pdf.js/src/core/jpx.js
2021-08-31 11:44:26 +08:00

2349 lines
75 KiB
JavaScript

/* Copyright 2012 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import { BaseException, info, unreachable, warn } from "../shared/util.js";
import { log2, readUint16, readUint32 } from "./core_utils.js";
import { ArithmeticDecoder } from "./arithmetic_decoder.js";
class JpxError extends BaseException {
constructor(msg) {
super(`JPX error: ${msg}`, "JpxError");
}
}
// Table E.1
const SubbandsGainLog2 = {
LL: 0,
LH: 1,
HL: 1,
HH: 2,
};
class JpxImage {
constructor() {
this.failOnCorruptedImage = false;
}
parse(data) {
const head = readUint16(data, 0);
// No box header, immediate start of codestream (SOC)
if (head === 0xff4f) {
this.parseCodestream(data, 0, data.length);
return;
}
const length = data.length;
let position = 0;
while (position < length) {
let headerSize = 8;
let lbox = readUint32(data, position);
const tbox = readUint32(data, position + 4);
position += headerSize;
if (lbox === 1) {
// XLBox: read UInt64 according to spec.
// JavaScript's int precision of 53 bit should be sufficient here.
lbox =
readUint32(data, position) * 4294967296 +
readUint32(data, position + 4);
position += 8;
headerSize += 8;
}
if (lbox === 0) {
lbox = length - position + headerSize;
}
if (lbox < headerSize) {
throw new JpxError("Invalid box field size");
}
const dataLength = lbox - headerSize;
let jumpDataLength = true;
switch (tbox) {
case 0x6a703268: // 'jp2h'
jumpDataLength = false; // parsing child boxes
break;
case 0x636f6c72: // 'colr'
// Colorspaces are not used, the CS from the PDF is used.
const method = data[position];
if (method === 1) {
// enumerated colorspace
const colorspace = readUint32(data, position + 3);
switch (colorspace) {
case 16: // this indicates a sRGB colorspace
case 17: // this indicates a grayscale colorspace
case 18: // this indicates a YUV colorspace
break;
default:
warn("Unknown colorspace " + colorspace);
break;
}
} else if (method === 2) {
info("ICC profile not supported");
}
break;
case 0x6a703263: // 'jp2c'
this.parseCodestream(data, position, position + dataLength);
break;
case 0x6a502020: // 'jP\024\024'
if (readUint32(data, position) !== 0x0d0a870a) {
warn("Invalid JP2 signature");
}
break;
// The following header types are valid but currently not used:
case 0x6a501a1a: // 'jP\032\032'
case 0x66747970: // 'ftyp'
case 0x72726571: // 'rreq'
case 0x72657320: // 'res '
case 0x69686472: // 'ihdr'
break;
default:
const headerType = String.fromCharCode(
(tbox >> 24) & 0xff,
(tbox >> 16) & 0xff,
(tbox >> 8) & 0xff,
tbox & 0xff
);
warn(`Unsupported header type ${tbox} (${headerType}).`);
break;
}
if (jumpDataLength) {
position += dataLength;
}
}
}
parseImageProperties(stream) {
let newByte = stream.getByte();
while (newByte >= 0) {
const oldByte = newByte;
newByte = stream.getByte();
const code = (oldByte << 8) | newByte;
// Image and tile size (SIZ)
if (code === 0xff51) {
stream.skip(4);
const Xsiz = stream.getInt32() >>> 0; // Byte 4
const Ysiz = stream.getInt32() >>> 0; // Byte 8
const XOsiz = stream.getInt32() >>> 0; // Byte 12
const YOsiz = stream.getInt32() >>> 0; // Byte 16
stream.skip(16);
const Csiz = stream.getUint16(); // Byte 36
this.width = Xsiz - XOsiz;
this.height = Ysiz - YOsiz;
this.componentsCount = Csiz;
// Results are always returned as `Uint8ClampedArray`s.
this.bitsPerComponent = 8;
return;
}
}
throw new JpxError("No size marker found in JPX stream");
}
parseCodestream(data, start, end) {
const context = {};
let doNotRecover = false;
try {
let position = start;
while (position + 1 < end) {
const code = readUint16(data, position);
position += 2;
let length = 0,
j,
sqcd,
spqcds,
spqcdSize,
scalarExpounded,
tile;
switch (code) {
case 0xff4f: // Start of codestream (SOC)
context.mainHeader = true;
break;
case 0xffd9: // End of codestream (EOC)
break;
case 0xff51: // Image and tile size (SIZ)
length = readUint16(data, position);
const siz = {};
siz.Xsiz = readUint32(data, position + 4);
siz.Ysiz = readUint32(data, position + 8);
siz.XOsiz = readUint32(data, position + 12);
siz.YOsiz = readUint32(data, position + 16);
siz.XTsiz = readUint32(data, position + 20);
siz.YTsiz = readUint32(data, position + 24);
siz.XTOsiz = readUint32(data, position + 28);
siz.YTOsiz = readUint32(data, position + 32);
const componentsCount = readUint16(data, position + 36);
siz.Csiz = componentsCount;
const components = [];
j = position + 38;
for (let i = 0; i < componentsCount; i++) {
const component = {
precision: (data[j] & 0x7f) + 1,
isSigned: !!(data[j] & 0x80),
XRsiz: data[j + 1],
YRsiz: data[j + 2],
};
j += 3;
calculateComponentDimensions(component, siz);
components.push(component);
}
context.SIZ = siz;
context.components = components;
calculateTileGrids(context, components);
context.QCC = [];
context.COC = [];
break;
case 0xff5c: // Quantization default (QCD)
length = readUint16(data, position);
const qcd = {};
j = position + 2;
sqcd = data[j++];
switch (sqcd & 0x1f) {
case 0:
spqcdSize = 8;
scalarExpounded = true;
break;
case 1:
spqcdSize = 16;
scalarExpounded = false;
break;
case 2:
spqcdSize = 16;
scalarExpounded = true;
break;
default:
throw new Error("Invalid SQcd value " + sqcd);
}
qcd.noQuantization = spqcdSize === 8;
qcd.scalarExpounded = scalarExpounded;
qcd.guardBits = sqcd >> 5;
spqcds = [];
while (j < length + position) {
const spqcd = {};
if (spqcdSize === 8) {
spqcd.epsilon = data[j++] >> 3;
spqcd.mu = 0;
} else {
spqcd.epsilon = data[j] >> 3;
spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1];
j += 2;
}
spqcds.push(spqcd);
}
qcd.SPqcds = spqcds;
if (context.mainHeader) {
context.QCD = qcd;
} else {
context.currentTile.QCD = qcd;
context.currentTile.QCC = [];
}
break;
case 0xff5d: // Quantization component (QCC)
length = readUint16(data, position);
const qcc = {};
j = position + 2;
let cqcc;
if (context.SIZ.Csiz < 257) {
cqcc = data[j++];
} else {
cqcc = readUint16(data, j);
j += 2;
}
sqcd = data[j++];
switch (sqcd & 0x1f) {
case 0:
spqcdSize = 8;
scalarExpounded = true;
break;
case 1:
spqcdSize = 16;
scalarExpounded = false;
break;
case 2:
spqcdSize = 16;
scalarExpounded = true;
break;
default:
throw new Error("Invalid SQcd value " + sqcd);
}
qcc.noQuantization = spqcdSize === 8;
qcc.scalarExpounded = scalarExpounded;
qcc.guardBits = sqcd >> 5;
spqcds = [];
while (j < length + position) {
const spqcd = {};
if (spqcdSize === 8) {
spqcd.epsilon = data[j++] >> 3;
spqcd.mu = 0;
} else {
spqcd.epsilon = data[j] >> 3;
spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1];
j += 2;
}
spqcds.push(spqcd);
}
qcc.SPqcds = spqcds;
if (context.mainHeader) {
context.QCC[cqcc] = qcc;
} else {
context.currentTile.QCC[cqcc] = qcc;
}
break;
case 0xff52: // Coding style default (COD)
length = readUint16(data, position);
const cod = {};
j = position + 2;
const scod = data[j++];
cod.entropyCoderWithCustomPrecincts = !!(scod & 1);
