pdf.js/src/core/jpg.js
Jonas Jenwald a4440a1c6b Avoid re-calculating the xScaleBlockOffset when not necessary in JpegImage._getLinearizedBlockData
As can be seen in the code, the `xScaleBlockOffset` typed array doesn't depend on the actual image data but only on the width and x-scale. The width is obviously consistent for an image, and it turns out that in practice the `componentScaleX` is quite often identical between two (or more) adjacent image components.
All-in-all it's thus not necessary to *unconditionally* re-compute the `xScaleBlockOffset` when getting the JPEG image data.

While avoiding, in many cases, one or more loops can never be a bad thing these changes are unfortunately completely dominated by the rest of the JpegImage code and consequently doesn't really show up in benchmark results. *Hence I'd understand if this patch is ultimately deemed not necessary.*
2020-02-01 11:58:50 +01:00

1404 lines
44 KiB
JavaScript

/* Copyright 2014 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the 'License');
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an 'AS IS' BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import { assert, BaseException, warn } from "../shared/util.js";
import { readUint16 } from "./core_utils.js";
class JpegError extends BaseException {
constructor(msg) {
super(`JPEG error: ${msg}`);
}
}
class DNLMarkerError extends BaseException {
constructor(message, scanLines) {
super(message);
this.scanLines = scanLines;
}
}
class EOIMarkerError extends BaseException {}
/**
* This code was forked from https://github.com/notmasteryet/jpgjs.
* The original version was created by GitHub user notmasteryet.
*
* - The JPEG specification can be found in the ITU CCITT Recommendation T.81
* (www.w3.org/Graphics/JPEG/itu-t81.pdf)
* - The JFIF specification can be found in the JPEG File Interchange Format
* (www.w3.org/Graphics/JPEG/jfif3.pdf)
* - The Adobe Application-Specific JPEG markers in the
* Supporting the DCT Filters in PostScript Level 2, Technical Note #5116
* (partners.adobe.com/public/developer/en/ps/sdk/5116.DCT_Filter.pdf)
*/
var JpegImage = (function JpegImageClosure() {
// prettier-ignore
var dctZigZag = new Uint8Array([
0,
1, 8,
16, 9, 2,
3, 10, 17, 24,
32, 25, 18, 11, 4,
5, 12, 19, 26, 33, 40,
48, 41, 34, 27, 20, 13, 6,
7, 14, 21, 28, 35, 42, 49, 56,
57, 50, 43, 36, 29, 22, 15,
23, 30, 37, 44, 51, 58,
59, 52, 45, 38, 31,
39, 46, 53, 60,
61, 54, 47,
55, 62,
63
]);
var dctCos1 = 4017; // cos(pi/16)
var dctSin1 = 799; // sin(pi/16)
var dctCos3 = 3406; // cos(3*pi/16)
var dctSin3 = 2276; // sin(3*pi/16)
var dctCos6 = 1567; // cos(6*pi/16)
var dctSin6 = 3784; // sin(6*pi/16)
var dctSqrt2 = 5793; // sqrt(2)
var dctSqrt1d2 = 2896; // sqrt(2) / 2
function JpegImage({ decodeTransform = null, colorTransform = -1 } = {}) {
this._decodeTransform = decodeTransform;
this._colorTransform = colorTransform;
}
function buildHuffmanTable(codeLengths, values) {
var k = 0,
code = [],
i,
j,
length = 16;
while (length > 0 && !codeLengths[length - 1]) {
length--;
}
code.push({ children: [], index: 0 });
var p = code[0],
q;
for (i = 0; i < length; i++) {
for (j = 0; j < codeLengths[i]; j++) {
p = code.pop();
p.children[p.index] = values[k];
while (p.index > 0) {
p = code.pop();
}
p.index++;
code.push(p);
while (code.length <= i) {
code.push((q = { children: [], index: 0 }));
p.children[p.index] = q.children;
p = q;
}
k++;
}
if (i + 1 < length) {
// p here points to last code
code.push((q = { children: [], index: 0 }));
p.children[p.index] = q.children;
p = q;
}
}
return code[0].children;
}
function getBlockBufferOffset(component, row, col) {
return 64 * ((component.blocksPerLine + 1) * row + col);
}
function decodeScan(
data,
offset,
frame,
components,
resetInterval,
spectralStart,
spectralEnd,
successivePrev,
successive,
parseDNLMarker = false
) {
var mcusPerLine = frame.mcusPerLine;
var progressive = frame.progressive;
var startOffset = offset,
bitsData = 0,
bitsCount = 0;
function readBit() {
if (bitsCount > 0) {
bitsCount--;
return (bitsData >> bitsCount) & 1;
}
bitsData = data[offset++];
if (bitsData === 0xff) {
var nextByte = data[offset++];
if (nextByte) {
if (nextByte === 0xdc && parseDNLMarker) {
offset += 2; // Skip marker length.
