [
[1, 1, 0, 0x0],
[2, 2, 0, 0x2],
[3, 3, 0, 0x6],
[4, 4, 3, 0xe],
[12, 5, 6, 0x1e],
[76, 5, 32, 0x1f], // upper
];
break;
case 5:
lines = [
[-255, 7, 8, 0x7e],
[1, 1, 0, 0x0],
[2, 2, 0, 0x2],
[3, 3, 0, 0x6],
[4, 4, 3, 0xe],
[12, 5, 6, 0x1e],
[-256, 7, 32, 0x7f, "lower"],
[76, 6, 32, 0x3e], // upper
];
break;
case 6:
lines = [
[-2048, 5, 10, 0x1c],
[-1024, 4, 9, 0x8],
[-512, 4, 8, 0x9],
[-256, 4, 7, 0xa],
[-128, 5, 6, 0x1d],
[-64, 5, 5, 0x1e],
[-32, 4, 5, 0xb],
[0, 2, 7, 0x0],
[128, 3, 7, 0x2],
[256, 3, 8, 0x3],
[512, 4, 9, 0xc],
[1024, 4, 10, 0xd],
[-2049, 6, 32, 0x3e, "lower"],
[2048, 6, 32, 0x3f], // upper
];
break;
case 7:
lines = [
[-1024, 4, 9, 0x8],
[-512, 3, 8, 0x0],
[-256, 4, 7, 0x9],
[-128, 5, 6, 0x1a],
[-64, 5, 5, 0x1b],
[-32, 4, 5, 0xa],
[0, 4, 5, 0xb],
[32, 5, 5, 0x1c],
[64, 5, 6, 0x1d],
[128, 4, 7, 0xc],
[256, 3, 8, 0x1],
[512, 3, 9, 0x2],
[1024, 3, 10, 0x3],
[-1025, 5, 32, 0x1e, "lower"],
[2048, 5, 32, 0x1f], // upper
];
break;
case 8:
lines = [
[-15, 8, 3, 0xfc],
[-7, 9, 1, 0x1fc],
[-5, 8, 1, 0xfd],
[-3, 9, 0, 0x1fd],
[-2, 7, 0, 0x7c],
[-1, 4, 0, 0xa],
[0, 2, 1, 0x0],
[2, 5, 0, 0x1a],
[3, 6, 0, 0x3a],
[4, 3, 4, 0x4],
[20, 6, 1, 0x3b],
[22, 4, 4, 0xb],
[38, 4, 5, 0xc],
[70, 5, 6, 0x1b],
[134, 5, 7, 0x1c],
[262, 6, 7, 0x3c],
[390, 7, 8, 0x7d],
[646, 6, 10, 0x3d],
[-16, 9, 32, 0x1fe, "lower"],
[1670, 9, 32, 0x1ff], // upper
[2, 0x1], // OOB
];
break;
case 9:
lines = [
[-31, 8, 4, 0xfc],
[-15, 9, 2, 0x1fc],
[-11, 8, 2, 0xfd],
[-7, 9, 1, 0x1fd],
[-5, 7, 1, 0x7c],
[-3, 4, 1, 0xa],
[-1, 3, 1, 0x2],
[1, 3, 1, 0x3],
[3, 5, 1, 0x1a],
[5, 6, 1, 0x3a],
[7, 3, 5, 0x4],
[39, 6, 2, 0x3b],
[43, 4, 5, 0xb],
[75, 4, 6, 0xc],
[139, 5, 7, 0x1b],
[267, 5, 8, 0x1c],
[523, 6, 8, 0x3c],
[779, 7, 9, 0x7d],
[1291, 6, 11, 0x3d],
[-32, 9, 32, 0x1fe, "lower"],
[3339, 9, 32, 0x1ff], // upper
[2, 0x0], // OOB
];
break;
case 10:
lines = [
[-21, 7, 4, 0x7a],
[-5, 8, 0, 0xfc],
[-4, 7, 0, 0x7b],
[-3, 5, 0, 0x18],
[-2, 2, 2, 0x0],
[2, 5, 0, 0x19],
[3, 6, 0, 0x36],
[4, 7, 0, 0x7c],
[5, 8, 0, 0xfd],
[6, 2, 6, 0x1],
[70, 5, 5, 0x1a],
[102, 6, 5, 0x37],
[134, 6, 6, 0x38],
[198, 6, 7, 0x39],
[326, 6, 8, 0x3a],
[582, 6, 9, 0x3b],
[1094, 6, 10, 0x3c],
[2118, 7, 11, 0x7d],
[-22, 8, 32, 0xfe, "lower"],
[4166, 8, 32, 0xff], // upper
[2, 0x2], // OOB
