pdf.js/src/display/editor/outliner.js

879 lines
24 KiB
JavaScript

/* Copyright 2023 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import { Util } from "../../shared/util.js";
class Outliner {
#box;
#verticalEdges = [];
#intervals = [];
/**
* Construct an outliner.
* @param {Array<Object>} boxes - An array of axis-aligned rectangles.
* @param {number} borderWidth - The width of the border of the boxes, it
* allows to make the boxes bigger (or smaller).
* @param {number} innerMargin - The margin between the boxes and the
* outlines. It's important to not have a null innerMargin when we want to
* draw the outline else the stroked outline could be clipped because of its
* width.
* @param {boolean} isLTR - true if we're in LTR mode. It's used to determine
* the last point of the boxes.
*/
constructor(boxes, borderWidth = 0, innerMargin = 0, isLTR = true) {
let minX = Infinity;
let maxX = -Infinity;
let minY = Infinity;
let maxY = -Infinity;
// We round the coordinates to slightly reduce the number of edges in the
// final outlines.
const NUMBER_OF_DIGITS = 4;
const EPSILON = 10 ** -NUMBER_OF_DIGITS;
// The coordinates of the boxes are in the page coordinate system.
for (const { x, y, width, height } of boxes) {
const x1 = Math.floor((x - borderWidth) / EPSILON) * EPSILON;
const x2 = Math.ceil((x + width + borderWidth) / EPSILON) * EPSILON;
const y1 = Math.floor((y - borderWidth) / EPSILON) * EPSILON;
const y2 = Math.ceil((y + height + borderWidth) / EPSILON) * EPSILON;
const left = [x1, y1, y2, true];
const right = [x2, y1, y2, false];
this.#verticalEdges.push(left, right);
minX = Math.min(minX, x1);
maxX = Math.max(maxX, x2);
minY = Math.min(minY, y1);
maxY = Math.max(maxY, y2);
}
const bboxWidth = maxX - minX + 2 * innerMargin;
const bboxHeight = maxY - minY + 2 * innerMargin;
const shiftedMinX = minX - innerMargin;
const shiftedMinY = minY - innerMargin;
const lastEdge = this.#verticalEdges.at(isLTR ? -1 : -2);
const lastPoint = [lastEdge[0], lastEdge[2]];
// Convert the coordinates of the edges into box coordinates.
for (const edge of this.#verticalEdges) {
const [x, y1, y2] = edge;
edge[0] = (x - shiftedMinX) / bboxWidth;
edge[1] = (y1 - shiftedMinY) / bboxHeight;
edge[2] = (y2 - shiftedMinY) / bboxHeight;
}
this.#box = {
x: shiftedMinX,
y: shiftedMinY,
width: bboxWidth,
height: bboxHeight,
lastPoint,
};
}
getOutlines() {
// We begin to sort lexicographically the vertical edges by their abscissa,
// and then by their ordinate.
this.#verticalEdges.sort(
(a, b) => a[0] - b[0] || a[1] - b[1] || a[2] - b[2]
);
// We're now using a sweep line algorithm to find the outlines.
// We start with the leftmost vertical edge, and we're going to iterate
// over all the vertical edges from left to right.
// Each time we encounter a left edge, we're going to insert the interval
// [y1, y2] in the set of intervals.
// This set of intervals is used to break the vertical edges into chunks:
// we only take the part of the vertical edge that isn't in the union of
// the intervals.
const outlineVerticalEdges = [];
for (const edge of this.#verticalEdges) {
if (edge[3]) {
// Left edge.
outlineVerticalEdges.push(...this.#breakEdge(edge));
this.#insert(edge);
} else {
// Right edge.
this.#remove(edge);
outlineVerticalEdges.push(...this.#breakEdge(edge));
}
}
return this.#getOutlines(outlineVerticalEdges);
}
#getOutlines(outlineVerticalEdges) {
const edges = [];
const allEdges = new Set();
for (const edge of outlineVerticalEdges) {
const [x, y1, y2] = edge;
edges.push([x, y1, edge], [x, y2, edge]);
}
// We sort lexicographically the vertices of each edge by their ordinate and
// by their abscissa.
// Every pair (v_2i, v_{2i + 1}) of vertices defines a horizontal edge.
