2349 lines
75 KiB
JavaScript
2349 lines
75 KiB
JavaScript
/* Copyright 2012 Mozilla Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
import { BaseException, info, unreachable, warn } from "../shared/util.js";
|
|
import { log2, readUint16, readUint32 } from "./core_utils.js";
|
|
import { ArithmeticDecoder } from "./arithmetic_decoder.js";
|
|
|
|
class JpxError extends BaseException {
|
|
constructor(msg) {
|
|
super(`JPX error: ${msg}`, "JpxError");
|
|
}
|
|
}
|
|
|
|
// Table E.1
|
|
const SubbandsGainLog2 = {
|
|
LL: 0,
|
|
LH: 1,
|
|
HL: 1,
|
|
HH: 2,
|
|
};
|
|
|
|
class JpxImage {
|
|
constructor() {
|
|
this.failOnCorruptedImage = false;
|
|
}
|
|
|
|
parse(data) {
|
|
const head = readUint16(data, 0);
|
|
// No box header, immediate start of codestream (SOC)
|
|
if (head === 0xff4f) {
|
|
this.parseCodestream(data, 0, data.length);
|
|
return;
|
|
}
|
|
|
|
const length = data.length;
|
|
let position = 0;
|
|
while (position < length) {
|
|
let headerSize = 8;
|
|
let lbox = readUint32(data, position);
|
|
const tbox = readUint32(data, position + 4);
|
|
position += headerSize;
|
|
if (lbox === 1) {
|
|
// XLBox: read UInt64 according to spec.
|
|
// JavaScript's int precision of 53 bit should be sufficient here.
|
|
lbox =
|
|
readUint32(data, position) * 4294967296 +
|
|
readUint32(data, position + 4);
|
|
position += 8;
|
|
headerSize += 8;
|
|
}
|
|
if (lbox === 0) {
|
|
lbox = length - position + headerSize;
|
|
}
|
|
if (lbox < headerSize) {
|
|
throw new JpxError("Invalid box field size");
|
|
}
|
|
const dataLength = lbox - headerSize;
|
|
let jumpDataLength = true;
|
|
switch (tbox) {
|
|
case 0x6a703268: // 'jp2h'
|
|
jumpDataLength = false; // parsing child boxes
|
|
break;
|
|
case 0x636f6c72: // 'colr'
|
|
// Colorspaces are not used, the CS from the PDF is used.
|
|
const method = data[position];
|
|
if (method === 1) {
|
|
// enumerated colorspace
|
|
const colorspace = readUint32(data, position + 3);
|
|
switch (colorspace) {
|
|
case 16: // this indicates a sRGB colorspace
|
|
case 17: // this indicates a grayscale colorspace
|
|
case 18: // this indicates a YUV colorspace
|
|
break;
|
|
default:
|
|
warn("Unknown colorspace " + colorspace);
|
|
break;
|
|
}
|
|
} else if (method === 2) {
|
|
info("ICC profile not supported");
|
|
}
|
|
break;
|
|
case 0x6a703263: // 'jp2c'
|
|
this.parseCodestream(data, position, position + dataLength);
|
|
break;
|
|
case 0x6a502020: // 'jP\024\024'
|
|
if (readUint32(data, position) !== 0x0d0a870a) {
|
|
warn("Invalid JP2 signature");
|
|
}
|
|
break;
|
|
// The following header types are valid but currently not used:
|
|
case 0x6a501a1a: // 'jP\032\032'
|
|
case 0x66747970: // 'ftyp'
|
|
case 0x72726571: // 'rreq'
|
|
case 0x72657320: // 'res '
|
|
case 0x69686472: // 'ihdr'
|
|
break;
|
|
default:
|
|
const headerType = String.fromCharCode(
|
|
(tbox >> 24) & 0xff,
|
|
(tbox >> 16) & 0xff,
|
|
(tbox >> 8) & 0xff,
|
|
tbox & 0xff
|
|
);
|
|
warn(`Unsupported header type ${tbox} (${headerType}).`);
|
|
break;
|
|
}
|
|
if (jumpDataLength) {
|
|
position += dataLength;
|
|
}
|
|
}
|
|
}
|
|
|
|
parseImageProperties(stream) {
|
|
let newByte = stream.getByte();
|
|
while (newByte >= 0) {
|
|
const oldByte = newByte;
|
|
newByte = stream.getByte();
|
|
const code = (oldByte << 8) | newByte;
|
|
// Image and tile size (SIZ)
|
|
if (code === 0xff51) {
|
|
stream.skip(4);
|
|
const Xsiz = stream.getInt32() >>> 0; // Byte 4
|
|
const Ysiz = stream.getInt32() >>> 0; // Byte 8
|
|
const XOsiz = stream.getInt32() >>> 0; // Byte 12
|
|
const YOsiz = stream.getInt32() >>> 0; // Byte 16
|
|
stream.skip(16);
|
|
const Csiz = stream.getUint16(); // Byte 36
|
|
this.width = Xsiz - XOsiz;
|
|
this.height = Ysiz - YOsiz;
|
|
this.componentsCount = Csiz;
|
|
// Results are always returned as `Uint8ClampedArray`s.