];
break;
case 11:
lines = [
[1, 1, 0, 0x0],
[2, 2, 1, 0x2],
[4, 4, 0, 0xc],
[5, 4, 1, 0xd],
[7, 5, 1, 0x1c],
[9, 5, 2, 0x1d],
[13, 6, 2, 0x3c],
[17, 7, 2, 0x7a],
[21, 7, 3, 0x7b],
[29, 7, 4, 0x7c],
[45, 7, 5, 0x7d],
[77, 7, 6, 0x7e],
[141, 7, 32, 0x7f], // upper
];
break;
case 12:
lines = [
[1, 1, 0, 0x0],
[2, 2, 0, 0x2],
[3, 3, 1, 0x6],
[5, 5, 0, 0x1c],
[6, 5, 1, 0x1d],
[8, 6, 1, 0x3c],
[10, 7, 0, 0x7a],
[11, 7, 1, 0x7b],
[13, 7, 2, 0x7c],
[17, 7, 3, 0x7d],
[25, 7, 4, 0x7e],
[41, 8, 5, 0xfe],
[73, 8, 32, 0xff], // upper
];
break;
case 13:
lines = [
[1, 1, 0, 0x0],
[2, 3, 0, 0x4],
[3, 4, 0, 0xc],
[4, 5, 0, 0x1c],
[5, 4, 1, 0xd],
[7, 3, 3, 0x5],
[15, 6, 1, 0x3a],
[17, 6, 2, 0x3b],
[21, 6, 3, 0x3c],
[29, 6, 4, 0x3d],
[45, 6, 5, 0x3e],
[77, 7, 6, 0x7e],
[141, 7, 32, 0x7f], // upper
];
break;
case 14:
lines = [
[-2, 3, 0, 0x4],
[-1, 3, 0, 0x5],
[0, 1, 0, 0x0],
[1, 3, 0, 0x6],
[2, 3, 0, 0x7],
];
break;
case 15:
lines = [
[-24, 7, 4, 0x7c],
[-8, 6, 2, 0x3c],
[-4, 5, 1, 0x1c],
[-2, 4, 0, 0xc],
[-1, 3, 0, 0x4],
[0, 1, 0, 0x0],
[1, 3, 0, 0x5],
[2, 4, 0, 0xd],
[3, 5, 1, 0x1d],
[5, 6, 2, 0x3d],
[9, 7, 4, 0x7d],
[-25, 7, 32, 0x7e, "lower"],
[25, 7, 32, 0x7f], // upper
];
break;
default:
throw new Jbig2Error(`standard table B.${number} does not exist`);
}
for (let i = 0, ii = lines.length; i < ii; i++) {
lines[i] = new HuffmanLine(lines[i]);
}
table = new HuffmanTable(lines, true);
standardTablesCache[number] = table;
return table;
}
class Reader {
constructor(data, start, end) {
this.data = data;
this.start = start;
this.end = end;
this.position = start;
this.shift = -1;
this.currentByte = 0;
}
readBit() {
if (this.shift < 0) {
if (this.position >= this.end) {
throw new Jbig2Error("end of data while reading bit");
}
this.currentByte = this.data[this.position++];
this.shift = 7;
}
const bit = (this.currentByte >> this.shift) & 1;
this.shift--;
return bit;
}
readBits(numBits) {
let result = 0,
i;
for (i = numBits - 1; i >= 0; i--) {
result |= this.readBit() << i;
}
return result;
}
byteAlign() {
this.shift = -1;
}
next() {
if (this.position >= this.end) {
return -1;
}
return this.data[this.position++];
}
}
function getCustomHuffmanTable(index, referredTo, customTables) {
// Returns a Tables segment that has been earlier decoded.