// So for every vertical edge, we're going to add the two vertical edges
// which are connected to it through a horizontal edge.
edges.sort((a, b) => a[1] - b[1] || a[0] - b[0]);
for (let i = 0, ii = edges.length; i < ii; i += 2) {
const edge1 = edges[i][2];
const edge2 = edges[i + 1][2];
edge1.push(edge2);
edge2.push(edge1);
allEdges.add(edge1);
allEdges.add(edge2);
}
const outlines = [];
let outline;
while (allEdges.size > 0) {
const edge = allEdges.values().next().value;
let [x, y1, y2, edge1, edge2] = edge;
allEdges.delete(edge);
let lastPointX = x;
let lastPointY = y1;
outline = [x, y2];
outlines.push(outline);
while (true) {
let e;
if (allEdges.has(edge1)) {
e = edge1;
} else if (allEdges.has(edge2)) {
e = edge2;
} else {
break;
}
allEdges.delete(e);
[x, y1, y2, edge1, edge2] = e;
if (lastPointX !== x) {
outline.push(lastPointX, lastPointY, x, lastPointY === y1 ? y1 : y2);
lastPointX = x;
}
lastPointY = lastPointY === y1 ? y2 : y1;
}
outline.push(lastPointX, lastPointY);
}
return new HighlightOutline(outlines, this.#box);
}
#binarySearch(y) {
const array = this.#intervals;
let start = 0;
let end = array.length - 1;
while (start <= end) {
const middle = (start + end) >> 1;
const y1 = array[middle][0];
if (y1 === y) {
return middle;
}
if (y1 < y) {
start = middle + 1;
} else {
end = middle - 1;
}
}
return end + 1;
}
#insert([, y1, y2]) {
const index = this.#binarySearch(y1);
this.#intervals.splice(index, 0, [y1, y2]);
}
#remove([, y1, y2]) {
const index = this.#binarySearch(y1);
for (let i = index; i < this.#intervals.length; i++) {
const [start, end] = this.#intervals[i];
if (start !== y1) {
break;
}
if (start === y1 && end === y2) {
this.#intervals.splice(i, 1);
return;
}
}
for (let i = index - 1; i >= 0; i--) {
const [start, end] = this.#intervals[i];
if (start !== y1) {
break;
}
if (start === y1 && end === y2) {
this.#intervals.splice(i, 1);
return;
}
}
}
#breakEdge(edge) {
const [x, y1, y2] = edge;
const results = [[x, y1, y2]];
const index = this.#binarySearch(y2);
for (let i = 0; i < index; i++) {
const [start, end] = this.#intervals[i];
for (let j = 0, jj = results.length; j < jj; j++) {
const [, y3, y4] = results[j];
if (end <= y3 || y4 <= start) {
// There is no intersection between the interval and the edge, hence
// we keep it as is.
continue;
}
if (y3 >= start) {
if (y4 > end) {
results[j][1] = end;
} else {
if (jj === 1) {
return [];
}
// The edge is included in the interval, hence we remove it.
results.splice(j, 1);
j--;
jj--;
}
continue;
}
results[j][2] = start;
if (y4 > end) {
results.push([x, end, y4]);
}
}
}
return results;
}
}
class Outline {
/**
* @returns {string} The SVG path of the outline.
*/
toSVGPath() {
throw new Error("Abstract method `toSVGPath` must be implemented.");
}
/**
* @type {Object|null} The bounding box of the outline.
*/
get box() {
throw new Error("Abstract getter `box` must be implemented.");
}
serialize(_bbox, _rotation) {
throw new Error("Abstract method `serialize` must be implemented.");
}
get free() {
return this instanceof FreeHighlightOutline;
}
}
class HighlightOutline extends Outline {
#box;
#outlines;
constructor(outlines, box) {
super();
this.#outlines = outlines;
this.#box = box;
}
toSVGPath() {
const buffer = [];
for (const polygon of this.#outlines) {
let [prevX, prevY] = polygon;
buffer.push(`M${prevX} ${prevY}`);
for (let i = 2; i < polygon.length; i += 2) {
const x = polygon[i];
const y = polygon[i + 1];
if (x === prevX) {
buffer.push(`V${y}`);
prevY = y;
} else if (y === prevY) {
buffer.push(`H${x}`);
prevX = x;
}
}
buffer.push("Z");
}
return buffer.join(" ");
}
/**
* Serialize the outlines into the PDF page coordinate system.