|
|
this.bitsPerComponent = 8;
|
|
return;
|
|
}
|
|
}
|
|
throw new JpxError("No size marker found in JPX stream");
|
|
}
|
|
|
|
parseCodestream(data, start, end) {
|
|
const context = {};
|
|
let doNotRecover = false;
|
|
try {
|
|
let position = start;
|
|
while (position + 1 < end) {
|
|
const code = readUint16(data, position);
|
|
position += 2;
|
|
|
|
let length = 0,
|
|
j,
|
|
sqcd,
|
|
spqcds,
|
|
spqcdSize,
|
|
scalarExpounded,
|
|
tile;
|
|
switch (code) {
|
|
case 0xff4f: // Start of codestream (SOC)
|
|
context.mainHeader = true;
|
|
break;
|
|
case 0xffd9: // End of codestream (EOC)
|
|
break;
|
|
case 0xff51: // Image and tile size (SIZ)
|
|
length = readUint16(data, position);
|
|
const siz = {};
|
|
siz.Xsiz = readUint32(data, position + 4);
|
|
siz.Ysiz = readUint32(data, position + 8);
|
|
siz.XOsiz = readUint32(data, position + 12);
|
|
siz.YOsiz = readUint32(data, position + 16);
|
|
siz.XTsiz = readUint32(data, position + 20);
|
|
siz.YTsiz = readUint32(data, position + 24);
|
|
siz.XTOsiz = readUint32(data, position + 28);
|
|
siz.YTOsiz = readUint32(data, position + 32);
|
|
const componentsCount = readUint16(data, position + 36);
|
|
siz.Csiz = componentsCount;
|
|
const components = [];
|
|
j = position + 38;
|
|
for (let i = 0; i < componentsCount; i++) {
|
|
const component = {
|
|
precision: (data[j] & 0x7f) + 1,
|
|
isSigned: !!(data[j] & 0x80),
|
|
XRsiz: data[j + 1],
|
|
YRsiz: data[j + 2],
|
|
};
|
|
j += 3;
|
|
calculateComponentDimensions(component, siz);
|
|
components.push(component);
|
|
}
|
|
context.SIZ = siz;
|
|
context.components = components;
|
|
calculateTileGrids(context, components);
|
|
context.QCC = [];
|
|
context.COC = [];
|
|
break;
|
|
case 0xff5c: // Quantization default (QCD)
|
|
length = readUint16(data, position);
|
|
const qcd = {};
|
|
j = position + 2;
|
|
sqcd = data[j++];
|
|
switch (sqcd & 0x1f) {
|
|
case 0:
|
|
spqcdSize = 8;
|
|
scalarExpounded = true;
|
|
break;
|
|
case 1:
|
|
spqcdSize = 16;
|
|
scalarExpounded = false;
|
|
break;
|
|
case 2:
|
|
spqcdSize = 16;
|
|
scalarExpounded = true;
|
|
break;
|
|
default:
|
|
throw new Error("Invalid SQcd value " + sqcd);
|
|
}
|
|
qcd.noQuantization = spqcdSize === 8;
|
|
qcd.scalarExpounded = scalarExpounded;
|
|
qcd.guardBits = sqcd >> 5;
|
|
spqcds = [];
|
|
while (j < length + position) {
|
|
const spqcd = {};
|
|
if (spqcdSize === 8) {
|
|
spqcd.epsilon = data[j++] >> 3;
|
|
spqcd.mu = 0;
|
|
} else {
|
|
spqcd.epsilon = data[j] >> 3;
|
|
spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1];
|
|
j += 2;
|
|
}
|
|
spqcds.push(spqcd);
|
|
}
|
|
qcd.SPqcds = spqcds;
|
|
if (context.mainHeader) {
|
|
context.QCD = qcd;
|
|
} else {
|
|
context.currentTile.QCD = qcd;
|
|
context.currentTile.QCC = [];
|
|
}
|
|
break;