// See 7.4.2.1.6 (symbol dictionary) or 7.4.3.1.6 (text region).
let currentIndex = 0;
for (let i = 0, ii = referredTo.length; i < ii; i++) {
const table = customTables[referredTo[i]];
if (table) {
if (index === currentIndex) {
return table;
}
currentIndex++;
}
}
throw new Jbig2Error("can't find custom Huffman table");
}
function getTextRegionHuffmanTables(
textRegion,
referredTo,
customTables,
numberOfSymbols,
reader
) {
// 7.4.3.1.7 Symbol ID Huffman table decoding
// Read code lengths for RUNCODEs 0...34.
const codes = [];
for (let i = 0; i <= 34; i++) {
const codeLength = reader.readBits(4);
codes.push(new HuffmanLine([i, codeLength, 0, 0]));
}
// Assign Huffman codes for RUNCODEs.
const runCodesTable = new HuffmanTable(codes, false);
// Read a Huffman code using the assignment above.
// Interpret the RUNCODE codes and the additional bits (if any).
codes.length = 0;
for (let i = 0; i < numberOfSymbols; ) {
const codeLength = runCodesTable.decode(reader);
if (codeLength >= 32) {
let repeatedLength, numberOfRepeats, j;
switch (codeLength) {
case 32:
if (i === 0) {
throw new Jbig2Error("no previous value in symbol ID table");
}
numberOfRepeats = reader.readBits(2) + 3;
repeatedLength = codes[i - 1].prefixLength;
break;
case 33:
numberOfRepeats = reader.readBits(3) + 3;
repeatedLength = 0;
break;
case 34:
numberOfRepeats = reader.readBits(7) + 11;
repeatedLength = 0;
break;
default:
throw new Jbig2Error("invalid code length in symbol ID table");
}
for (j = 0; j < numberOfRepeats; j++) {
codes.push(new HuffmanLine([i, repeatedLength, 0, 0]));
i++;
}
} else {
codes.push(new HuffmanLine([i, codeLength, 0, 0]));
i++;
}
}
reader.byteAlign();
const symbolIDTable = new HuffmanTable(codes, false);
// 7.4.3.1.6 Text region segment Huffman table selection
let customIndex = 0,
tableFirstS,
tableDeltaS,
tableDeltaT;
switch (textRegion.huffmanFS) {
case 0:
case 1:
tableFirstS = getStandardTable(textRegion.huffmanFS + 6);
break;
case 3:
tableFirstS = getCustomHuffmanTable(
customIndex,
referredTo,
customTables
);
customIndex++;
break;
default:
throw new Jbig2Error("invalid Huffman FS selector");
}
switch (textRegion.huffmanDS) {
case 0:
case 1:
case 2:
tableDeltaS = getStandardTable(textRegion.huffmanDS + 8);
break;
case 3:
tableDeltaS = getCustomHuffmanTable(
customIndex,
referredTo,
customTables
);
customIndex++;
break;
default:
throw new Jbig2Error("invalid Huffman DS selector");
}
switch (textRegion.huffmanDT) {
case 0:
case 1:
case 2:
tableDeltaT = getStandardTable(textRegion.huffmanDT + 11);
break;
case 3:
tableDeltaT = getCustomHuffmanTable(
customIndex,
referredTo,
customTables
);
customIndex++;
break;
default:
throw new Jbig2Error("invalid Huffman DT selector");
}
if (textRegion.refinement) {
// Load tables RDW, RDH, RDX and RDY.