const scanLines = readUint16(data, offset);
offset += 2;
if (scanLines > 0 && scanLines !== frame.scanLines) {
throw new DNLMarkerError(
"Found DNL marker (0xFFDC) while parsing scan data",
scanLines
);
}
} else if (nextByte === 0xd9) {
throw new EOIMarkerError(
"Found EOI marker (0xFFD9) while parsing scan data"
);
}
throw new JpegError(
`unexpected marker ${((bitsData << 8) | nextByte).toString(16)}`
);
}
// unstuff 0
}
bitsCount = 7;
return bitsData >>> 7;
}
function decodeHuffman(tree) {
var node = tree;
while (true) {
node = node[readBit()];
switch (typeof node) {
case "number":
return node;
case "object":
continue;
}
throw new JpegError("invalid huffman sequence");
}
}
function receive(length) {
var n = 0;
while (length > 0) {
n = (n << 1) | readBit();
length--;
}
return n;
}
function receiveAndExtend(length) {
if (length === 1) {
return readBit() === 1 ? 1 : -1;
}
var n = receive(length);
if (n >= 1 << (length - 1)) {
return n;
}
return n + (-1 << length) + 1;
}
function decodeBaseline(component, offset) {
var t = decodeHuffman(component.huffmanTableDC);
var diff = t === 0 ? 0 : receiveAndExtend(t);
component.blockData[offset] = component.pred += diff;
var k = 1;
while (k < 64) {
var rs = decodeHuffman(component.huffmanTableAC);
var s = rs & 15,
r = rs >> 4;
if (s === 0) {
if (r < 15) {
break;
}
k += 16;
continue;
}
k += r;
var z = dctZigZag[k];
component.blockData[offset + z] = receiveAndExtend(s);
k++;
}
}
function decodeDCFirst(component, offset) {
var t = decodeHuffman(component.huffmanTableDC);
var diff = t === 0 ? 0 : receiveAndExtend(t) << successive;
component.blockData[offset] = component.pred += diff;
}
function decodeDCSuccessive(component, offset) {
component.blockData[offset] |= readBit() << successive;
}
var eobrun = 0;
function decodeACFirst(component, offset) {
if (eobrun > 0) {
eobrun--;
return;
}
var k = spectralStart,
e = spectralEnd;
while (k <= e) {
var rs = decodeHuffman(component.huffmanTableAC);
var s = rs & 15,
r = rs >> 4;
if (s === 0) {
if (r < 15) {
eobrun = receive(r) + (1 << r) - 1;
break;
}
k += 16;
continue;
}
k += r;
var z = dctZigZag[k];
component.blockData[offset + z] =
receiveAndExtend(s) * (1 << successive);
k++;
}
}
var successiveACState = 0,
successiveACNextValue;
function decodeACSuccessive(component, offset) {
var k = spectralStart;
var e = spectralEnd;
var r = 0;
var s;
var rs;
while (k <= e) {
const offsetZ = offset + dctZigZag[k];
const sign = component.blockData[offsetZ] < 0 ? -1 : 1;
switch (successiveACState) {
case 0: // initial state
rs = decodeHuffman(component.huffmanTableAC);
s = rs & 15;
r = rs >> 4;
if (s === 0) {
if (r < 15) {
eobrun = receive(r) + (1 << r);
successiveACState = 4;
} else {
r = 16;
successiveACState = 1;
}
} else {
if (s !== 1) {
throw new JpegError("invalid ACn encoding");
}
successiveACNextValue = receiveAndExtend(s);
successiveACState = r ? 2 : 3;
}
continue;
case 1: // skipping r zero items
case 2:
if (component.blockData[offsetZ]) {
component.blockData[offsetZ] += sign * (readBit() << successive);
} else {
r--;
if (r === 0) {
successiveACState = successiveACState === 2 ? 3 : 0;
}
}
break;
case 3: // set value for a zero item
if (component.blockData[offsetZ]) {
component.blockData[offsetZ] += sign * (readBit() << successive);
} else {
component.blockData[offsetZ] =
successiveACNextValue << successive;
successiveACState = 0;
}
break;
case 4: // eob
if (component.blockData[offsetZ]) {
component.blockData[offsetZ] += sign * (readBit() << successive);
}
break;
}
k++;
}
if (successiveACState === 4) {
eobrun--;
if (eobrun === 0) {
successiveACState = 0;
}
}
}
function decodeMcu(component, decode, mcu, row, col) {
var mcuRow = (mcu / mcusPerLine) | 0;
var mcuCol = mcu % mcusPerLine;
var blockRow = mcuRow * component.v + row;
var blockCol = mcuCol * component.h + col;
var offset = getBlockBufferOffset(component, blockRow, blockCol);
decode(component, offset);
}
function decodeBlock(component, decode, mcu) {
var blockRow = (mcu / component.blocksPerLine) | 0;
var blockCol = mcu % component.blocksPerLine;
var offset = getBlockBufferOffset(component, blockRow, blockCol);
decode(component, offset);
}
var componentsLength = components.length;
var component, i, j, k, n;
var decodeFn;
if (progressive) {
if (spectralStart === 0) {
decodeFn = successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive;
} else {
decodeFn = successivePrev === 0 ? decodeACFirst : decodeACSuccessive;
}
} else {
decodeFn = decodeBaseline;
}
var mcu = 0,
fileMarker;
var mcuExpected;
if (componentsLength === 1) {
mcuExpected = components[0].blocksPerLine * components[0].blocksPerColumn;
} else {
mcuExpected = mcusPerLine * frame.mcusPerColumn;
}
var h, v;
while (mcu < mcuExpected) {
// reset interval stuff
var mcuToRead = resetInterval
? Math.min(mcuExpected - mcu, resetInterval)
: mcuExpected;
for (i = 0; i < componentsLength; i++) {
components[i].pred = 0;
}
eobrun = 0;
if (componentsLength === 1) {
component = components[0];
for (n = 0; n < mcuToRead; n++) {
decodeBlock(component, decodeFn, mcu);
mcu++;
}
} else {
for (n = 0; n < mcuToRead; n++) {
for (i = 0; i < componentsLength; i++) {
component = components[i];
h = component.h;
v = component.v;
for (j = 0; j < v; j++) {
for (k = 0; k < h; k++) {
decodeMcu(component, decodeFn, mcu, j, k);
}
}
}
mcu++;
}
}
// find marker
bitsCount = 0;
fileMarker = findNextFileMarker(data, offset);
if (!fileMarker) {
// Reached the end of the image data without finding an EOI marker.