|
|
case 0xff5d: // Quantization component (QCC)
|
|
length = readUint16(data, position);
|
|
const qcc = {};
|
|
j = position + 2;
|
|
let cqcc;
|
|
if (context.SIZ.Csiz < 257) {
|
|
cqcc = data[j++];
|
|
} else {
|
|
cqcc = readUint16(data, j);
|
|
j += 2;
|
|
}
|
|
sqcd = data[j++];
|
|
switch (sqcd & 0x1f) {
|
|
case 0:
|
|
spqcdSize = 8;
|
|
scalarExpounded = true;
|
|
break;
|
|
case 1:
|
|
spqcdSize = 16;
|
|
scalarExpounded = false;
|
|
break;
|
|
case 2:
|
|
spqcdSize = 16;
|
|
scalarExpounded = true;
|
|
break;
|
|
default:
|
|
throw new Error("Invalid SQcd value " + sqcd);
|
|
}
|
|
qcc.noQuantization = spqcdSize === 8;
|
|
qcc.scalarExpounded = scalarExpounded;
|
|
qcc.guardBits = sqcd >> 5;
|
|
spqcds = [];
|
|
while (j < length + position) {
|
|
const spqcd = {};
|
|
if (spqcdSize === 8) {
|
|
spqcd.epsilon = data[j++] >> 3;
|
|
spqcd.mu = 0;
|
|
} else {
|
|
spqcd.epsilon = data[j] >> 3;
|
|
spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1];
|
|
j += 2;
|
|
}
|
|
spqcds.push(spqcd);
|
|
}
|
|
qcc.SPqcds = spqcds;
|
|
if (context.mainHeader) {
|
|
context.QCC[cqcc] = qcc;
|
|
} else {
|
|
context.currentTile.QCC[cqcc] = qcc;
|
|
}
|
|
break;
|
|
case 0xff52: // Coding style default (COD)
|
|
length = readUint16(data, position);
|
|
const cod = {};
|
|
j = position + 2;
|
|
const scod = data[j++];
|
|
cod.entropyCoderWithCustomPrecincts = !!(scod & 1);
|
|
cod.sopMarkerUsed = !!(scod & 2);
|
|
cod.ephMarkerUsed = !!(scod & 4);
|
|
cod.progressionOrder = data[j++];
|
|
cod.layersCount = readUint16(data, j);
|
|
j += 2;
|
|
cod.multipleComponentTransform = data[j++];
|
|
|
|
cod.decompositionLevelsCount = data[j++];
|
|
cod.xcb = (data[j++] & 0xf) + 2;
|
|
cod.ycb = (data[j++] & 0xf) + 2;
|
|
const blockStyle = data[j++];
|
|
cod.selectiveArithmeticCodingBypass = !!(blockStyle & 1);
|
|
cod.resetContextProbabilities = !!(blockStyle & 2);
|
|
cod.terminationOnEachCodingPass = !!(blockStyle & 4);
|
|
cod.verticallyStripe = !!(blockStyle & 8);
|
|
cod.predictableTermination = !!(blockStyle & 16);
|
|
cod.segmentationSymbolUsed = !!(blockStyle & 32);
|
|
cod.reversibleTransformation = data[j++];
|
|
if (cod.entropyCoderWithCustomPrecincts) {
|
|
const precinctsSizes = [];
|
|
while (j < length + position) {
|
|
const precinctsSize = data[j++];
|
|
precinctsSizes.push({
|
|
PPx: precinctsSize & 0xf,
|
|
PPy: precinctsSize >> 4,
|
|
});
|
|
}
|
|
cod.precinctsSizes = precinctsSizes;
|
|
}
|
|
const unsupported = [];
|
|
if (cod.selectiveArithmeticCodingBypass) {
|
|
unsupported.push("selectiveArithmeticCodingBypass");
|
|
}
|
|
if (cod.resetContextProbabilities) {
|
|
unsupported.push("resetContextProbabilities");
|
|
}
|
|
if (cod.terminationOnEachCodingPass) {
|
|
unsupported.push("terminationOnEachCodingPass");
|
|