* @param {Array<number>} _bbox - the bounding box of the annotation.
* @param {number} _rotation - the rotation of the annotation.
* @returns {Array<Array<number>>}
*/
serialize([blX, blY, trX, trY], _rotation) {
const outlines = [];
const width = trX - blX;
const height = trY - blY;
for (const outline of this.#outlines) {
const points = new Array(outline.length);
for (let i = 0; i < outline.length; i += 2) {
points[i] = blX + outline[i] * width;
points[i + 1] = trY - outline[i + 1] * height;
}
outlines.push(points);
}
return outlines;
}
get box() {
return this.#box;
}
}
class FreeOutliner {
#box;
#bottom = [];
#innerMargin;
#isLTR;
#top = [];
// The first 6 elements are the last 3 points of the top part of the outline.
// The next 6 elements are the last 3 points of the line.
// The next 6 elements are the last 3 points of the bottom part of the
// outline.
// We track the last 3 points in order to be able to:
// - compute the normal of the line,
// - compute the control points of the quadratic Bézier curve.
#last = new Float64Array(18);
#min;
#min_dist;
#scaleFactor;
#thickness;
#points = [];
static #MIN_DIST = 8;
static #MIN_DIFF = 2;
static #MIN = FreeOutliner.#MIN_DIST + FreeOutliner.#MIN_DIFF;
constructor({ x, y }, box, scaleFactor, thickness, isLTR, innerMargin = 0) {
this.#box = box;
this.#thickness = thickness * scaleFactor;
this.#isLTR = isLTR;
this.#last.set([NaN, NaN, NaN, NaN, x, y], 6);
this.#innerMargin = innerMargin;
this.#min_dist = FreeOutliner.#MIN_DIST * scaleFactor;
this.#min = FreeOutliner.#MIN * scaleFactor;
this.#scaleFactor = scaleFactor;
this.#points.push(x, y);
}
get free() {
return true;
}
isEmpty() {
// When we add a second point then this.#last.slice(6) will be something
// like [NaN, NaN, firstX, firstY, secondX, secondY,...] so having a NaN
// at index 8 means that we've only one point.
return isNaN(this.#last[8]);
}
add({ x, y }) {
const [layerX, layerY, layerWidth, layerHeight] = this.#box;
let [x1, y1, x2, y2] = this.#last.subarray(8, 12);
const diffX = x - x2;
const diffY = y - y2;
const d = Math.hypot(diffX, diffY);
if (d < this.#min) {
// The idea is to avoid garbage points around the last point.
// When the points are too close, it just leads to bad normal vectors and
// control points.
return false;
}
const diffD = d - this.#min_dist;
const K = diffD / d;
const shiftX = K * diffX;
const shiftY = K * diffY;
// We update the last 3 points of the line.
let x0 = x1;
let y0 = y1;
x1 = x2;
y1 = y2;
x2 += shiftX;
y2 += shiftY;
// We keep track of the points in order to be able to compute the focus
// outline.
this.#points?.push(x, y);
// Create the normal unit vector.
// |(shiftX, shiftY)| = |K| * |(diffX, diffY)| = |K| * d = diffD.
const nX = -shiftY / diffD;
const nY = shiftX / diffD;
const thX = nX * this.#thickness;
const thY = nY * this.#thickness;
this.#last.set(this.#last.subarray(2, 8), 0);
this.#last.set([x2 + thX, y2 + thY], 4);
this.#last.set(this.#last.subarray(14, 18), 12);
this.#last.set([x2 - thX, y2 - thY], 16);
if (isNaN(this.#last[6])) {
if (this.#top.length === 0) {
this.#last.set([x1 + thX, y1 + thY], 2);
this.#top.push(
NaN,
NaN,
NaN,
NaN,
(x1 + thX - layerX) / layerWidth,
(y1 + thY - layerY) / layerHeight
);
this.#last.set([x1 - thX, y1 - thY], 14);
this.#bottom.push(
NaN,
NaN,
NaN,
NaN,
(x1 - thX - layerX) / layerWidth,
(y1 - thY - layerY) / layerHeight
);
}
this.#last.set([x0, y0, x1, y1, x2, y2], 6);
return !this.isEmpty();
}
this.#last.set([x0, y0, x1, y1, x2, y2], 6);
const angle = Math.abs(
Math.atan2(y0 - y1, x0 - x1) - Math.atan2(shiftY, shiftX)
);
if (angle < Math.PI / 2) {
// In order to avoid some possible artifacts, we're going to use the a
// straight line instead of a quadratic Bézier curve.