break;
} else if (fileMarker.invalid) {
// Some bad images seem to pad Scan blocks with e.g. zero bytes, skip
// past those to attempt to find a valid marker (fixes issue4090.pdf).
warn(
"decodeScan - unexpected MCU data, current marker is: " +
fileMarker.invalid
);
offset = fileMarker.offset;
}
var marker = fileMarker && fileMarker.marker;
if (!marker || marker <= 0xff00) {
throw new JpegError("decodeScan - a valid marker was not found.");
}
if (marker >= 0xffd0 && marker <= 0xffd7) {
// RSTx
offset += 2;
} else {
break;
}
}
fileMarker = findNextFileMarker(data, offset);
// Some images include more Scan blocks than expected, skip past those and
// attempt to find the next valid marker (fixes issue8182.pdf).
if (fileMarker && fileMarker.invalid) {
warn(
"decodeScan - unexpected Scan data, current marker is: " +
fileMarker.invalid
);
offset = fileMarker.offset;
}
return offset - startOffset;
}
// A port of poppler's IDCT method which in turn is taken from:
// Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz,
// 'Practical Fast 1-D DCT Algorithms with 11 Multiplications',
// IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989,
// 988-991.
function quantizeAndInverse(component, blockBufferOffset, p) {
var qt = component.quantizationTable,
blockData = component.blockData;
var v0, v1, v2, v3, v4, v5, v6, v7;
var p0, p1, p2, p3, p4, p5, p6, p7;
var t;
if (!qt) {
throw new JpegError("missing required Quantization Table.");
}
// inverse DCT on rows
for (var row = 0; row < 64; row += 8) {
// gather block data
p0 = blockData[blockBufferOffset + row];
p1 = blockData[blockBufferOffset + row + 1];
p2 = blockData[blockBufferOffset + row + 2];
p3 = blockData[blockBufferOffset + row + 3];
p4 = blockData[blockBufferOffset + row + 4];
p5 = blockData[blockBufferOffset + row + 5];
p6 = blockData[blockBufferOffset + row + 6];
p7 = blockData[blockBufferOffset + row + 7];
// dequant p0
p0 *= qt[row];
// check for all-zero AC coefficients
if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) {
t = (dctSqrt2 * p0 + 512) >> 10;
p[row] = t;
p[row + 1] = t;
p[row + 2] = t;
p[row + 3] = t;
p[row + 4] = t;
p[row + 5] = t;
p[row + 6] = t;
p[row + 7] = t;
continue;
}
// dequant p1 ... p7
p1 *= qt[row + 1];
p2 *= qt[row + 2];
p3 *= qt[row + 3];
p4 *= qt[row + 4];
p5 *= qt[row + 5];
p6 *= qt[row + 6];
p7 *= qt[row + 7];
// stage 4
v0 = (dctSqrt2 * p0 + 128) >> 8;
v1 = (dctSqrt2 * p4 + 128) >> 8;
v2 = p2;
v3 = p6;
v4 = (dctSqrt1d2 * (p1 - p7) + 128) >> 8;
v7 = (dctSqrt1d2 * (p1 + p7) + 128) >> 8;
v5 = p3 << 4;
v6 = p5 << 4;
// stage 3
v0 = (v0 + v1 + 1) >> 1;
v1 = v0 - v1;
t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8;
v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8;
v3 = t;
v4 = (v4 + v6 + 1) >> 1;
v6 = v4 - v6;
v7 = (v7 + v5 + 1) >> 1;
v5 = v7 - v5;
// stage 2
v0 = (v0 + v3 + 1) >> 1;
v3 = v0 - v3;
v1 = (v1 + v2 + 1) >> 1;
v2 = v1 - v2;
t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
v7 = t;
t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
v6 = t;
// stage 1
p[row] = v0 + v7;
p[row + 7] = v0 - v7;
p[row + 1] = v1 + v6;
p[row + 6] = v1 - v6;
p[row + 2] = v2 + v5;
p[row + 5] = v2 - v5;
p[row + 3] = v3 + v4;
p[row + 4] = v3 - v4;
}
// inverse DCT on columns
for (var col = 0; col < 8; ++col) {
p0 = p[col];
p1 = p[col + 8];
p2 = p[col + 16];
p3 = p[col + 24];
p4 = p[col + 32];
p5 = p[col + 40];
p6 = p[col + 48];
p7 = p[col + 56];
// check for all-zero AC coefficients
if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) {
t = (dctSqrt2 * p0 + 8192) >> 14;
// Convert to 8-bit.