cod.sopMarkerUsed = !!(scod & 2);
cod.ephMarkerUsed = !!(scod & 4);
cod.progressionOrder = data[j++];
cod.layersCount = readUint16(data, j);
j += 2;
cod.multipleComponentTransform = data[j++];
cod.decompositionLevelsCount = data[j++];
cod.xcb = (data[j++] & 0xf) + 2;
cod.ycb = (data[j++] & 0xf) + 2;
const blockStyle = data[j++];
cod.selectiveArithmeticCodingBypass = !!(blockStyle & 1);
cod.resetContextProbabilities = !!(blockStyle & 2);
cod.terminationOnEachCodingPass = !!(blockStyle & 4);
cod.verticallyStripe = !!(blockStyle & 8);
cod.predictableTermination = !!(blockStyle & 16);
cod.segmentationSymbolUsed = !!(blockStyle & 32);
cod.reversibleTransformation = data[j++];
if (cod.entropyCoderWithCustomPrecincts) {
const precinctsSizes = [];
while (j < length + position) {
const precinctsSize = data[j++];
precinctsSizes.push({
PPx: precinctsSize & 0xf,
PPy: precinctsSize >> 4,
});
}
cod.precinctsSizes = precinctsSizes;
}
const unsupported = [];
if (cod.selectiveArithmeticCodingBypass) {
unsupported.push("selectiveArithmeticCodingBypass");
}
if (cod.resetContextProbabilities) {
unsupported.push("resetContextProbabilities");
}
if (cod.terminationOnEachCodingPass) {
unsupported.push("terminationOnEachCodingPass");
}
if (cod.verticallyStripe) {
unsupported.push("verticallyStripe");
}
if (cod.predictableTermination) {
unsupported.push("predictableTermination");
}
if (unsupported.length > 0) {
doNotRecover = true;
warn(`JPX: Unsupported COD options (${unsupported.join(", ")}).`);
}
if (context.mainHeader) {
context.COD = cod;
} else {
context.currentTile.COD = cod;
context.currentTile.COC = [];
}
break;
case 0xff90: // Start of tile-part (SOT)
length = readUint16(data, position);
tile = {};
tile.index = readUint16(data, position + 2);
tile.length = readUint32(data, position + 4);
tile.dataEnd = tile.length + position - 2;
tile.partIndex = data[position + 8];
tile.partsCount = data[position + 9];
context.mainHeader = false;
if (tile.partIndex === 0) {
// reset component specific settings
tile.COD = context.COD;
tile.COC = context.COC.slice(0); // clone of the global COC
tile.QCD = context.QCD;
tile.QCC = context.QCC.slice(0); // clone of the global COC
}
context.currentTile = tile;
break;
case 0xff93: // Start of data (SOD)
tile = context.currentTile;
if (tile.partIndex === 0) {
initializeTile(context, tile.index);
buildPackets(context);
}
// moving to the end of the data
length = tile.dataEnd - position;
parseTilePackets(context, data, position, length);
break;
case 0xff53: // Coding style component (COC)
warn("JPX: Codestream code 0xFF53 (COC) is not implemented.");
/* falls through */
case 0xff55: // Tile-part lengths, main header (TLM)
case 0xff57: // Packet length, main header (PLM)
case 0xff58: // Packet length, tile-part header (PLT)
case 0xff64: // Comment (COM)
length = readUint16(data, position);
// skipping content
break;
default:
throw new Error("Unknown codestream code: " + code.toString(16));
}
position += length;
}
} catch (e) {
if (doNotRecover || this.failOnCorruptedImage) {
throw new JpxError(e.message);
} else {
warn(`JPX: Trying to recover from: "${e.message}".`);
}
}
this.tiles = transformComponents(context);
this.width = context.SIZ.Xsiz - context.SIZ.XOsiz;
this.height = context.SIZ.Ysiz - context.SIZ.YOsiz;
this.componentsCount = context.SIZ.Csiz;
}
}
function calculateComponentDimensions(component, siz) {
// Section B.2 Component mapping
component.x0 = Math.ceil(siz.XOsiz / component.XRsiz);
component.x1 = Math.ceil(siz.Xsiz / component.XRsiz);
component.y0 = Math.ceil(siz.YOsiz / component.YRsiz);
component.y1 = Math.ceil(siz.Ysiz / component.YRsiz);
component.width = component.x1 - component.x0;
component.height = component.y1 - component.y0;
}
function calculateTileGrids(context, components) {
const siz = context.SIZ;
// Section B.3 Division into tile and tile-components
const tiles = [];
let tile;
const numXtiles = Math.ceil((siz.Xsiz - siz.XTOsiz) / siz.XTsiz);
const numYtiles = Math.ceil((siz.Ysiz - siz.YTOsiz) / siz.YTsiz);
for (let q = 0; q < numYtiles; q++) {
for (let p = 0; p < numXtiles; p++) {
tile = {};
tile.tx0 = Math.max(siz.XTOsiz + p * siz.XTsiz, siz.XOsiz);
tile.ty0 = Math.max(siz.YTOsiz + q * siz.YTsiz, siz.YOsiz);
tile.tx1 = Math.min(siz.XTOsiz + (p + 1) * siz.XTsiz, siz.Xsiz);
tile.ty1 = Math.min(siz.YTOsiz + (q + 1) * siz.YTsiz, siz.Ysiz);
tile.width = tile.tx1 - tile.tx0;
tile.height = tile.ty1 - tile.ty0;
tile.components = [];
tiles.push(tile);
}
}
context.tiles = tiles;
const componentsCount = siz.Csiz;
for (let i = 0, ii = componentsCount; i < ii; i++) {
const component = components[i];
for (let j = 0, jj = tiles.length; j < jj; j++) {
const tileComponent = {};
tile = tiles[j];
tileComponent.tcx0 = Math.ceil(tile.tx0 / component.XRsiz);
tileComponent.tcy0 = Math.ceil(tile.ty0 / component.YRsiz);
tileComponent.tcx1 = Math.ceil(tile.tx1 / component.XRsiz);
tileComponent.tcy1 = Math.ceil(tile.ty1 / component.YRsiz);
tileComponent.width = tileComponent.tcx1 - tileComponent.tcx0;
tileComponent.height = tileComponent.tcy1 - tileComponent.tcy0;
tile.components[i] = tileComponent;
}
}
}
function getBlocksDimensions(context, component, r) {
const codOrCoc = component.codingStyleParameters;
const result = {};
if (!codOrCoc.entropyCoderWithCustomPrecincts) {
result.PPx = 15;
result.PPy = 15;
} else {
result.PPx = codOrCoc.precinctsSizes[r].PPx;
result.PPy = codOrCoc.precinctsSizes[r].PPy;
}
// calculate codeblock size as described in section B.7
result.xcb_ =
r > 0
? Math.min(codOrCoc.xcb, result.PPx - 1)
: Math.min(codOrCoc.xcb, result.PPx);
result.ycb_ =
r > 0
? Math.min(codOrCoc.ycb, result.PPy - 1)
: Math.min(codOrCoc.ycb, result.PPy);
return result;
}
function buildPrecincts(context, resolution, dimensions) {
// Section B.6 Division resolution to precincts
const precinctWidth = 1 << dimensions.PPx;
const precinctHeight = 1 << dimensions.PPy;
// Jasper introduces codeblock groups for mapping each subband codeblocks
// to precincts. Precinct partition divides a resolution according to width
// and height parameters. The subband that belongs to the resolution level
// has a different size than the level, unless it is the zero resolution.
// From Jasper documentation: jpeg2000.pdf, section K: Tier-2 coding:
// The precinct partitioning for a particular subband is derived from a
// partitioning of its parent LL band (i.e., the LL band at the next higher
// resolution level)... The LL band associated with each resolution level is
// divided into precincts... Each of the resulting precinct regions is then
// mapped into its child subbands (if any) at the next lower resolution
// level. This is accomplished by using the coordinate transformation
// (u, v) = (ceil(x/2), ceil(y/2)) where (x, y) and (u, v) are the
// coordinates of a point in the LL band and child subband, respectively.