[x1, y1, x2, y2] = this.#last.subarray(2, 6);
this.#top.push(
NaN,
NaN,
NaN,
NaN,
((x1 + x2) / 2 - layerX) / layerWidth,
((y1 + y2) / 2 - layerY) / layerHeight
);
[x1, y1, x0, y0] = this.#last.subarray(14, 18);
this.#bottom.push(
NaN,
NaN,
NaN,
NaN,
((x0 + x1) / 2 - layerX) / layerWidth,
((y0 + y1) / 2 - layerY) / layerHeight
);
return true;
}
// Control points and the final point for the quadratic Bézier curve.
[x0, y0, x1, y1, x2, y2] = this.#last.subarray(0, 6);
this.#top.push(
((x0 + 5 * x1) / 6 - layerX) / layerWidth,
((y0 + 5 * y1) / 6 - layerY) / layerHeight,
((5 * x1 + x2) / 6 - layerX) / layerWidth,
((5 * y1 + y2) / 6 - layerY) / layerHeight,
((x1 + x2) / 2 - layerX) / layerWidth,
((y1 + y2) / 2 - layerY) / layerHeight
);
[x2, y2, x1, y1, x0, y0] = this.#last.subarray(12, 18);
this.#bottom.push(
((x0 + 5 * x1) / 6 - layerX) / layerWidth,
((y0 + 5 * y1) / 6 - layerY) / layerHeight,
((5 * x1 + x2) / 6 - layerX) / layerWidth,
((5 * y1 + y2) / 6 - layerY) / layerHeight,
((x1 + x2) / 2 - layerX) / layerWidth,
((y1 + y2) / 2 - layerY) / layerHeight
);
return true;
}
toSVGPath() {
if (this.isEmpty()) {
// We've only one point.
return "";
}
const top = this.#top;
const bottom = this.#bottom;
const lastTop = this.#last.subarray(4, 6);
const lastBottom = this.#last.subarray(16, 18);
const [x, y, width, height] = this.#box;
if (isNaN(this.#last[6]) && !this.isEmpty()) {
// We've only two points.
return `M${(this.#last[2] - x) / width} ${
(this.#last[3] - y) / height
} L${(this.#last[4] - x) / width} ${(this.#last[5] - y) / height} L${
(this.#last[16] - x) / width
} ${(this.#last[17] - y) / height} L${(this.#last[14] - x) / width} ${
(this.#last[15] - y) / height
} Z`;
}
const buffer = [];
buffer.push(`M${top[4]} ${top[5]}`);
for (let i = 6; i < top.length; i += 6) {
if (isNaN(top[i])) {
buffer.push(`L${top[i + 4]} ${top[i + 5]}`);
} else {
buffer.push(
`C${top[i]} ${top[i + 1]} ${top[i + 2]} ${top[i + 3]} ${top[i + 4]} ${
top[i + 5]
}`
);
}
}
buffer.push(
`L${(lastTop[0] - x) / width} ${(lastTop[1] - y) / height} L${
(lastBottom[0] - x) / width
} ${(lastBottom[1] - y) / height}`
);
for (let i = bottom.length - 6; i >= 6; i -= 6) {
if (isNaN(bottom[i])) {
buffer.push(`L${bottom[i + 4]} ${bottom[i + 5]}`);
} else {
buffer.push(
`C${bottom[i]} ${bottom[i + 1]} ${bottom[i + 2]} ${bottom[i + 3]} ${
bottom[i + 4]
} ${bottom[i + 5]}`
);
}
}
buffer.push(`L${bottom[4]} ${bottom[5]} Z`);
return buffer.join(" ");
}
getOutlines() {
const top = this.#top;
const bottom = this.#bottom;
const last = this.#last;
const lastTop = last.subarray(4, 6);
const lastBottom = last.subarray(16, 18);
const [layerX, layerY, layerWidth, layerHeight] = this.#box;
const points = new Float64Array(this.#points?.length ?? 0);
for (let i = 0, ii = points.length; i < ii; i += 2) {
points[i] = (this.#points[i] - layerX) / layerWidth;
points[i + 1] = (this.#points[i + 1] - layerY) / layerHeight;
}
if (isNaN(last[6]) && !this.isEmpty()) {
// We've only two points.