if (t < -2040) {
t = 0;
} else if (t >= 2024) {
t = 255;
} else {
t = (t + 2056) >> 4;
}
blockData[blockBufferOffset + col] = t;
blockData[blockBufferOffset + col + 8] = t;
blockData[blockBufferOffset + col + 16] = t;
blockData[blockBufferOffset + col + 24] = t;
blockData[blockBufferOffset + col + 32] = t;
blockData[blockBufferOffset + col + 40] = t;
blockData[blockBufferOffset + col + 48] = t;
blockData[blockBufferOffset + col + 56] = t;
continue;
}
// stage 4
v0 = (dctSqrt2 * p0 + 2048) >> 12;
v1 = (dctSqrt2 * p4 + 2048) >> 12;
v2 = p2;
v3 = p6;
v4 = (dctSqrt1d2 * (p1 - p7) + 2048) >> 12;
v7 = (dctSqrt1d2 * (p1 + p7) + 2048) >> 12;
v5 = p3;
v6 = p5;
// stage 3
// Shift v0 by 128.5 << 5 here, so we don't need to shift p0...p7 when
// converting to UInt8 range later.
v0 = ((v0 + v1 + 1) >> 1) + 4112;
v1 = v0 - v1;
t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12;
v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12;
v3 = t;
v4 = (v4 + v6 + 1) >> 1;
v6 = v4 - v6;
v7 = (v7 + v5 + 1) >> 1;
v5 = v7 - v5;
// stage 2
v0 = (v0 + v3 + 1) >> 1;
v3 = v0 - v3;
v1 = (v1 + v2 + 1) >> 1;
v2 = v1 - v2;
t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
v7 = t;
t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
v6 = t;
// stage 1
p0 = v0 + v7;
p7 = v0 - v7;
p1 = v1 + v6;
p6 = v1 - v6;
p2 = v2 + v5;
p5 = v2 - v5;
p3 = v3 + v4;
p4 = v3 - v4;
// Convert to 8-bit integers.
if (p0 < 16) {
p0 = 0;
} else if (p0 >= 4080) {
p0 = 255;
} else {
p0 >>= 4;
}
if (p1 < 16) {
p1 = 0;
} else if (p1 >= 4080) {
p1 = 255;
} else {
p1 >>= 4;
}
if (p2 < 16) {
p2 = 0;
} else if (p2 >= 4080) {
p2 = 255;
} else {
p2 >>= 4;
}
if (p3 < 16) {
p3 = 0;
} else if (p3 >= 4080) {
p3 = 255;
} else {
p3 >>= 4;
}
if (p4 < 16) {
p4 = 0;
} else if (p4 >= 4080) {
p4 = 255;
} else {
p4 >>= 4;
}
if (p5 < 16) {
p5 = 0;
} else if (p5 >= 4080) {
p5 = 255;
} else {
p5 >>= 4;
}
if (p6 < 16) {
p6 = 0;
} else if (p6 >= 4080) {
p6 = 255;
} else {
p6 >>= 4;
}
if (p7 < 16) {
p7 = 0;
} else if (p7 >= 4080) {
p7 = 255;
} else {
p7 >>= 4;
}
// store block data
blockData[blockBufferOffset + col] = p0;
blockData[blockBufferOffset + col + 8] = p1;
blockData[blockBufferOffset + col + 16] = p2;
blockData[blockBufferOffset + col + 24] = p3;
blockData[blockBufferOffset + col + 32] = p4;
blockData[blockBufferOffset + col + 40] = p5;
blockData[blockBufferOffset + col + 48] = p6;
blockData[blockBufferOffset + col + 56] = p7;
}
}
function buildComponentData(frame, component) {
var blocksPerLine = component.blocksPerLine;
var blocksPerColumn = component.blocksPerColumn;
var computationBuffer = new Int16Array(64);
for (var blockRow = 0; blockRow < blocksPerColumn; blockRow++) {
for (var blockCol = 0; blockCol < blocksPerLine; blockCol++) {
var offset = getBlockBufferOffset(component, blockRow, blockCol);
quantizeAndInverse(component, offset, computationBuffer);
}
}
return component.blockData;
}
function findNextFileMarker(data, currentPos, startPos = currentPos) {
const maxPos = data.length - 1;
var newPos = startPos < currentPos ? startPos : currentPos;
if (currentPos >= maxPos) {
return null; // Don't attempt to read non-existent data and just return.
}
var currentMarker = readUint16(data, currentPos);
if (currentMarker >= 0xffc0 && currentMarker <= 0xfffe) {
return {
invalid: null,
marker: currentMarker,
offset: currentPos,
};
}
var newMarker = readUint16(data, newPos);
while (!(newMarker >= 0xffc0 && newMarker <= 0xfffe)) {
if (++newPos >= maxPos) {
return null; // Don't attempt to read non-existent data and just return.