const isZeroRes = resolution.resLevel === 0;
const precinctWidthInSubband = 1 << (dimensions.PPx + (isZeroRes ? 0 : -1));
const precinctHeightInSubband = 1 << (dimensions.PPy + (isZeroRes ? 0 : -1));
const numprecinctswide =
resolution.trx1 > resolution.trx0
? Math.ceil(resolution.trx1 / precinctWidth) -
Math.floor(resolution.trx0 / precinctWidth)
: 0;
const numprecinctshigh =
resolution.try1 > resolution.try0
? Math.ceil(resolution.try1 / precinctHeight) -
Math.floor(resolution.try0 / precinctHeight)
: 0;
const numprecincts = numprecinctswide * numprecinctshigh;
resolution.precinctParameters = {
precinctWidth,
precinctHeight,
numprecinctswide,
numprecinctshigh,
numprecincts,
precinctWidthInSubband,
precinctHeightInSubband,
};
}
function buildCodeblocks(context, subband, dimensions) {
// Section B.7 Division sub-band into code-blocks
const xcb_ = dimensions.xcb_;
const ycb_ = dimensions.ycb_;
const codeblockWidth = 1 << xcb_;
const codeblockHeight = 1 << ycb_;
const cbx0 = subband.tbx0 >> xcb_;
const cby0 = subband.tby0 >> ycb_;
const cbx1 = (subband.tbx1 + codeblockWidth - 1) >> xcb_;
const cby1 = (subband.tby1 + codeblockHeight - 1) >> ycb_;
const precinctParameters = subband.resolution.precinctParameters;
const codeblocks = [];
const precincts = [];
let i, j, codeblock, precinctNumber;
for (j = cby0; j < cby1; j++) {
for (i = cbx0; i < cbx1; i++) {
codeblock = {
cbx: i,
cby: j,
tbx0: codeblockWidth * i,
tby0: codeblockHeight * j,
tbx1: codeblockWidth * (i + 1),
tby1: codeblockHeight * (j + 1),
};
codeblock.tbx0_ = Math.max(subband.tbx0, codeblock.tbx0);
codeblock.tby0_ = Math.max(subband.tby0, codeblock.tby0);
codeblock.tbx1_ = Math.min(subband.tbx1, codeblock.tbx1);
codeblock.tby1_ = Math.min(subband.tby1, codeblock.tby1);
// Calculate precinct number for this codeblock, codeblock position
// should be relative to its subband, use actual dimension and position
// See comment about codeblock group width and height
const pi = Math.floor(
(codeblock.tbx0_ - subband.tbx0) /
precinctParameters.precinctWidthInSubband
);
const pj = Math.floor(
(codeblock.tby0_ - subband.tby0) /
precinctParameters.precinctHeightInSubband
);
precinctNumber = pi + pj * precinctParameters.numprecinctswide;
codeblock.precinctNumber = precinctNumber;
codeblock.subbandType = subband.type;
codeblock.Lblock = 3;
if (
codeblock.tbx1_ <= codeblock.tbx0_ ||
codeblock.tby1_ <= codeblock.tby0_
) {
continue;
}
codeblocks.push(codeblock);
// building precinct for the sub-band
let precinct = precincts[precinctNumber];
if (precinct !== undefined) {
if (i < precinct.cbxMin) {
precinct.cbxMin = i;
} else if (i > precinct.cbxMax) {
precinct.cbxMax = i;
}
if (j < precinct.cbyMin) {
precinct.cbxMin = j;
} else if (j > precinct.cbyMax) {
precinct.cbyMax = j;
}
} else {
precincts[precinctNumber] = precinct = {
cbxMin: i,
cbyMin: j,
cbxMax: i,
cbyMax: j,
};
}
codeblock.precinct = precinct;
}
}
subband.codeblockParameters = {
codeblockWidth: xcb_,
codeblockHeight: ycb_,
numcodeblockwide: cbx1 - cbx0 + 1,
numcodeblockhigh: cby1 - cby0 + 1,
};
subband.codeblocks = codeblocks;
subband.precincts = precincts;
}
function createPacket(resolution, precinctNumber, layerNumber) {
const precinctCodeblocks = [];
// Section B.10.8 Order of info in packet
const subbands = resolution.subbands;
// sub-bands already ordered in 'LL', 'HL', 'LH', and 'HH' sequence
for (let i = 0, ii = subbands.length; i < ii; i++) {
const subband = subbands[i];
const codeblocks = subband.codeblocks;
for (let j = 0, jj = codeblocks.length; j < jj; j++) {
const codeblock = codeblocks[j];
if (codeblock.precinctNumber !== precinctNumber) {
continue;
}
precinctCodeblocks.push(codeblock);
}
}
return {
layerNumber,
codeblocks: precinctCodeblocks,
};
}
function LayerResolutionComponentPositionIterator(context) {
const siz = context.SIZ;
const tileIndex = context.currentTile.index;
const tile = context.tiles[tileIndex];
const layersCount = tile.codingStyleDefaultParameters.layersCount;
const componentsCount = siz.Csiz;
let maxDecompositionLevelsCount = 0;
for (let q = 0; q < componentsCount; q++) {
maxDecompositionLevelsCount = Math.max(
maxDecompositionLevelsCount,
tile.components[q].codingStyleParameters.decompositionLevelsCount
);
}
let l = 0,
r = 0,
i = 0,
k = 0;
this.nextPacket = function JpxImage_nextPacket() {
// Section B.12.1.1 Layer-resolution-component-position
for (; l < layersCount; l++) {
for (; r <= maxDecompositionLevelsCount; r++) {
for (; i < componentsCount; i++) {
const component = tile.components[i];
if (r > component.codingStyleParameters.decompositionLevelsCount) {
continue;
}
const resolution = component.resolutions[r];
const numprecincts = resolution.precinctParameters.numprecincts;
for (; k < numprecincts; ) {
const packet = createPacket(resolution, k, l);
k++;
return packet;
}
k = 0;
}
i = 0;
}
r = 0;
}
throw new JpxError("Out of packets");
};
}
function ResolutionLayerComponentPositionIterator(context) {
const siz = context.SIZ;
const tileIndex = context.currentTile.index;
const tile = context.tiles[tileIndex];
const layersCount = tile.codingStyleDefaultParameters.layersCount;
const componentsCount = siz.Csiz;
let maxDecompositionLevelsCount = 0;
for (let q = 0; q < componentsCount; q++) {
maxDecompositionLevelsCount = Math.max(
maxDecompositionLevelsCount,
tile.components[q].codingStyleParameters.decompositionLevelsCount
);
}
let r = 0,
l = 0,
i = 0,
k = 0;
this.nextPacket = function JpxImage_nextPacket() {
// Section B.12.1.2 Resolution-layer-component-position
for (; r <= maxDecompositionLevelsCount; r++) {
for (; l < layersCount; l++) {
for (; i < componentsCount; i++) {
const component = tile.components[i];
if (r > component.codingStyleParameters.decompositionLevelsCount) {
continue;
}
const resolution = component.resolutions[r];
const numprecincts = resolution.precinctParameters.numprecincts;
for (; k < numprecincts; ) {
const packet = createPacket(resolution, k, l);
k++;
return packet;
}
k = 0;
}
i = 0;
}
l = 0;
}
throw new JpxError("Out of packets");
};
}
function ResolutionPositionComponentLayerIterator(context) {
const siz = context.SIZ;
const tileIndex = context.currentTile.index;
const tile = context.tiles[tileIndex];
const layersCount = tile.codingStyleDefaultParameters.layersCount;
const componentsCount = siz.Csiz;
let l, r, c, p;
let maxDecompositionLevelsCount = 0;
for (c = 0; c < componentsCount; c++) {
const component = tile.components[c];
maxDecompositionLevelsCount = Math.max(
maxDecompositionLevelsCount,
component.codingStyleParameters.decompositionLevelsCount
);
}
const maxNumPrecinctsInLevel = new Int32Array(
maxDecompositionLevelsCount + 1
);
for (r = 0; r <= maxDecompositionLevelsCount; ++r) {
let maxNumPrecincts = 0;
for (c = 0; c < componentsCount; ++c) {
const resolutions = tile.components[c].resolutions;
if (r < resolutions.length) {
maxNumPrecincts = Math.max(
maxNumPrecincts,
resolutions[r].precinctParameters.numprecincts
);
}
}
maxNumPrecinctsInLevel[r] = maxNumPrecincts;
}
l = 0;
r = 0;
c = 0;
p = 0;
this.nextPacket = function JpxImage_nextPacket() {
// Section B.12.1.3 Resolution-position-component-layer
for (; r <= maxDecompositionLevelsCount; r++) {
for (; p < maxNumPrecinctsInLevel[r]; p++) {
for (; c < componentsCount; c++) {
const component = tile.components[c];
if (r > component.codingStyleParameters.decompositionLevelsCount) {
continue;
}
const resolution = component.resolutions[r];
const numprecincts = resolution.precinctParameters.numprecincts;
if (p >= numprecincts) {
continue;
}
for (; l < layersCount; ) {
const packet = createPacket(resolution, p, l);
l++;
return packet;
}
l = 0;
}
c = 0;
}
p = 0;
}
throw new JpxError("Out of packets");
};
}
function PositionComponentResolutionLayerIterator(context) {
const siz = context.SIZ;
const tileIndex = context.currentTile.index;
const tile = context.tiles[tileIndex];
const layersCount = tile.codingStyleDefaultParameters.layersCount;
const componentsCount = siz.Csiz;
const precinctsSizes = getPrecinctSizesInImageScale(tile);
const precinctsIterationSizes = precinctsSizes;
let l = 0,
r = 0,
c = 0,
px = 0,
py = 0;
this.nextPacket = function JpxImage_nextPacket() {
// Section B.12.1.4 Position-component-resolution-layer
for (; py < precinctsIterationSizes.maxNumHigh; py++) {
for (; px < precinctsIterationSizes.maxNumWide; px++) {
for (; c < componentsCount; c++) {
const component = tile.components[c];
const decompositionLevelsCount =
component.codingStyleParameters.decompositionLevelsCount;