}
|
|
if (cod.verticallyStripe) {
|
|
unsupported.push("verticallyStripe");
|
|
}
|
|
if (cod.predictableTermination) {
|
|
unsupported.push("predictableTermination");
|
|
}
|
|
if (unsupported.length > 0) {
|
|
doNotRecover = true;
|
|
warn(`JPX: Unsupported COD options (${unsupported.join(", ")}).`);
|
|
}
|
|
if (context.mainHeader) {
|
|
context.COD = cod;
|
|
} else {
|
|
context.currentTile.COD = cod;
|
|
context.currentTile.COC = [];
|
|
}
|
|
break;
|
|
case 0xff90: // Start of tile-part (SOT)
|
|
length = readUint16(data, position);
|
|
tile = {};
|
|
tile.index = readUint16(data, position + 2);
|
|
tile.length = readUint32(data, position + 4);
|
|
tile.dataEnd = tile.length + position - 2;
|
|
tile.partIndex = data[position + 8];
|
|
tile.partsCount = data[position + 9];
|
|
|
|
context.mainHeader = false;
|
|
if (tile.partIndex === 0) {
|
|
// reset component specific settings
|
|
tile.COD = context.COD;
|
|
tile.COC = context.COC.slice(0); // clone of the global COC
|
|
tile.QCD = context.QCD;
|
|
tile.QCC = context.QCC.slice(0); // clone of the global COC
|
|
}
|
|
context.currentTile = tile;
|
|
break;
|
|
case 0xff93: // Start of data (SOD)
|
|
tile = context.currentTile;
|
|
if (tile.partIndex === 0) {
|
|
initializeTile(context, tile.index);
|
|
buildPackets(context);
|
|
}
|
|
|
|
// moving to the end of the data
|
|
length = tile.dataEnd - position;
|
|
parseTilePackets(context, data, position, length);
|
|
break;
|
|
case 0xff53: // Coding style component (COC)
|
|
warn("JPX: Codestream code 0xFF53 (COC) is not implemented.");
|
|
/* falls through */
|
|
case 0xff55: // Tile-part lengths, main header (TLM)
|
|
case 0xff57: // Packet length, main header (PLM)
|
|
case 0xff58: // Packet length, tile-part header (PLT)
|
|
case 0xff64: // Comment (COM)
|
|
length = readUint16(data, position);
|
|
// skipping content
|
|
break;
|
|
default:
|
|
throw new Error("Unknown codestream code: " + code.toString(16));
|
|
}
|
|
position += length;
|
|
}
|
|
} catch (e) {
|
|
if (doNotRecover || this.failOnCorruptedImage) {
|
|
throw new JpxError(e.message);
|
|
} else {
|
|
warn(`JPX: Trying to recover from: "${e.message}".`);
|
|
}
|
|
}
|
|
this.tiles = transformComponents(context);
|
|
this.width = context.SIZ.Xsiz - context.SIZ.XOsiz;
|
|
this.height = context.SIZ.Ysiz - context.SIZ.YOsiz;
|
|
this.componentsCount = context.SIZ.Csiz;
|
|
}
|
|
}
|
|
|
|
function calculateComponentDimensions(component, siz) {
|
|
// Section B.2 Component mapping
|
|
component.x0 = Math.ceil(siz.XOsiz / component.XRsiz);
|
|
component.x1 = Math.ceil(siz.Xsiz / component.XRsiz);
|
|
component.y0 = Math.ceil(siz.YOsiz / component.YRsiz);
|
|
component.y1 = Math.ceil(siz.Ysiz / component.YRsiz);
|
|
component.width = component.x1 - component.x0;