}
newMarker = readUint16(data, newPos);
}
return {
invalid: currentMarker.toString(16),
marker: newMarker,
offset: newPos,
};
}
JpegImage.prototype = {
parse(data, { dnlScanLines = null } = {}) {
function readDataBlock() {
const length = readUint16(data, offset);
offset += 2;
let endOffset = offset + length - 2;
var fileMarker = findNextFileMarker(data, endOffset, offset);
if (fileMarker && fileMarker.invalid) {
warn(
"readDataBlock - incorrect length, current marker is: " +
fileMarker.invalid
);
endOffset = fileMarker.offset;
}
var array = data.subarray(offset, endOffset);
offset += array.length;
return array;
}
function prepareComponents(frame) {
var mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / frame.maxH);
var mcusPerColumn = Math.ceil(frame.scanLines / 8 / frame.maxV);
for (var i = 0; i < frame.components.length; i++) {
component = frame.components[i];
var blocksPerLine = Math.ceil(
(Math.ceil(frame.samplesPerLine / 8) * component.h) / frame.maxH
);
var blocksPerColumn = Math.ceil(
(Math.ceil(frame.scanLines / 8) * component.v) / frame.maxV
);
var blocksPerLineForMcu = mcusPerLine * component.h;
var blocksPerColumnForMcu = mcusPerColumn * component.v;
var blocksBufferSize =
64 * blocksPerColumnForMcu * (blocksPerLineForMcu + 1);
component.blockData = new Int16Array(blocksBufferSize);
component.blocksPerLine = blocksPerLine;
component.blocksPerColumn = blocksPerColumn;
}
frame.mcusPerLine = mcusPerLine;
frame.mcusPerColumn = mcusPerColumn;
}
var offset = 0;
var jfif = null;
var adobe = null;
var frame, resetInterval;
let numSOSMarkers = 0;
var quantizationTables = [];
var huffmanTablesAC = [],
huffmanTablesDC = [];
let fileMarker = readUint16(data, offset);
offset += 2;
if (fileMarker !== /* SOI (Start of Image) = */ 0xffd8) {
throw new JpegError("SOI not found");
}
fileMarker = readUint16(data, offset);
offset += 2;
markerLoop: while (fileMarker !== /* EOI (End of Image) = */ 0xffd9) {
var i, j, l;
switch (fileMarker) {
case 0xffe0: // APP0 (Application Specific)
case 0xffe1: // APP1
case 0xffe2: // APP2
case 0xffe3: // APP3
case 0xffe4: // APP4
case 0xffe5: // APP5
case 0xffe6: // APP6
case 0xffe7: // APP7
case 0xffe8: // APP8
case 0xffe9: // APP9
case 0xffea: // APP10
case 0xffeb: // APP11
case 0xffec: // APP12
case 0xffed: // APP13
case 0xffee: // APP14
case 0xffef: // APP15
case 0xfffe: // COM (Comment)
var appData = readDataBlock();
if (fileMarker === 0xffe0) {
// 'JFIF\x00'
if (
appData[0] === 0x4a &&
appData[1] === 0x46 &&
appData[2] === 0x49 &&
appData[3] === 0x46 &&
appData[4] === 0
) {
jfif = {
version: { major: appData[5], minor: appData[6] },
densityUnits: appData[7],
xDensity: (appData[8] << 8) | appData[9],
yDensity: (appData[10] << 8) | appData[11],
thumbWidth: appData[12],
thumbHeight: appData[13],
thumbData: appData.subarray(
14,
14 + 3 * appData[12] * appData[13]
),
};
}
}
// TODO APP1 - Exif
if (fileMarker === 0xffee) {
// 'Adobe'
if (
appData[0] === 0x41 &&
appData[1] === 0x64 &&
appData[2] === 0x6f &&
appData[3] === 0x62 &&
appData[4] === 0x65
) {
adobe = {
version: (appData[5] << 8) | appData[6],
flags0: (appData[7] << 8) | appData[8],
flags1: (appData[9] << 8) | appData[10],
transformCode: appData[11],
};
}
}
break;
case 0xffdb: // DQT (Define Quantization Tables)
const quantizationTablesLength = readUint16(data, offset);
offset += 2;
var quantizationTablesEnd = quantizationTablesLength + offset - 2;
var z;
while (offset < quantizationTablesEnd) {
var quantizationTableSpec = data[offset++];
var tableData = new Uint16Array(64);
if (quantizationTableSpec >> 4 === 0) {
// 8 bit values
for (j = 0; j < 64; j++) {
z = dctZigZag[j];
tableData[z] = data[offset++];
}
} else if (quantizationTableSpec >> 4 === 1) {
// 16 bit values
for (j = 0; j < 64; j++) {
z = dctZigZag[j];
tableData[z] = readUint16(data, offset);
offset += 2;
}
} else {
throw new JpegError("DQT - invalid table spec");
}
quantizationTables[quantizationTableSpec & 15] = tableData;
}
break;
case 0xffc0: // SOF0 (Start of Frame, Baseline DCT)
case 0xffc1: // SOF1 (Start of Frame, Extended DCT)
case 0xffc2: // SOF2 (Start of Frame, Progressive DCT)
if (frame) {
throw new JpegError("Only single frame JPEGs supported");
}
offset += 2; // Skip marker length.