for (; r <= decompositionLevelsCount; r++) {
const resolution = component.resolutions[r];
const sizeInImageScale =
precinctsSizes.components[c].resolutions[r];
const k = getPrecinctIndexIfExist(
px,
py,
sizeInImageScale,
precinctsIterationSizes,
resolution
);
if (k === null) {
continue;
}
for (; l < layersCount; ) {
const packet = createPacket(resolution, k, l);
l++;
return packet;
}
l = 0;
}
r = 0;
}
c = 0;
}
px = 0;
}
throw new JpxError("Out of packets");
};
}
function ComponentPositionResolutionLayerIterator(context) {
const siz = context.SIZ;
const tileIndex = context.currentTile.index;
const tile = context.tiles[tileIndex];
const layersCount = tile.codingStyleDefaultParameters.layersCount;
const componentsCount = siz.Csiz;
const precinctsSizes = getPrecinctSizesInImageScale(tile);
let l = 0,
r = 0,
c = 0,
px = 0,
py = 0;
this.nextPacket = function JpxImage_nextPacket() {
// Section B.12.1.5 Component-position-resolution-layer
for (; c < componentsCount; ++c) {
const component = tile.components[c];
const precinctsIterationSizes = precinctsSizes.components[c];
const decompositionLevelsCount =
component.codingStyleParameters.decompositionLevelsCount;
for (; py < precinctsIterationSizes.maxNumHigh; py++) {
for (; px < precinctsIterationSizes.maxNumWide; px++) {
for (; r <= decompositionLevelsCount; r++) {
const resolution = component.resolutions[r];
const sizeInImageScale = precinctsIterationSizes.resolutions[r];
const k = getPrecinctIndexIfExist(
px,
py,
sizeInImageScale,
precinctsIterationSizes,
resolution
);
if (k === null) {
continue;
}
for (; l < layersCount; ) {
const packet = createPacket(resolution, k, l);
l++;
return packet;
}
l = 0;
}
r = 0;
}
px = 0;
}
py = 0;
}
throw new JpxError("Out of packets");
};
}
function getPrecinctIndexIfExist(
pxIndex,
pyIndex,
sizeInImageScale,
precinctIterationSizes,
resolution
) {
const posX = pxIndex * precinctIterationSizes.minWidth;
const posY = pyIndex * precinctIterationSizes.minHeight;
if (
posX % sizeInImageScale.width !== 0 ||
posY % sizeInImageScale.height !== 0
) {
return null;
}
const startPrecinctRowIndex =
(posY / sizeInImageScale.width) *
resolution.precinctParameters.numprecinctswide;
return posX / sizeInImageScale.height + startPrecinctRowIndex;
}
function getPrecinctSizesInImageScale(tile) {
const componentsCount = tile.components.length;
let minWidth = Number.MAX_VALUE;
let minHeight = Number.MAX_VALUE;
let maxNumWide = 0;
let maxNumHigh = 0;
const sizePerComponent = new Array(componentsCount);
for (let c = 0; c < componentsCount; c++) {
const component = tile.components[c];
const decompositionLevelsCount =
component.codingStyleParameters.decompositionLevelsCount;
const sizePerResolution = new Array(decompositionLevelsCount + 1);
let minWidthCurrentComponent = Number.MAX_VALUE;
let minHeightCurrentComponent = Number.MAX_VALUE;
let maxNumWideCurrentComponent = 0;
let maxNumHighCurrentComponent = 0;
let scale = 1;
for (let r = decompositionLevelsCount; r >= 0; --r) {
const resolution = component.resolutions[r];
const widthCurrentResolution =
scale * resolution.precinctParameters.precinctWidth;
const heightCurrentResolution =
scale * resolution.precinctParameters.precinctHeight;
minWidthCurrentComponent = Math.min(
minWidthCurrentComponent,
widthCurrentResolution
);
minHeightCurrentComponent = Math.min(
minHeightCurrentComponent,
heightCurrentResolution
);
maxNumWideCurrentComponent = Math.max(
maxNumWideCurrentComponent,
resolution.precinctParameters.numprecinctswide
);
maxNumHighCurrentComponent = Math.max(
maxNumHighCurrentComponent,
resolution.precinctParameters.numprecinctshigh
);
sizePerResolution[r] = {
width: widthCurrentResolution,
height: heightCurrentResolution,
};
scale <<= 1;
}
minWidth = Math.min(minWidth, minWidthCurrentComponent);
minHeight = Math.min(minHeight, minHeightCurrentComponent);
maxNumWide = Math.max(maxNumWide, maxNumWideCurrentComponent);
maxNumHigh = Math.max(maxNumHigh, maxNumHighCurrentComponent);
sizePerComponent[c] = {
resolutions: sizePerResolution,
minWidth: minWidthCurrentComponent,
minHeight: minHeightCurrentComponent,
maxNumWide: maxNumWideCurrentComponent,
maxNumHigh: maxNumHighCurrentComponent,
};
}
return {
components: sizePerComponent,
minWidth,
minHeight,
maxNumWide,
maxNumHigh,
};
}
function buildPackets(context) {
const siz = context.SIZ;
const tileIndex = context.currentTile.index;
const tile = context.tiles[tileIndex];
const componentsCount = siz.Csiz;
// Creating resolutions and sub-bands for each component
for (let c = 0; c < componentsCount; c++) {
const component = tile.components[c];
const decompositionLevelsCount =
component.codingStyleParameters.decompositionLevelsCount;
// Section B.5 Resolution levels and sub-bands
const resolutions = [];
const subbands = [];
for (let r = 0; r <= decompositionLevelsCount; r++) {
const blocksDimensions = getBlocksDimensions(context, component, r);
const resolution = {};
const scale = 1 << (decompositionLevelsCount - r);
resolution.trx0 = Math.ceil(component.tcx0 / scale);
resolution.try0 = Math.ceil(component.tcy0 / scale);
resolution.trx1 = Math.ceil(component.tcx1 / scale);
resolution.try1 = Math.ceil(component.tcy1 / scale);
resolution.resLevel = r;
buildPrecincts(context, resolution, blocksDimensions);
resolutions.push(resolution);
let subband;
if (r === 0) {
// one sub-band (LL) with last decomposition
subband = {};
subband.type = "LL";
subband.tbx0 = Math.ceil(component.tcx0 / scale);
subband.tby0 = Math.ceil(component.tcy0 / scale);
subband.tbx1 = Math.ceil(component.tcx1 / scale);
subband.tby1 = Math.ceil(component.tcy1 / scale);
subband.resolution = resolution;
buildCodeblocks(context, subband, blocksDimensions);
subbands.push(subband);
resolution.subbands = [subband];
} else {
const bscale = 1 << (decompositionLevelsCount - r + 1);
const resolutionSubbands = [];
// three sub-bands (HL, LH and HH) with rest of decompositions
subband = {};
subband.type = "HL";
subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5);
subband.tby0 = Math.ceil(component.tcy0 / bscale);
subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5);
subband.tby1 = Math.ceil(component.tcy1 / bscale);
subband.resolution = resolution;
buildCodeblocks(context, subband, blocksDimensions);
subbands.push(subband);
resolutionSubbands.push(subband);
subband = {};
subband.type = "LH";
subband.tbx0 = Math.ceil(component.tcx0 / bscale);
subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5);
subband.tbx1 = Math.ceil(component.tcx1 / bscale);
subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5);
subband.resolution = resolution;
buildCodeblocks(context, subband, blocksDimensions);
subbands.push(subband);
resolutionSubbands.push(subband);
subband = {};
subband.type = "HH";
subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5);
subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5);
subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5);
subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5);
subband.resolution = resolution;
buildCodeblocks(context, subband, blocksDimensions);
subbands.push(subband);
resolutionSubbands.push(subband);
resolution.subbands = resolutionSubbands;
}
}
component.resolutions = resolutions;
component.subbands = subbands;
}
// Generate the packets sequence
const progressionOrder = tile.codingStyleDefaultParameters.progressionOrder;
switch (progressionOrder) {
case 0:
tile.packetsIterator = new LayerResolutionComponentPositionIterator(
context
);
break;
case 1:
tile.packetsIterator = new ResolutionLayerComponentPositionIterator(
context
);
break;
case 2:
tile.packetsIterator = new ResolutionPositionComponentLayerIterator(
context
);
break;
case 3:
tile.packetsIterator = new PositionComponentResolutionLayerIterator(
context
);
break;
case 4:
tile.packetsIterator = new ComponentPositionResolutionLayerIterator(
context
);
break;
default:
throw new JpxError(`Unsupported progression order ${progressionOrder}`);
}
}
function parseTilePackets(context, data, offset, dataLength) {
let position = 0;
let buffer,
bufferSize = 0,
skipNextBit = false;
function readBits(count) {
while (bufferSize < count) {
const b = data[offset + position];
position++;
if (skipNextBit) {
buffer = (buffer << 7) | b;
bufferSize += 7;
skipNextBit = false;
} else {
buffer = (buffer << 8) | b;
bufferSize += 8;
}
if (b === 0xff) {
skipNextBit = true;
}
}
bufferSize -= count;
return (buffer >>> bufferSize) & ((1 << count) - 1);
}
function skipMarkerIfEqual(value) {
if (