|
|
component.height = component.y1 - component.y0;
|
|
}
|
|
function calculateTileGrids(context, components) {
|
|
const siz = context.SIZ;
|
|
// Section B.3 Division into tile and tile-components
|
|
const tiles = [];
|
|
let tile;
|
|
const numXtiles = Math.ceil((siz.Xsiz - siz.XTOsiz) / siz.XTsiz);
|
|
const numYtiles = Math.ceil((siz.Ysiz - siz.YTOsiz) / siz.YTsiz);
|
|
for (let q = 0; q < numYtiles; q++) {
|
|
for (let p = 0; p < numXtiles; p++) {
|
|
tile = {};
|
|
tile.tx0 = Math.max(siz.XTOsiz + p * siz.XTsiz, siz.XOsiz);
|
|
tile.ty0 = Math.max(siz.YTOsiz + q * siz.YTsiz, siz.YOsiz);
|
|
tile.tx1 = Math.min(siz.XTOsiz + (p + 1) * siz.XTsiz, siz.Xsiz);
|
|
tile.ty1 = Math.min(siz.YTOsiz + (q + 1) * siz.YTsiz, siz.Ysiz);
|
|
tile.width = tile.tx1 - tile.tx0;
|
|
tile.height = tile.ty1 - tile.ty0;
|
|
tile.components = [];
|
|
tiles.push(tile);
|
|
}
|
|
}
|
|
context.tiles = tiles;
|
|
|
|
const componentsCount = siz.Csiz;
|
|
for (let i = 0, ii = componentsCount; i < ii; i++) {
|
|
const component = components[i];
|
|
for (let j = 0, jj = tiles.length; j < jj; j++) {
|
|
const tileComponent = {};
|
|
tile = tiles[j];
|
|
tileComponent.tcx0 = Math.ceil(tile.tx0 / component.XRsiz);
|
|
tileComponent.tcy0 = Math.ceil(tile.ty0 / component.YRsiz);
|
|
tileComponent.tcx1 = Math.ceil(tile.tx1 / component.XRsiz);
|
|
tileComponent.tcy1 = Math.ceil(tile.ty1 / component.YRsiz);
|
|
tileComponent.width = tileComponent.tcx1 - tileComponent.tcx0;
|
|
tileComponent.height = tileComponent.tcy1 - tileComponent.tcy0;
|
|
tile.components[i] = tileComponent;
|
|
}
|
|
}
|
|
}
|
|
function getBlocksDimensions(context, component, r) {
|
|
const codOrCoc = component.codingStyleParameters;
|
|
const result = {};
|
|
if (!codOrCoc.entropyCoderWithCustomPrecincts) {
|
|
result.PPx = 15;
|
|
result.PPy = 15;
|
|
} else {
|
|
result.PPx = codOrCoc.precinctsSizes[r].PPx;
|
|
result.PPy = codOrCoc.precinctsSizes[r].PPy;
|
|
}
|
|
// calculate codeblock size as described in section B.7
|
|
result.xcb_ =
|
|
r > 0
|
|
? Math.min(codOrCoc.xcb, result.PPx - 1)
|
|
: Math.min(codOrCoc.xcb, result.PPx);
|
|
result.ycb_ =
|
|
r > 0
|
|
? Math.min(codOrCoc.ycb, result.PPy - 1)
|
|
: Math.min(codOrCoc.ycb, result.PPy);
|
|
return result;
|
|
}
|
|
function buildPrecincts(context, resolution, dimensions) {
|
|
// Section B.6 Division resolution to precincts
|
|
const precinctWidth = 1 << dimensions.PPx;
|
|
const precinctHeight = 1 << dimensions.PPy;
|
|
// Jasper introduces codeblock groups for mapping each subband codeblocks
|
|
// to precincts. Precinct partition divides a resolution according to width
|
|
// and height parameters. The subband that belongs to the resolution level
|
|
// has a different size than the level, unless it is the zero resolution.