frame = {};
frame.extended = fileMarker === 0xffc1;
frame.progressive = fileMarker === 0xffc2;
frame.precision = data[offset++];
const sofScanLines = readUint16(data, offset);
offset += 2;
frame.scanLines = dnlScanLines || sofScanLines;
frame.samplesPerLine = readUint16(data, offset);
offset += 2;
frame.components = [];
frame.componentIds = {};
var componentsCount = data[offset++],
componentId;
var maxH = 0,
maxV = 0;
for (i = 0; i < componentsCount; i++) {
componentId = data[offset];
var h = data[offset + 1] >> 4;
var v = data[offset + 1] & 15;
if (maxH < h) {
maxH = h;
}
if (maxV < v) {
maxV = v;
}
var qId = data[offset + 2];
l = frame.components.push({
h,
v,
quantizationId: qId,
quantizationTable: null, // See comment below.
});
frame.componentIds[componentId] = l - 1;
offset += 3;
}
frame.maxH = maxH;
frame.maxV = maxV;
prepareComponents(frame);
break;
case 0xffc4: // DHT (Define Huffman Tables)
const huffmanLength = readUint16(data, offset);
offset += 2;
for (i = 2; i < huffmanLength; ) {
var huffmanTableSpec = data[offset++];
var codeLengths = new Uint8Array(16);
var codeLengthSum = 0;
for (j = 0; j < 16; j++, offset++) {
codeLengthSum += codeLengths[j] = data[offset];
}
var huffmanValues = new Uint8Array(codeLengthSum);
for (j = 0; j < codeLengthSum; j++, offset++) {
huffmanValues[j] = data[offset];
}
i += 17 + codeLengthSum;
(huffmanTableSpec >> 4 === 0 ? huffmanTablesDC : huffmanTablesAC)[
huffmanTableSpec & 15
] = buildHuffmanTable(codeLengths, huffmanValues);
}
break;
case 0xffdd: // DRI (Define Restart Interval)
offset += 2; // Skip marker length.
resetInterval = readUint16(data, offset);
offset += 2;
break;
case 0xffda: // SOS (Start of Scan)
// A DNL marker (0xFFDC), if it exists, is only allowed at the end
// of the first scan segment and may only occur once in an image.
// Furthermore, to prevent an infinite loop, do *not* attempt to
// parse DNL markers during re-parsing of the JPEG scan data.
const parseDNLMarker = ++numSOSMarkers === 1 && !dnlScanLines;
offset += 2; // Skip marker length.
var selectorsCount = data[offset++];
var components = [],
component;
for (i = 0; i < selectorsCount; i++) {
var componentIndex = frame.componentIds[data[offset++]];
component = frame.components[componentIndex];
var tableSpec = data[offset++];
component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4];
component.huffmanTableAC = huffmanTablesAC[tableSpec & 15];
components.push(component);
}
var spectralStart = data[offset++];
var spectralEnd = data[offset++];
var successiveApproximation = data[offset++];
try {
var processed = decodeScan(
data,
offset,
frame,
components,
resetInterval,
spectralStart,
spectralEnd,
successiveApproximation >> 4,
successiveApproximation & 15,
parseDNLMarker
);
offset += processed;
} catch (ex) {
if (ex instanceof DNLMarkerError) {
warn(`${ex.message} -- attempting to re-parse the JPEG image.`);
return this.parse(data, { dnlScanLines: ex.scanLines });
} else if (ex instanceof EOIMarkerError) {
warn(`${ex.message} -- ignoring the rest of the image data.`);
break markerLoop;
}
throw ex;
}
break;
case 0xffdc: // DNL (Define Number of Lines)
// Ignore the marker, since it's being handled in `decodeScan`.
offset += 4;
break;
case 0xffff: // Fill bytes
if (data[offset] !== 0xff) {
// Avoid skipping a valid marker.
offset--;
}
break;
default:
// Could be incorrect encoding -- the last 0xFF byte of the previous
// block could have been eaten by the encoder, hence we fallback to
// `startPos = offset - 3` when looking for the next valid marker.
const nextFileMarker = findNextFileMarker(
data,
/* currentPos = */ offset - 2,
/* startPos = */ offset - 3
);
if (nextFileMarker && nextFileMarker.invalid) {
warn(
"JpegImage.parse - unexpected data, current marker is: " +
nextFileMarker.invalid
);
offset = nextFileMarker.offset;
break;
}
if (offset >= data.length - 1) {
warn(
"JpegImage.parse - reached the end of the image data " +
"without finding an EOI marker (0xFFD9)."