data[offset + position - 1] === 0xff &&
data[offset + position] === value
) {
skipBytes(1);
return true;
} else if (
data[offset + position] === 0xff &&
data[offset + position + 1] === value
) {
skipBytes(2);
return true;
}
return false;
}
function skipBytes(count) {
position += count;
}
function alignToByte() {
bufferSize = 0;
if (skipNextBit) {
position++;
skipNextBit = false;
}
}
function readCodingpasses() {
if (readBits(1) === 0) {
return 1;
}
if (readBits(1) === 0) {
return 2;
}
let value = readBits(2);
if (value < 3) {
return value + 3;
}
value = readBits(5);
if (value < 31) {
return value + 6;
}
value = readBits(7);
return value + 37;
}
const tileIndex = context.currentTile.index;
const tile = context.tiles[tileIndex];
const sopMarkerUsed = context.COD.sopMarkerUsed;
const ephMarkerUsed = context.COD.ephMarkerUsed;
const packetsIterator = tile.packetsIterator;
while (position < dataLength) {
alignToByte();
if (sopMarkerUsed && skipMarkerIfEqual(0x91)) {
// Skip also marker segment length and packet sequence ID
skipBytes(4);
}
const packet = packetsIterator.nextPacket();
if (!readBits(1)) {
continue;
}
const layerNumber = packet.layerNumber,
queue = [];
let codeblock;
for (let i = 0, ii = packet.codeblocks.length; i < ii; i++) {
codeblock = packet.codeblocks[i];
let precinct = codeblock.precinct;
const codeblockColumn = codeblock.cbx - precinct.cbxMin;
const codeblockRow = codeblock.cby - precinct.cbyMin;
let codeblockIncluded = false;
let firstTimeInclusion = false;
let valueReady, zeroBitPlanesTree;
if (codeblock.included !== undefined) {
codeblockIncluded = !!readBits(1);
} else {
// reading inclusion tree
precinct = codeblock.precinct;
let inclusionTree;
if (precinct.inclusionTree !== undefined) {
inclusionTree = precinct.inclusionTree;
} else {
// building inclusion and zero bit-planes trees
const width = precinct.cbxMax - precinct.cbxMin + 1;
const height = precinct.cbyMax - precinct.cbyMin + 1;
inclusionTree = new InclusionTree(width, height, layerNumber);
zeroBitPlanesTree = new TagTree(width, height);
precinct.inclusionTree = inclusionTree;
precinct.zeroBitPlanesTree = zeroBitPlanesTree;
for (let l = 0; l < layerNumber; l++) {
if (readBits(1) !== 0) {
throw new JpxError("Invalid tag tree");
}
}
}
if (inclusionTree.reset(codeblockColumn, codeblockRow, layerNumber)) {
while (true) {
if (readBits(1)) {
valueReady = !inclusionTree.nextLevel();
if (valueReady) {
codeblock.included = true;
codeblockIncluded = firstTimeInclusion = true;
break;
}
} else {
inclusionTree.incrementValue(layerNumber);
break;
}
}
}
}
if (!codeblockIncluded) {
continue;
}
if (firstTimeInclusion) {
zeroBitPlanesTree = precinct.zeroBitPlanesTree;
zeroBitPlanesTree.reset(codeblockColumn, codeblockRow);
while (true) {
if (readBits(1)) {
valueReady = !zeroBitPlanesTree.nextLevel();
if (valueReady) {
break;
}
} else {
zeroBitPlanesTree.incrementValue();
}
}
codeblock.zeroBitPlanes = zeroBitPlanesTree.value;
}
const codingpasses = readCodingpasses();
while (readBits(1)) {
codeblock.Lblock++;
}
const codingpassesLog2 = log2(codingpasses);
// rounding down log2
const bits =
(codingpasses < 1 << codingpassesLog2
? codingpassesLog2 - 1
: codingpassesLog2) + codeblock.Lblock;
const codedDataLength = readBits(bits);
queue.push({
codeblock,
codingpasses,
dataLength: codedDataLength,
});
}
alignToByte();
if (ephMarkerUsed) {
skipMarkerIfEqual(0x92);
}
while (queue.length > 0) {
const packetItem = queue.shift();
codeblock = packetItem.codeblock;
if (codeblock.data === undefined) {
codeblock.data = [];
}
codeblock.data.push({
data,
start: offset + position,
end: offset + position + packetItem.dataLength,
codingpasses: packetItem.codingpasses,
});
position += packetItem.dataLength;
}
}
return position;
}
function copyCoefficients(
coefficients,
levelWidth,
levelHeight,
subband,
delta,
mb,
reversible,
segmentationSymbolUsed
) {
const x0 = subband.tbx0;
const y0 = subband.tby0;
const width = subband.tbx1 - subband.tbx0;
const codeblocks = subband.codeblocks;
const right = subband.type.charAt(0) === "H" ? 1 : 0;
const bottom = subband.type.charAt(1) === "H" ? levelWidth : 0;
for (let i = 0, ii = codeblocks.length; i < ii; ++i) {
const codeblock = codeblocks[i];
const blockWidth = codeblock.tbx1_ - codeblock.tbx0_;
const blockHeight = codeblock.tby1_ - codeblock.tby0_;
if (blockWidth === 0 || blockHeight === 0) {
continue;
}
if (codeblock.data === undefined) {
continue;
}
const bitModel = new BitModel(
blockWidth,
blockHeight,
codeblock.subbandType,
codeblock.zeroBitPlanes,
mb
);
let currentCodingpassType = 2; // first bit plane starts from cleanup
// collect data
const data = codeblock.data;
let totalLength = 0,
codingpasses = 0;
let j, jj, dataItem;
for (j = 0, jj = data.length; j < jj; j++) {
dataItem = data[j];
totalLength += dataItem.end - dataItem.start;
codingpasses += dataItem.codingpasses;
}
const encodedData = new Uint8Array(totalLength);
let position = 0;
for (j = 0, jj = data.length; j < jj; j++) {
dataItem = data[j];
const chunk = dataItem.data.subarray(dataItem.start, dataItem.end);
encodedData.set(chunk, position);
position += chunk.length;
}
// decoding the item
const decoder = new ArithmeticDecoder(encodedData, 0, totalLength);
bitModel.setDecoder(decoder);
for (j = 0; j < codingpasses; j++) {
switch (currentCodingpassType) {
case 0:
bitModel.runSignificancePropagationPass();
break;
case 1:
bitModel.runMagnitudeRefinementPass();
break;
case 2:
bitModel.runCleanupPass();
if (segmentationSymbolUsed) {
bitModel.checkSegmentationSymbol();
}
break;
}
currentCodingpassType = (currentCodingpassType + 1) % 3;
}
let offset = codeblock.tbx0_ - x0 + (codeblock.tby0_ - y0) * width;
const sign = bitModel.coefficentsSign;
const magnitude = bitModel.coefficentsMagnitude;
const bitsDecoded = bitModel.bitsDecoded;
const magnitudeCorrection = reversible ? 0 : 0.5;
let k, n, nb;
position = 0;
// Do the interleaving of Section F.3.3 here, so we do not need
// to copy later. LL level is not interleaved, just copied.
const interleave = subband.type !== "LL";
for (j = 0; j < blockHeight; j++) {
const row = (offset / width) | 0; // row in the non-interleaved subband
const levelOffset = 2 * row * (levelWidth - width) + right + bottom;
for (k = 0; k < blockWidth; k++) {
n = magnitude[position];
if (n !== 0) {
n = (n + magnitudeCorrection) * delta;
if (sign[position] !== 0) {
n = -n;
}
nb = bitsDecoded[position];
const pos = interleave ? levelOffset + (offset << 1) : offset;
if (reversible && nb >= mb) {
coefficients[pos] = n;
} else {
coefficients[pos] = n * (1 << (mb - nb));
}
}
offset++;
position++;
}
offset += width - blockWidth;
}
}
}
function transformTile(context, tile, c) {
const component = tile.components[c];
const codingStyleParameters = component.codingStyleParameters;
const quantizationParameters = component.quantizationParameters;
const decompositionLevelsCount =
codingStyleParameters.decompositionLevelsCount;
const spqcds = quantizationParameters.SPqcds;
const scalarExpounded = quantizationParameters.scalarExpounded;
const guardBits = quantizationParameters.guardBits;
const segmentationSymbolUsed = codingStyleParameters.segmentationSymbolUsed;
const precision = context.components[c].precision;
const reversible = codingStyleParameters.reversibleTransformation;
const transform = reversible
? new ReversibleTransform()
: new IrreversibleTransform();
const subbandCoefficients = [];
let b = 0;
for (let i = 0; i <= decompositionLevelsCount; i++) {
const resolution = component.resolutions[i];
const width = resolution.trx1 - resolution.trx0;
const height = resolution.try1 - resolution.try0;
// Allocate space for the whole sublevel.
const coefficients = new Float32Array(width * height);
for (let j = 0, jj = resolution.subbands.length; j < jj; j++) {
let mu, epsilon;
if (!scalarExpounded) {
// formula E-5
mu = spqcds[0].mu;
epsilon = spqcds[0].epsilon + (i > 0 ? 1 - i : 0);
} else {
mu = spqcds[b].mu;
epsilon = spqcds[b].epsilon;
b++;
}
const subband = resolution.subbands[j];
const gainLog2 = SubbandsGainLog2[subband.type];
// calculate quantization coefficient (Section E.1.1.1)
const delta = reversible
? 1
: 2 ** (precision + gainLog2 - epsilon) * (1 + mu / 2048);
const mb = guardBits + epsilon - 1;
// In the first resolution level, copyCoefficients will fill the
// whole array with coefficients. In the succeeding passes,
// copyCoefficients will consecutively fill in the values that belong
// to the interleaved positions of the HL, LH, and HH coefficients.