throw new Jbig2Error("refinement with Huffman is not supported");
}
return {
symbolIDTable,
tableFirstS,
tableDeltaS,
tableDeltaT,
};
}
function getSymbolDictionaryHuffmanTables(
dictionary,
referredTo,
customTables
) {
// 7.4.2.1.6 Symbol dictionary segment Huffman table selection
let customIndex = 0,
tableDeltaHeight,
tableDeltaWidth;
switch (dictionary.huffmanDHSelector) {
case 0:
case 1:
tableDeltaHeight = getStandardTable(dictionary.huffmanDHSelector + 4);
break;
case 3:
tableDeltaHeight = getCustomHuffmanTable(
customIndex,
referredTo,
customTables
);
customIndex++;
break;
default:
throw new Jbig2Error("invalid Huffman DH selector");
}
switch (dictionary.huffmanDWSelector) {
case 0:
case 1:
tableDeltaWidth = getStandardTable(dictionary.huffmanDWSelector + 2);
break;
case 3:
tableDeltaWidth = getCustomHuffmanTable(
customIndex,
referredTo,
customTables
);
customIndex++;
break;
default:
throw new Jbig2Error("invalid Huffman DW selector");
}
let tableBitmapSize, tableAggregateInstances;
if (dictionary.bitmapSizeSelector) {
tableBitmapSize = getCustomHuffmanTable(
customIndex,
referredTo,
customTables
);
customIndex++;
} else {
tableBitmapSize = getStandardTable(1);
}
if (dictionary.aggregationInstancesSelector) {
tableAggregateInstances = getCustomHuffmanTable(
customIndex,
referredTo,
customTables
);
} else {
tableAggregateInstances = getStandardTable(1);
}
return {
tableDeltaHeight,
tableDeltaWidth,
tableBitmapSize,
tableAggregateInstances,
};
}
function readUncompressedBitmap(reader, width, height) {
const bitmap = [];
for (let y = 0; y < height; y++) {
const row = new Uint8Array(width);
bitmap.push(row);
for (let x = 0; x < width; x++) {
row[x] = reader.readBit();
}
reader.byteAlign();
}
return bitmap;
}
function decodeMMRBitmap(input, width, height, endOfBlock) {
// MMR is the same compression algorithm as the PDF filter
// CCITTFaxDecode with /K -1.
const params = {
K: -1,
Columns: width,
Rows: height,
BlackIs1: true,
EndOfBlock: endOfBlock,
};
const decoder = new CCITTFaxDecoder(input, params);
const bitmap = [];
let currentByte,
eof = false;
for (let y = 0; y < height; y++) {
const row = new Uint8Array(width);
bitmap.push(row);
let shift = -1;
for (let x = 0; x < width; x++) {
if (shift < 0) {
currentByte = decoder.readNextChar();
if (currentByte === -1) {
// Set the rest of the bits to zero.
currentByte = 0;
eof = true;
}
shift = 7;
}
row[x] = (currentByte >> shift) & 1;
shift--;
}
}
if (endOfBlock && !eof) {
// Read until EOFB has been consumed.
const lookForEOFLimit = 5;
for (let i = 0; i < lookForEOFLimit; i++) {
if (decoder.readNextChar() === -1) {
break;
}
}
}
return bitmap;
}
class Jbig2Image {
parseChunks(chunks) {
return parseJbig2Chunks(chunks);
}
parse(data) {
if (typeof PDFJSDev === "undefined" || !PDFJSDev.test("IMAGE_DECODERS")) {
throw new Error("Not implemented: Jbig2Image.parse");
}
const { imgData, width, height } = parseJbig2(data);
this.width = width;
this.height = height;
return imgData;
}
}
export { Jbig2Image };