);
break markerLoop;
}
throw new JpegError(
"JpegImage.parse - unknown marker: " + fileMarker.toString(16)
);
}
fileMarker = readUint16(data, offset);
offset += 2;
}
this.width = frame.samplesPerLine;
this.height = frame.scanLines;
this.jfif = jfif;
this.adobe = adobe;
this.components = [];
for (i = 0; i < frame.components.length; i++) {
component = frame.components[i];
// Prevent errors when DQT markers are placed after SOF{n} markers,
// by assigning the `quantizationTable` entry after the entire image
// has been parsed (fixes issue7406.pdf).
var quantizationTable = quantizationTables[component.quantizationId];
if (quantizationTable) {
component.quantizationTable = quantizationTable;
}
this.components.push({
output: buildComponentData(frame, component),
scaleX: component.h / frame.maxH,
scaleY: component.v / frame.maxV,
blocksPerLine: component.blocksPerLine,
blocksPerColumn: component.blocksPerColumn,
});
}
this.numComponents = this.components.length;
return undefined;
},
_getLinearizedBlockData(width, height, isSourcePDF = false) {
var scaleX = this.width / width,
scaleY = this.height / height;
var component, componentScaleX, componentScaleY, blocksPerScanline;
var x, y, i, j, k;
var index;
var offset = 0;
var output;
var numComponents = this.components.length;
var dataLength = width * height * numComponents;
var data = new Uint8ClampedArray(dataLength);
var xScaleBlockOffset = new Uint32Array(width);
var mask3LSB = 0xfffffff8; // used to clear the 3 LSBs
let lastComponentScaleX;
for (i = 0; i < numComponents; i++) {
component = this.components[i];
componentScaleX = component.scaleX * scaleX;
componentScaleY = component.scaleY * scaleY;
offset = i;
output = component.output;
blocksPerScanline = (component.blocksPerLine + 1) << 3;
// Precalculate the `xScaleBlockOffset`. Since it doesn't depend on the
// component data, that's only necessary when `componentScaleX` changes.
if (componentScaleX !== lastComponentScaleX) {
for (x = 0; x < width; x++) {
j = 0 | (x * componentScaleX);
xScaleBlockOffset[x] = ((j & mask3LSB) << 3) | (j & 7);
}
lastComponentScaleX = componentScaleX;
}
// linearize the blocks of the component
for (y = 0; y < height; y++) {
j = 0 | (y * componentScaleY);
index = (blocksPerScanline * (j & mask3LSB)) | ((j & 7) << 3);
for (x = 0; x < width; x++) {
data[offset] = output[index + xScaleBlockOffset[x]];
offset += numComponents;
}
}
}
// decodeTransform contains pairs of multiplier (-256..256) and additive
let transform = this._decodeTransform;
// In PDF files, JPEG images with CMYK colour spaces are usually inverted
// (this can be observed by extracting the raw image data).
// Since the conversion algorithms (see below) were written primarily for
// the PDF use-cases, attempting to use `JpegImage` to parse standalone
// JPEG (CMYK) images may thus result in inverted images (see issue 9513).
//
// Unfortunately it's not (always) possible to tell, from the image data
// alone, if it needs to be inverted. Thus in an attempt to provide better
// out-of-box behaviour when `JpegImage` is used standalone, default to
// inverting JPEG (CMYK) images if and only if the image data does *not*
// come from a PDF file and no `decodeTransform` was passed by the user.
if (!isSourcePDF && numComponents === 4 && !transform) {
// prettier-ignore
transform = new Int32Array([
-256, 255, -256, 255, -256, 255, -256, 255]);
}
if (transform) {
for (i = 0; i < dataLength; ) {
for (j = 0, k = 0; j < numComponents; j++, i++, k += 2) {
data[i] = ((data[i] * transform[k]) >> 8) + transform[k + 1];
}
}
}
return data;
},
get _isColorConversionNeeded() {
if (this.adobe) {
// The adobe transform marker overrides any previous setting.
return !!this.adobe.transformCode;
}
if (this.numComponents === 3) {
if (this._colorTransform === 0) {
// If the Adobe transform marker is not present and the image
// dictionary has a 'ColorTransform' entry, explicitly set to `0`,
// then the colours should *not* be transformed.
return false;
}
return true;
}
// `this.numComponents !== 3`
if (this._colorTransform === 1) {
// If the Adobe transform marker is not present and the image
// dictionary has a 'ColorTransform' entry, explicitly set to `1`,
// then the colours should be transformed.