// The LL coefficients will then be interleaved in Transform.iterate().
copyCoefficients(
coefficients,
width,
height,
subband,
delta,
mb,
reversible,
segmentationSymbolUsed
);
}
subbandCoefficients.push({
width,
height,
items: coefficients,
});
}
const result = transform.calculate(
subbandCoefficients,
component.tcx0,
component.tcy0
);
return {
left: component.tcx0,
top: component.tcy0,
width: result.width,
height: result.height,
items: result.items,
};
}
function transformComponents(context) {
const siz = context.SIZ;
const components = context.components;
const componentsCount = siz.Csiz;
const resultImages = [];
for (let i = 0, ii = context.tiles.length; i < ii; i++) {
const tile = context.tiles[i];
const transformedTiles = [];
for (let c = 0; c < componentsCount; c++) {
transformedTiles[c] = transformTile(context, tile, c);
}
const tile0 = transformedTiles[0];
const out = new Uint8ClampedArray(tile0.items.length * componentsCount);
const result = {
left: tile0.left,
top: tile0.top,
width: tile0.width,
height: tile0.height,
items: out,
};
// Section G.2.2 Inverse multi component transform
let shift, offset;
let pos = 0,
j,
jj,
y0,
y1,
y2;
if (tile.codingStyleDefaultParameters.multipleComponentTransform) {
const fourComponents = componentsCount === 4;
const y0items = transformedTiles[0].items;
const y1items = transformedTiles[1].items;
const y2items = transformedTiles[2].items;
const y3items = fourComponents ? transformedTiles[3].items : null;
// HACK: The multiple component transform formulas below assume that
// all components have the same precision. With this in mind, we
// compute shift and offset only once.
shift = components[0].precision - 8;
offset = (128 << shift) + 0.5;
const component0 = tile.components[0];
const alpha01 = componentsCount - 3;
jj = y0items.length;
if (!component0.codingStyleParameters.reversibleTransformation) {
// inverse irreversible multiple component transform
for (j = 0; j < jj; j++, pos += alpha01) {
y0 = y0items[j] + offset;
y1 = y1items[j];
y2 = y2items[j];
out[pos++] = (y0 + 1.402 * y2) >> shift;
out[pos++] = (y0 - 0.34413 * y1 - 0.71414 * y2) >> shift;
out[pos++] = (y0 + 1.772 * y1) >> shift;
}
} else {
// inverse reversible multiple component transform
for (j = 0; j < jj; j++, pos += alpha01) {
y0 = y0items[j] + offset;
y1 = y1items[j];
y2 = y2items[j];
const g = y0 - ((y2 + y1) >> 2);
out[pos++] = (g + y2) >> shift;
out[pos++] = g >> shift;
out[pos++] = (g + y1) >> shift;
}
}
if (fourComponents) {
for (j = 0, pos = 3; j < jj; j++, pos += 4) {
out[pos] = (y3items[j] + offset) >> shift;
}
}
} else {
// no multi-component transform
for (let c = 0; c < componentsCount; c++) {
const items = transformedTiles[c].items;
shift = components[c].precision - 8;
offset = (128 << shift) + 0.5;
for (pos = c, j = 0, jj = items.length; j < jj; j++) {
out[pos] = (items[j] + offset) >> shift;
pos += componentsCount;
}
}
}
resultImages.push(result);
}
return resultImages;
}
function initializeTile(context, tileIndex) {
const siz = context.SIZ;
const componentsCount = siz.Csiz;
const tile = context.tiles[tileIndex];
for (let c = 0; c < componentsCount; c++) {
const component = tile.components[c];
const qcdOrQcc =
context.currentTile.QCC[c] !== undefined
? context.currentTile.QCC[c]
: context.currentTile.QCD;
component.quantizationParameters = qcdOrQcc;
const codOrCoc =
context.currentTile.COC[c] !== undefined
? context.currentTile.COC[c]
: context.currentTile.COD;
component.codingStyleParameters = codOrCoc;
}
tile.codingStyleDefaultParameters = context.currentTile.COD;
}
// Section B.10.2 Tag trees
class TagTree {
constructor(width, height) {
const levelsLength = log2(Math.max(width, height)) + 1;
this.levels = [];
for (let i = 0; i < levelsLength; i++) {
const level = {
width,
height,
items: [],
};
this.levels.push(level);
width = Math.ceil(width / 2);
height = Math.ceil(height / 2);
}
}
reset(i, j) {
let currentLevel = 0,
value = 0,
level;
while (currentLevel < this.levels.length) {
level = this.levels[currentLevel];
const index = i + j * level.width;
if (level.items[index] !== undefined) {
value = level.items[index];
break;
}
level.index = index;
i >>= 1;
j >>= 1;
currentLevel++;
}
currentLevel--;
level = this.levels[currentLevel];
level.items[level.index] = value;
this.currentLevel = currentLevel;
delete this.value;
}
incrementValue() {
const level = this.levels[this.currentLevel];
level.items[level.index]++;
}
nextLevel() {
let currentLevel = this.currentLevel;
let level = this.levels[currentLevel];
const value = level.items[level.index];
currentLevel--;
if (currentLevel < 0) {
this.value = value;
return false;
}
this.currentLevel = currentLevel;
level = this.levels[currentLevel];
level.items[level.index] = value;
return true;
}
}
class InclusionTree {
constructor(width, height, defaultValue) {
const levelsLength = log2(Math.max(width, height)) + 1;
this.levels = [];
for (let i = 0; i < levelsLength; i++) {
const items = new Uint8Array(width * height);
for (let j = 0, jj = items.length; j < jj; j++) {
items[j] = defaultValue;
}
const level = {
width,
height,
items,
};
this.levels.push(level);
width = Math.ceil(width / 2);
height = Math.ceil(height / 2);
}
}
reset(i, j, stopValue) {
let currentLevel = 0;
while (currentLevel < this.levels.length) {
const level = this.levels[currentLevel];
const index = i + j * level.width;
level.index = index;
const value = level.items[index];
if (value === 0xff) {
break;
}
if (value > stopValue) {
this.currentLevel = currentLevel;
// already know about this one, propagating the value to top levels
this.propagateValues();
return false;
}
i >>= 1;
j >>= 1;
currentLevel++;
}
this.currentLevel = currentLevel - 1;
return true;
}
incrementValue(stopValue) {
const level = this.levels[this.currentLevel];
level.items[level.index] = stopValue + 1;
this.propagateValues();
}
propagateValues() {
let levelIndex = this.currentLevel;
let level = this.levels[levelIndex];
const currentValue = level.items[level.index];
while (--levelIndex >= 0) {
level = this.levels[levelIndex];
level.items[level.index] = currentValue;
}
}
nextLevel() {
let currentLevel = this.currentLevel;
let level = this.levels[currentLevel];
const value = level.items[level.index];
level.items[level.index] = 0xff;
currentLevel--;
if (currentLevel < 0) {
return false;
}
this.currentLevel = currentLevel;
level = this.levels[currentLevel];
level.items[level.index] = value;
return true;
}
}
// Section D. Coefficient bit modeling
const BitModel = (function BitModelClosure() {
const UNIFORM_CONTEXT = 17;
const RUNLENGTH_CONTEXT = 18;
// Table D-1
// The index is binary presentation: 0dddvvhh, ddd - sum of Di (0..4),
// vv - sum of Vi (0..2), and hh - sum of Hi (0..2)
const LLAndLHContextsLabel = new Uint8Array([
0, 5, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 1, 6, 8, 0, 3, 7, 8, 0, 4,
7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6,
8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8,
]);
const HLContextLabel = new Uint8Array([
0, 3, 4, 0, 5, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 1, 3, 4, 0, 6, 7, 7, 0, 8,
8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3,
4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8,
]);
const HHContextLabel = new Uint8Array([
0, 1, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 4, 5, 0, 4, 5, 5, 0, 5,
5, 5, 0, 0, 0, 0, 0, 6, 7, 7, 0, 7, 7, 7, 0, 7, 7, 7, 0, 0, 0, 0, 0, 8, 8,
8, 0, 8, 8, 8, 0, 8, 8, 8, 0, 0, 0, 0, 0, 8, 8, 8, 0, 8, 8, 8, 0, 8, 8, 8,
]);
// eslint-disable-next-line no-shadow
class BitModel {
constructor(width, height, subband, zeroBitPlanes, mb) {
this.width = width;
this.height = height;
let contextLabelTable;
if (subband === "HH") {
contextLabelTable = HHContextLabel;
} else if (subband === "HL") {
contextLabelTable = HLContextLabel;
} else {
contextLabelTable = LLAndLHContextsLabel;
}
this.contextLabelTable = contextLabelTable;
const coefficientCount = width * height;
// coefficients outside the encoding region treated as insignificant
// add border state cells for significanceState
this.neighborsSignificance = new Uint8Array(coefficientCount);
this.coefficentsSign = new Uint8Array(coefficientCount);
let coefficentsMagnitude;
if (mb > 14) {
coefficentsMagnitude = new Uint32Array(coefficientCount);
} else if (mb > 6) {
coefficentsMagnitude = new Uint16Array(coefficientCount);
} else {
coefficentsMagnitude = new Uint8Array(coefficientCount);
}
this.coefficentsMagnitude = coefficentsMagnitude;
this.processingFlags = new Uint8Array(coefficientCount);
const bitsDecoded = new Uint8Array(coefficientCount);
if (zeroBitPlanes !== 0) {
for (let i = 0; i < coefficientCount; i++) {
bitsDecoded[i] = zeroBitPlanes;
}
}
this.bitsDecoded = bitsDecoded;
this.reset();
}
setDecoder(decoder) {
this.decoder = decoder;
}
reset() {
// We have 17 contexts that are accessed via context labels,
// plus the uniform and runlength context.
