pdf.js/test/stats/statcmp.js
Jonas Jenwald 37ebc28756 Use more for...of loops in the code-base
Note that these cases, which are all in older code, were found using the [`unicorn/no-for-loop`](https://github.com/sindresorhus/eslint-plugin-unicorn/blob/main/docs/rules/no-for-loop.md) ESLint plugin rule.
However, note that I've opted not to enable this rule by default since there's still *some* cases where I do think that it makes sense to allow "regular" for-loops.
2022-07-17 16:18:54 +02:00

199 lines
5.4 KiB
JavaScript

"use strict";
const fs = require("fs");
const ttest = require("ttest");
const VALID_GROUP_BYS = ["browser", "pdf", "page", "round", "stat"];
function parseOptions() {
const yargs = require("yargs")
.usage(
"Compare the results of two stats files.\n" +
"Usage:\n $0 <BASELINE> <CURRENT> [options]"
)
.demand(2)
.string(["groupBy"])
.describe(
"groupBy",
"How statistics should grouped. Valid options: " +
VALID_GROUP_BYS.join(" ")
)
.default("groupBy", "browser,stat");
const result = yargs.argv;
result.baseline = result._[0];
result.current = result._[1];
if (result.groupBy) {
result.groupBy = result.groupBy.split(/[;, ]+/);
}
return result;
}
function group(stats, groupBy) {
const vals = [];
for (const curStat of stats) {
const keyArr = [];
for (const entry of groupBy) {
keyArr.push(curStat[entry]);
}
const key = keyArr.join(",");
(vals[key] ||= []).push(curStat.time);
}
return vals;
}
/*
* Flatten the stats so that there's one row per stats entry.
* Also, if results are not grouped by 'stat', keep only 'Overall' results.
*/
function flatten(stats) {
let rows = [];
stats.forEach(function (curStat) {
curStat.stats.forEach(function (s) {
rows.push({
browser: curStat.browser,
page: curStat.page,
pdf: curStat.pdf,
round: curStat.round,
stat: s.name,
time: s.end - s.start,
});
});
});
// Use only overall results if not grouped by 'stat'
if (!options.groupBy.includes("stat")) {
rows = rows.filter(function (s) {
return s.stat === "Overall";
});
}
return rows;
}
function pad(s, length, dir /* default: 'right' */) {
s = "" + s;
const spaces = new Array(Math.max(0, length - s.length + 1)).join(" ");
return dir === "left" ? spaces + s : s + spaces;
}
function mean(array) {
function add(a, b) {
return a + b;
}
return array.reduce(add, 0) / array.length;
}
/* Comparator for row key sorting. */
function compareRow(a, b) {
a = a.split(",");
b = b.split(",");
for (let i = 0; i < Math.min(a.length, b.length); i++) {
const intA = parseInt(a[i], 10);
const intB = parseInt(b[i], 10);
const ai = isNaN(intA) ? a[i] : intA;
const bi = isNaN(intB) ? b[i] : intB;
if (ai < bi) {
return -1;
}
if (ai > bi) {
return 1;
}
}
return 0;
}
/*
* Dump various stats in a table to compare the baseline and current results.
* T-test Refresher:
* If I understand t-test correctly, p is the probability that we'll observe
* another test that is as extreme as the current result assuming the null
* hypothesis is true. P is NOT the probability of the null hypothesis. The null
* hypothesis in this case is that the baseline and current results will be the
* same. It is generally accepted that you can reject the null hypothesis if the
* p-value is less than 0.05. So if p < 0.05 we can reject the results are the
* same which doesn't necessarily mean the results are faster/slower but it can
* be implied.
*/
function stat(baseline, current) {
const baselineGroup = group(baseline, options.groupBy);
const currentGroup = group(current, options.groupBy);
const keys = Object.keys(baselineGroup);
keys.sort(compareRow);
const labels = options.groupBy.slice(0);
labels.push("Count", "Baseline(ms)", "Current(ms)", "+/-", "% ");
if (ttest) {
labels.push("Result(P<.05)");
}
const rows = [];
// collect rows and measure column widths
const width = labels.map(function (s) {
return s.length;
});
rows.push(labels);
for (const key of keys) {
const baselineMean = mean(baselineGroup[key]);
const currentMean = mean(currentGroup[key]);
const row = key.split(",");
row.push(
"" + baselineGroup[key].length,
"" + Math.round(baselineMean),
"" + Math.round(currentMean),
"" + Math.round(currentMean - baselineMean),
((100 * (currentMean - baselineMean)) / baselineMean).toFixed(2)
);
if (ttest) {
const p =
baselineGroup[key].length < 2
? 1
: ttest(baselineGroup[key], currentGroup[key]).pValue();
if (p < 0.05) {
row.push(currentMean < baselineMean ? "faster" : "slower");
} else {
row.push("");
}
}
for (let i = 0; i < row.length; i++) {
width[i] = Math.max(width[i], row[i].length);
}
rows.push(row);
}
// add horizontal line
const hline = width.map(function (w) {
return new Array(w + 1).join("-");
});
rows.splice(1, 0, hline);
// print output
console.log("-- Grouped By " + options.groupBy.join(", ") + " --");
const groupCount = options.groupBy.length;
for (const row of rows) {
for (let i = 0; i < row.length; i++) {
row[i] = pad(row[i], width[i], i < groupCount ? "right" : "left");
}
console.log(row.join(" | "));
}
}
function main() {
let baseline, current;
try {
const baselineFile = fs.readFileSync(options.baseline).toString();
baseline = flatten(JSON.parse(baselineFile));
} catch (e) {
console.log('Error reading file "' + options.baseline + '": ' + e);
process.exit(0);
}
try {
const currentFile = fs.readFileSync(options.current).toString();
current = flatten(JSON.parse(currentFile));
} catch (e) {
console.log('Error reading file "' + options.current + '": ' + e);
process.exit(0);
}
stat(baseline, current);
}
const options = parseOptions();
main();