const outline = new Float64Array(24);
outline.set(
[
NaN,
NaN,
NaN,
NaN,
(last[2] - layerX) / layerWidth,
(last[3] - layerY) / layerHeight,
NaN,
NaN,
NaN,
NaN,
(last[4] - layerX) / layerWidth,
(last[5] - layerY) / layerHeight,
NaN,
NaN,
NaN,
NaN,
(last[16] - layerX) / layerWidth,
(last[17] - layerY) / layerHeight,
NaN,
NaN,
NaN,
NaN,
(last[14] - layerX) / layerWidth,
(last[15] - layerY) / layerHeight,
],
0
);
return new FreeHighlightOutline(
outline,
points,
this.#box,
this.#scaleFactor,
this.#innerMargin,
this.#isLTR
);
}
const outline = new Float64Array(
this.#top.length + 12 + this.#bottom.length
);
let N = top.length;
for (let i = 0; i < N; i += 2) {
if (isNaN(top[i])) {
outline[i] = outline[i + 1] = NaN;
continue;
}
outline[i] = top[i];
outline[i + 1] = top[i + 1];
}
outline.set(
[
NaN,
NaN,
NaN,
NaN,
(lastTop[0] - layerX) / layerWidth,
(lastTop[1] - layerY) / layerHeight,
NaN,
NaN,
NaN,
NaN,
(lastBottom[0] - layerX) / layerWidth,
(lastBottom[1] - layerY) / layerHeight,
],
N
);
N += 12;
for (let i = bottom.length - 6; i >= 6; i -= 6) {
for (let j = 0; j < 6; j += 2) {
if (isNaN(bottom[i + j])) {
outline[N] = outline[N + 1] = NaN;
N += 2;
continue;
}
outline[N] = bottom[i + j];
outline[N + 1] = bottom[i + j + 1];
N += 2;
}
}
outline.set([NaN, NaN, NaN, NaN, bottom[4], bottom[5]], N);
return new FreeHighlightOutline(
outline,
points,
this.#box,
this.#scaleFactor,
this.#innerMargin,
this.#isLTR
);
}
}
class FreeHighlightOutline extends Outline {
#box;
#bbox = null;
#innerMargin;
#isLTR;
#points;
#scaleFactor;
#outline;
constructor(outline, points, box, scaleFactor, innerMargin, isLTR) {
super();
this.#outline = outline;
this.#points = points;
this.#box = box;
this.#scaleFactor = scaleFactor;
this.#innerMargin = innerMargin;
this.#isLTR = isLTR;
this.#computeMinMax(isLTR);
const { x, y, width, height } = this.#bbox;
for (let i = 0, ii = outline.length; i < ii; i += 2) {
outline[i] = (outline[i] - x) / width;
outline[i + 1] = (outline[i + 1] - y) / height;
}
for (let i = 0, ii = points.length; i < ii; i += 2) {
points[i] = (points[i] - x) / width;
points[i + 1] = (points[i + 1] - y) / height;
}
}
toSVGPath() {
const buffer = [`M${this.#outline[4]} ${this.#outline[5]}`];
for (let i = 6, ii = this.#outline.length; i < ii; i += 6) {
if (isNaN(this.#outline[i])) {
buffer.push(`L${this.#outline[i + 4]} ${this.#outline[i + 5]}`);
continue;
}
buffer.push(
`C${this.#outline[i]} ${this.#outline[i + 1]} ${this.#outline[i + 2]} ${
this.#outline[i + 3]
} ${this.#outline[i + 4]} ${this.#outline[i + 5]}`
);
}
buffer.push("Z");
return buffer.join(" ");
}
serialize([blX, blY, trX, trY], rotation) {
const width = trX - blX;
const height = trY - blY;
let outline;
let points;
switch (rotation) {
case 0:
outline = this.#rescale(this.#outline, blX, trY, width, -height);
points = this.#rescale(this.#points, blX, trY, width, -height);
break;
case 90:
outline = this.#rescaleAndSwap(this.#outline, blX, blY, width, height);
points = this.#rescaleAndSwap(this.#points, blX, blY, width, height);
break;