return true;
}
return false;
},
_convertYccToRgb: function convertYccToRgb(data) {
var Y, Cb, Cr;
for (var i = 0, length = data.length; i < length; i += 3) {
Y = data[i];
Cb = data[i + 1];
Cr = data[i + 2];
data[i] = Y - 179.456 + 1.402 * Cr;
data[i + 1] = Y + 135.459 - 0.344 * Cb - 0.714 * Cr;
data[i + 2] = Y - 226.816 + 1.772 * Cb;
}
return data;
},
_convertYcckToRgb: function convertYcckToRgb(data) {
var Y, Cb, Cr, k;
var offset = 0;
for (var i = 0, length = data.length; i < length; i += 4) {
Y = data[i];
Cb = data[i + 1];
Cr = data[i + 2];
k = data[i + 3];
data[offset++] =
-122.67195406894 +
Cb *
(-6.60635669420364e-5 * Cb +
0.000437130475926232 * Cr -
5.4080610064599e-5 * Y +
0.00048449797120281 * k -
0.154362151871126) +
Cr *
(-0.000957964378445773 * Cr +
0.000817076911346625 * Y -
0.00477271405408747 * k +
1.53380253221734) +
Y *
(0.000961250184130688 * Y -
0.00266257332283933 * k +
0.48357088451265) +
k * (-0.000336197177618394 * k + 0.484791561490776);
data[offset++] =
107.268039397724 +
Cb *
(2.19927104525741e-5 * Cb -
0.000640992018297945 * Cr +
0.000659397001245577 * Y +
0.000426105652938837 * k -
0.176491792462875) +
Cr *
(-0.000778269941513683 * Cr +
0.00130872261408275 * Y +
0.000770482631801132 * k -
0.151051492775562) +
Y *
(0.00126935368114843 * Y -
0.00265090189010898 * k +
0.25802910206845) +
k * (-0.000318913117588328 * k - 0.213742400323665);
data[offset++] =
-20.810012546947 +
Cb *
(-0.000570115196973677 * Cb -
2.63409051004589e-5 * Cr +
0.0020741088115012 * Y -
0.00288260236853442 * k +
0.814272968359295) +
Cr *
(-1.53496057440975e-5 * Cr -
0.000132689043961446 * Y +
0.000560833691242812 * k -
0.195152027534049) +
Y *
(0.00174418132927582 * Y -
0.00255243321439347 * k +
0.116935020465145) +
k * (-0.000343531996510555 * k + 0.24165260232407);
}
// Ensure that only the converted RGB data is returned.
return data.subarray(0, offset);
},
_convertYcckToCmyk: function convertYcckToCmyk(data) {
var Y, Cb, Cr;
for (var i = 0, length = data.length; i < length; i += 4) {
Y = data[i];
Cb = data[i + 1];
Cr = data[i + 2];
data[i] = 434.456 - Y - 1.402 * Cr;
data[i + 1] = 119.541 - Y + 0.344 * Cb + 0.714 * Cr;
data[i + 2] = 481.816 - Y - 1.772 * Cb;
// K in data[i + 3] is unchanged
}
return data;
},
_convertCmykToRgb: function convertCmykToRgb(data) {
var c, m, y, k;
var offset = 0;
var scale = 1 / 255;
for (var i = 0, length = data.length; i < length; i += 4) {
c = data[i] * scale;
m = data[i + 1] * scale;
y = data[i + 2] * scale;
k = data[i + 3] * scale;
data[offset++] =
255 +
c *
(-4.387332384609988 * c +
54.48615194189176 * m +
18.82290502165302 * y +
212.25662451639585 * k -
285.2331026137004) +
m *
(1.7149763477362134 * m -
5.6096736904047315 * y -
17.873870861415444 * k -
5.497006427196366) +
y *
(-2.5217340131683033 * y -
21.248923337353073 * k +
17.5119270841813) -
k * (21.86122147463605 * k + 189.48180835922747);
data[offset++] =
255 +
c *
(8.841041422036149 * c +
60.118027045597366 * m +
6.871425592049007 * y +
31.159100130055922 * k -
79.2970844816548) +
m *
(-15.310361306967817 * m +
17.575251261109482 * y +
131.35250912493976 * k -
190.9453302588951) +
y *
(4.444339102852739 * y + 9.8632861493405 * k - 24.86741582555878) -
k * (20.737325471181034 * k + 187.80453709719578);
data[offset++] =
255 +
c *
(0.8842522430003296 * c +
8.078677503112928 * m +
30.89978309703729 * y -
0.23883238689178934 * k -
14.183576799673286) +
m *
(10.49593273432072 * m +
63.02378494754052 * y +
50.606957656360734 * k -
112.23884253719248) +
y *
(0.03296041114873217 * y +
115.60384449646641 * k -
193.58209356861505) -
k * (22.33816807309886 * k + 180.12613974708367);
}
// Ensure that only the converted RGB data is returned.
return data.subarray(0, offset);
},
getData({ width, height, forceRGB = false, isSourcePDF = false }) {
if (
typeof PDFJSDev === "undefined" ||
PDFJSDev.test("!PRODUCTION || TESTING")
) {
assert(
isSourcePDF === true,
'JpegImage.getData: Unexpected "isSourcePDF" value for PDF files.'
);
}
if (this.numComponents > 4) {
throw new JpegError("Unsupported color mode");
}
// Type of data: Uint8ClampedArray(width * height * numComponents)
var data = this._getLinearizedBlockData(width, height, isSourcePDF);
if (this.numComponents === 1 && forceRGB) {
var dataLength = data.length;
var rgbData = new Uint8ClampedArray(dataLength * 3);
var offset = 0;
for (var i = 0; i < dataLength; i++) {
var grayColor = data[i];
rgbData[offset++] = grayColor;
rgbData[offset++] = grayColor;
rgbData[offset++] = grayColor;
}
return rgbData;
} else if (this.numComponents === 3 && this._isColorConversionNeeded) {
return this._convertYccToRgb(data);
} else if (this.numComponents === 4) {
if (this._isColorConversionNeeded) {
if (forceRGB) {
return this._convertYcckToRgb(data);
}
return this._convertYcckToCmyk(data);
} else if (forceRGB) {
return this._convertCmykToRgb(data);
}
}
return data;
},
};
return JpegImage;
})();
export { JpegImage };