this.contexts = new Int8Array(19);
// Contexts are packed into 1 byte:
// highest 7 bits carry the index, lowest bit carries mps
this.contexts[0] = (4 << 1) | 0;
this.contexts[UNIFORM_CONTEXT] = (46 << 1) | 0;
this.contexts[RUNLENGTH_CONTEXT] = (3 << 1) | 0;
}
setNeighborsSignificance(row, column, index) {
const neighborsSignificance = this.neighborsSignificance;
const width = this.width,
height = this.height;
const left = column > 0;
const right = column + 1 < width;
let i;
if (row > 0) {
i = index - width;
if (left) {
neighborsSignificance[i - 1] += 0x10;
}
if (right) {
neighborsSignificance[i + 1] += 0x10;
}
neighborsSignificance[i] += 0x04;
}
if (row + 1 < height) {
i = index + width;
if (left) {
neighborsSignificance[i - 1] += 0x10;
}
if (right) {
neighborsSignificance[i + 1] += 0x10;
}
neighborsSignificance[i] += 0x04;
}
if (left) {
neighborsSignificance[index - 1] += 0x01;
}
if (right) {
neighborsSignificance[index + 1] += 0x01;
}
neighborsSignificance[index] |= 0x80;
}
runSignificancePropagationPass() {
const decoder = this.decoder;
const width = this.width,
height = this.height;
const coefficentsMagnitude = this.coefficentsMagnitude;
const coefficentsSign = this.coefficentsSign;
const neighborsSignificance = this.neighborsSignificance;
const processingFlags = this.processingFlags;
const contexts = this.contexts;
const labels = this.contextLabelTable;
const bitsDecoded = this.bitsDecoded;
const processedInverseMask = ~1;
const processedMask = 1;
const firstMagnitudeBitMask = 2;
for (let i0 = 0; i0 < height; i0 += 4) {
for (let j = 0; j < width; j++) {
let index = i0 * width + j;
for (let i1 = 0; i1 < 4; i1++, index += width) {
const i = i0 + i1;
if (i >= height) {
break;
}
// clear processed flag first
processingFlags[index] &= processedInverseMask;
if (coefficentsMagnitude[index] || !neighborsSignificance[index]) {
continue;
}
const contextLabel = labels[neighborsSignificance[index]];
const decision = decoder.readBit(contexts, contextLabel);
if (decision) {
const sign = this.decodeSignBit(i, j, index);
coefficentsSign[index] = sign;
coefficentsMagnitude[index] = 1;
this.setNeighborsSignificance(i, j, index);
processingFlags[index] |= firstMagnitudeBitMask;
}
bitsDecoded[index]++;
processingFlags[index] |= processedMask;
}
}
}
}
decodeSignBit(row, column, index) {
const width = this.width,
height = this.height;
const coefficentsMagnitude = this.coefficentsMagnitude;
const coefficentsSign = this.coefficentsSign;
let contribution, sign0, sign1, significance1;
let contextLabel, decoded;
// calculate horizontal contribution
significance1 = column > 0 && coefficentsMagnitude[index - 1] !== 0;
if (column + 1 < width && coefficentsMagnitude[index + 1] !== 0) {
sign1 = coefficentsSign[index + 1];
if (significance1) {
sign0 = coefficentsSign[index - 1];
contribution = 1 - sign1 - sign0;
} else {
contribution = 1 - sign1 - sign1;
}
} else if (significance1) {
sign0 = coefficentsSign[index - 1];
contribution = 1 - sign0 - sign0;
} else {
contribution = 0;
}
const horizontalContribution = 3 * contribution;
// calculate vertical contribution and combine with the horizontal
significance1 = row > 0 && coefficentsMagnitude[index - width] !== 0;
if (row + 1 < height && coefficentsMagnitude[index + width] !== 0) {
sign1 = coefficentsSign[index + width];
if (significance1) {
sign0 = coefficentsSign[index - width];
contribution = 1 - sign1 - sign0 + horizontalContribution;
} else {
contribution = 1 - sign1 - sign1 + horizontalContribution;
}
} else if (significance1) {
sign0 = coefficentsSign[index - width];
contribution = 1 - sign0 - sign0 + horizontalContribution;
} else {
contribution = horizontalContribution;
}
if (contribution >= 0) {
contextLabel = 9 + contribution;
decoded = this.decoder.readBit(this.contexts, contextLabel);
} else {
contextLabel = 9 - contribution;
decoded = this.decoder.readBit(this.contexts, contextLabel) ^ 1;
}
return decoded;
}
runMagnitudeRefinementPass() {
const decoder = this.decoder;
const width = this.width,
height = this.height;
const coefficentsMagnitude = this.coefficentsMagnitude;
const neighborsSignificance = this.neighborsSignificance;
const contexts = this.contexts;
const bitsDecoded = this.bitsDecoded;
const processingFlags = this.processingFlags;
const processedMask = 1;
const firstMagnitudeBitMask = 2;
const length = width * height;
const width4 = width * 4;
for (let index0 = 0, indexNext; index0 < length; index0 = indexNext) {
indexNext = Math.min(length, index0 + width4);
for (let j = 0; j < width; j++) {
for (let index = index0 + j; index < indexNext; index += width) {
// significant but not those that have just become
if (
!coefficentsMagnitude[index] ||
(processingFlags[index] & processedMask) !== 0
) {
continue;
}
let contextLabel = 16;
if ((processingFlags[index] & firstMagnitudeBitMask) !== 0) {
processingFlags[index] ^= firstMagnitudeBitMask;
// first refinement
const significance = neighborsSignificance[index] & 127;
contextLabel = significance === 0 ? 15 : 14;
}
const bit = decoder.readBit(contexts, contextLabel);
coefficentsMagnitude[index] =
(coefficentsMagnitude[index] << 1) | bit;
bitsDecoded[index]++;
processingFlags[index] |= processedMask;
}
}
}
}
runCleanupPass() {
const decoder = this.decoder;
const width = this.width,
height = this.height;
const neighborsSignificance = this.neighborsSignificance;
const coefficentsMagnitude = this.coefficentsMagnitude;
const coefficentsSign = this.coefficentsSign;
const contexts = this.contexts;
const labels = this.contextLabelTable;
const bitsDecoded = this.bitsDecoded;
const processingFlags = this.processingFlags;
const processedMask = 1;
const firstMagnitudeBitMask = 2;
const oneRowDown = width;
const twoRowsDown = width * 2;
const threeRowsDown = width * 3;
let iNext;
for (let i0 = 0; i0 < height; i0 = iNext) {
iNext = Math.min(i0 + 4, height);
const indexBase = i0 * width;
const checkAllEmpty = i0 + 3 < height;
for (let j = 0; j < width; j++) {
const index0 = indexBase + j;
// using the property: labels[neighborsSignificance[index]] === 0
// when neighborsSignificance[index] === 0
const allEmpty =
checkAllEmpty &&
processingFlags[index0] === 0 &&
processingFlags[index0 + oneRowDown] === 0 &&
processingFlags[index0 + twoRowsDown] === 0 &&
processingFlags[index0 + threeRowsDown] === 0 &&
neighborsSignificance[index0] === 0 &&
neighborsSignificance[index0 + oneRowDown] === 0 &&
neighborsSignificance[index0 + twoRowsDown] === 0 &&
neighborsSignificance[index0 + threeRowsDown] === 0;
let i1 = 0,
index = index0;
let i = i0,
sign;
if (allEmpty) {
const hasSignificantCoefficent = decoder.readBit(
contexts,
RUNLENGTH_CONTEXT
);
if (!hasSignificantCoefficent) {
bitsDecoded[index0]++;