case 180:
outline = this.#rescale(this.#outline, trX, blY, -width, height);
points = this.#rescale(this.#points, trX, blY, -width, height);
break;
case 270:
outline = this.#rescaleAndSwap(
this.#outline,
trX,
trY,
-width,
-height
);
points = this.#rescaleAndSwap(this.#points, trX, trY, -width, -height);
break;
}
return { outline: Array.from(outline), points: [Array.from(points)] };
}
#rescale(src, tx, ty, sx, sy) {
const dest = new Float64Array(src.length);
for (let i = 0, ii = src.length; i < ii; i += 2) {
dest[i] = tx + src[i] * sx;
dest[i + 1] = ty + src[i + 1] * sy;
}
return dest;
}
#rescaleAndSwap(src, tx, ty, sx, sy) {
const dest = new Float64Array(src.length);
for (let i = 0, ii = src.length; i < ii; i += 2) {
dest[i] = tx + src[i + 1] * sx;
dest[i + 1] = ty + src[i] * sy;
}
return dest;
}
#computeMinMax(isLTR) {
const outline = this.#outline;
let lastX = outline[4];
let lastY = outline[5];
let minX = lastX;
let minY = lastY;
let maxX = lastX;
let maxY = lastY;
let lastPointX = lastX;
let lastPointY = lastY;
const ltrCallback = isLTR ? Math.max : Math.min;
for (let i = 6, ii = outline.length; i < ii; i += 6) {
if (isNaN(outline[i])) {
minX = Math.min(minX, outline[i + 4]);
minY = Math.min(minY, outline[i + 5]);
maxX = Math.max(maxX, outline[i + 4]);
maxY = Math.max(maxY, outline[i + 5]);
if (lastPointY < outline[i + 5]) {
lastPointX = outline[i + 4];
lastPointY = outline[i + 5];
} else if (lastPointY === outline[i + 5]) {
lastPointX = ltrCallback(lastPointX, outline[i + 4]);
}
} else {
const bbox = Util.bezierBoundingBox(
lastX,
lastY,
...outline.slice(i, i + 6)
);
minX = Math.min(minX, bbox[0]);
minY = Math.min(minY, bbox[1]);
maxX = Math.max(maxX, bbox[2]);
maxY = Math.max(maxY, bbox[3]);
if (lastPointY < bbox[3]) {
lastPointX = bbox[2];
lastPointY = bbox[3];
} else if (lastPointY === bbox[3]) {
lastPointX = ltrCallback(lastPointX, bbox[2]);
}
}
lastX = outline[i + 4];
lastY = outline[i + 5];
}
const x = minX - this.#innerMargin,
y = minY - this.#innerMargin,
width = maxX - minX + 2 * this.#innerMargin,
height = maxY - minY + 2 * this.#innerMargin;
lastPointX = (lastPointX - x) / width;
lastPointY = (lastPointY - y) / height;
this.#bbox = { x, y, width, height, lastPoint: [lastPointX, lastPointY] };
}
get box() {
return this.#bbox;
}
getNewOutline(thickness, innerMargin) {
// Build the outline of the highlight to use as the focus outline.
const { x, y, width, height } = this.#bbox;
const [layerX, layerY, layerWidth, layerHeight] = this.#box;
const sx = width * layerWidth;
const sy = height * layerHeight;
const tx = x * layerWidth + layerX;
const ty = y * layerHeight + layerY;
const outliner = new FreeOutliner(
{
x: this.#points[0] * sx + tx,
y: this.#points[1] * sy + ty,
},
this.#box,
this.#scaleFactor,
thickness,
this.#isLTR,
innerMargin ?? this.#innerMargin
);
for (let i = 2; i < this.#points.length; i += 2) {
outliner.add({
x: this.#points[i] * sx + tx,
y: this.#points[i + 1] * sy + ty,
});
}
return outliner.getOutlines();
}
}
export { FreeOutliner, Outliner };