bitsDecoded[index0 + oneRowDown]++;
bitsDecoded[index0 + twoRowsDown]++;
bitsDecoded[index0 + threeRowsDown]++;
continue; // next column
}
i1 =
(decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) |
decoder.readBit(contexts, UNIFORM_CONTEXT);
if (i1 !== 0) {
i = i0 + i1;
index += i1 * width;
}
sign = this.decodeSignBit(i, j, index);
coefficentsSign[index] = sign;
coefficentsMagnitude[index] = 1;
this.setNeighborsSignificance(i, j, index);
processingFlags[index] |= firstMagnitudeBitMask;
index = index0;
for (let i2 = i0; i2 <= i; i2++, index += width) {
bitsDecoded[index]++;
}
i1++;
}
for (i = i0 + i1; i < iNext; i++, index += width) {
if (
coefficentsMagnitude[index] ||
(processingFlags[index] & processedMask) !== 0
) {
continue;
}
const contextLabel = labels[neighborsSignificance[index]];
const decision = decoder.readBit(contexts, contextLabel);
if (decision === 1) {
sign = this.decodeSignBit(i, j, index);
coefficentsSign[index] = sign;
coefficentsMagnitude[index] = 1;
this.setNeighborsSignificance(i, j, index);
processingFlags[index] |= firstMagnitudeBitMask;
}
bitsDecoded[index]++;
}
}
}
}
checkSegmentationSymbol() {
const decoder = this.decoder;
const contexts = this.contexts;
const symbol =
(decoder.readBit(contexts, UNIFORM_CONTEXT) << 3) |
(decoder.readBit(contexts, UNIFORM_CONTEXT) << 2) |
(decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) |
decoder.readBit(contexts, UNIFORM_CONTEXT);
if (symbol !== 0xa) {
throw new JpxError("Invalid segmentation symbol");
}
}
}
return BitModel;
})();
// Section F, Discrete wavelet transformation
class Transform {
constructor() {
if (this.constructor === Transform) {
unreachable("Cannot initialize Transform.");
}
}
calculate(subbands, u0, v0) {
let ll = subbands[0];
for (let i = 1, ii = subbands.length; i < ii; i++) {
ll = this.iterate(ll, subbands[i], u0, v0);
}
return ll;
}
extend(buffer, offset, size) {
// Section F.3.7 extending... using max extension of 4
let i1 = offset - 1,
j1 = offset + 1;
let i2 = offset + size - 2,
j2 = offset + size;
buffer[i1--] = buffer[j1++];
buffer[j2++] = buffer[i2--];
buffer[i1--] = buffer[j1++];
buffer[j2++] = buffer[i2--];
buffer[i1--] = buffer[j1++];
buffer[j2++] = buffer[i2--];
buffer[i1] = buffer[j1];
buffer[j2] = buffer[i2];
}
filter(x, offset, length) {
unreachable("Abstract method `filter` called");
}
iterate(ll, hl_lh_hh, u0, v0) {
const llWidth = ll.width,
llHeight = ll.height;
let llItems = ll.items;
const width = hl_lh_hh.width;
const height = hl_lh_hh.height;
const items = hl_lh_hh.items;
let i, j, k, l, u, v;
// Interleave LL according to Section F.3.3
for (k = 0, i = 0; i < llHeight; i++) {
l = i * 2 * width;
for (j = 0; j < llWidth; j++, k++, l += 2) {
items[l] = llItems[k];
}
}
// The LL band is not needed anymore.
llItems = ll.items = null;
const bufferPadding = 4;
const rowBuffer = new Float32Array(width + 2 * bufferPadding);
// Section F.3.4 HOR_SR
if (width === 1) {
// if width = 1, when u0 even keep items as is, when odd divide by 2
if ((u0 & 1) !== 0) {
for (v = 0, k = 0; v < height; v++, k += width) {
items[k] *= 0.5;
}
}
} else {
for (v = 0, k = 0; v < height; v++, k += width) {
rowBuffer.set(items.subarray(k, k + width), bufferPadding);
this.extend(rowBuffer, bufferPadding, width);
this.filter(rowBuffer, bufferPadding, width);
items.set(rowBuffer.subarray(bufferPadding, bufferPadding + width), k);
}
}
// Accesses to the items array can take long, because it may not fit into
// CPU cache and has to be fetched from main memory. Since subsequent
// accesses to the items array are not local when reading columns, we
// have a cache miss every time. To reduce cache misses, get up to
// 'numBuffers' items at a time and store them into the individual
// buffers. The colBuffers should be small enough to fit into CPU cache.
let numBuffers = 16;
const colBuffers = [];
for (i = 0; i < numBuffers; i++) {
colBuffers.push(new Float32Array(height + 2 * bufferPadding));
}
let b,
currentBuffer = 0;
ll = bufferPadding + height;
// Section F.3.5 VER_SR
if (height === 1) {
// if height = 1, when v0 even keep items as is, when odd divide by 2
if ((v0 & 1) !== 0) {
for (u = 0; u < width; u++) {
items[u] *= 0.5;
}
}
} else {
for (u = 0; u < width; u++) {
// if we ran out of buffers, copy several image columns at once
if (currentBuffer === 0) {
numBuffers = Math.min(width - u, numBuffers);
for (k = u, l = bufferPadding; l < ll; k += width, l++) {
for (b = 0; b < numBuffers; b++) {
colBuffers[b][l] = items[k + b];
}
}
currentBuffer = numBuffers;
}
currentBuffer--;
const buffer = colBuffers[currentBuffer];
this.extend(buffer, bufferPadding, height);
this.filter(buffer, bufferPadding, height);
// If this is last buffer in this group of buffers, flush all buffers.
if (currentBuffer === 0) {
k = u - numBuffers + 1;
for (l = bufferPadding; l < ll; k += width, l++) {
for (b = 0; b < numBuffers; b++) {
items[k + b] = colBuffers[b][l];
}
}
}
}
}
return { width, height, items };
}
}
// Section 3.8.2 Irreversible 9-7 filter
class IrreversibleTransform extends Transform {
filter(x, offset, length) {
const len = length >> 1;
offset |= 0;
let j, n, current, next;
const alpha = -1.586134342059924;
const beta = -0.052980118572961;
const gamma = 0.882911075530934;
const delta = 0.443506852043971;
const K = 1.230174104914001;
const K_ = 1 / K;
// step 1 is combined with step 3
// step 2
j = offset - 3;
for (n = len + 4; n--; j += 2) {
x[j] *= K_;
}
// step 1 & 3
j = offset - 2;
current = delta * x[j - 1];
for (n = len + 3; n--; j += 2) {
next = delta * x[j + 1];
x[j] = K * x[j] - current - next;
if (n--) {
j += 2;
current = delta * x[j + 1];
x[j] = K * x[j] - current - next;
} else {
break;
}
}
// step 4
j = offset - 1;
current = gamma * x[j - 1];
for (n = len + 2; n--; j += 2) {
next = gamma * x[j + 1];
x[j] -= current + next;
if (n--) {
j += 2;
current = gamma * x[j + 1];
x[j] -= current + next;
} else {
break;
}
}
// step 5
j = offset;
current = beta * x[j - 1];
for (n = len + 1; n--; j += 2) {
next = beta * x[j + 1];
x[j] -= current + next;
if (n--) {
j += 2;
current = beta * x[j + 1];
x[j] -= current + next;
} else {
break;
}
}
// step 6
if (len !== 0) {
j = offset + 1;
current = alpha * x[j - 1];
for (n = len; n--; j += 2) {
next = alpha * x[j + 1];
x[j] -= current + next;
if (n--) {
j += 2;
current = alpha * x[j + 1];
x[j] -= current + next;
} else {
break;
}
}
}
}
}
// Section 3.8.1 Reversible 5-3 filter
class ReversibleTransform extends Transform {
filter(x, offset, length) {
const len = length >> 1;
offset |= 0;
let j, n;
for (j = offset, n = len + 1; n--; j += 2) {
x[j] -= (x[j - 1] + x[j + 1] + 2) >> 2;
}
for (j = offset + 1, n = len; n--; j += 2) {
x[j] += (x[j - 1] + x[j + 1]) >> 1;
}
}
}
export { JpxImage };