|
|
|
|
// From Jasper documentation: jpeg2000.pdf, section K: Tier-2 coding:
|
|
// The precinct partitioning for a particular subband is derived from a
|
|
// partitioning of its parent LL band (i.e., the LL band at the next higher
|
|
// resolution level)... The LL band associated with each resolution level is
|
|
// divided into precincts... Each of the resulting precinct regions is then
|
|
// mapped into its child subbands (if any) at the next lower resolution
|
|
// level. This is accomplished by using the coordinate transformation
|
|
// (u, v) = (ceil(x/2), ceil(y/2)) where (x, y) and (u, v) are the
|
|
// coordinates of a point in the LL band and child subband, respectively.
|
|
const isZeroRes = resolution.resLevel === 0;
|
|
const precinctWidthInSubband = 1 << (dimensions.PPx + (isZeroRes ? 0 : -1));
|
|
const precinctHeightInSubband = 1 << (dimensions.PPy + (isZeroRes ? 0 : -1));
|
|
const numprecinctswide =
|
|
resolution.trx1 > resolution.trx0
|
|
? Math.ceil(resolution.trx1 / precinctWidth) -
|
|
Math.floor(resolution.trx0 / precinctWidth)
|
|
: 0;
|
|
const numprecinctshigh =
|
|
resolution.try1 > resolution.try0
|
|
? Math.ceil(resolution.try1 / precinctHeight) -
|
|
Math.floor(resolution.try0 / precinctHeight)
|
|
: 0;
|
|
const numprecincts = numprecinctswide * numprecinctshigh;
|
|
|
|
resolution.precinctParameters = {
|
|
precinctWidth,
|
|
precinctHeight,
|
|
numprecinctswide,
|
|
numprecinctshigh,
|
|
numprecincts,
|
|
precinctWidthInSubband,
|
|
precinctHeightInSubband,
|
|
};
|
|
}
|
|
function buildCodeblocks(context, subband, dimensions) {
|
|
// Section B.7 Division sub-band into code-blocks
|
|
const xcb_ = dimensions.xcb_;
|
|
const ycb_ = dimensions.ycb_;
|
|
const codeblockWidth = 1 << xcb_;
|
|
const codeblockHeight = 1 << ycb_;
|
|
const cbx0 = subband.tbx0 >> xcb_;
|
|
const cby0 = subband.tby0 >> ycb_;
|
|
const cbx1 = (subband.tbx1 + codeblockWidth - 1) >> xcb_;
|
|
const cby1 = (subband.tby1 + codeblockHeight - 1) >> ycb_;
|
|
const precinctParameters = subband.resolution.precinctParameters;
|
|
const codeblocks = [];
|
|
const precincts = [];
|
|
let i, j, codeblock, precinctNumber;
|
|
for (j = cby0; j < cby1; j++) {
|
|
for (i = cbx0; i < cbx1; i++) {
|
|
codeblock = {
|
|
cbx: i,
|
|
cby: j,
|
|
tbx0: codeblockWidth * i,
|
|
tby0: codeblockHeight * j,
|
|
tbx1: codeblockWidth * (i + 1),
|
|
tby1: codeblockHeight * (j + 1),
|
|
};
|
|
|
|
codeblock.tbx0_ = Math.max(subband.tbx0, codeblock.tbx0);
|
|
codeblock.tby0_ = Math.max(subband.tby0, codeblock.tby0);
|
|
codeblock.tbx1_ = Math.min(subband.tbx1, codeblock.tbx1);
|
|
codeblock.tby1_ = Math.min(subband.tby1, codeblock.tby1);
|
|
|
|
// Calculate precinct number for this codeblock, codeblock position
|
|
// should be relative to its subband, use actual dimension and position
|
|
// See comment about codeblock group width and height
|
|
const pi = Math.floor(
|
|
(codeblock.tbx0_ - subband.tbx0) /
|
|
precinctParameters.precinctWidthInSubband
|
|
);
|
|
const pj = Math.floor(
|
|
(codeblock.tby0_ - subband.tby0) /
|
|
precinctParameters.precinctHeightInSubband
|
|
);
|
|
precinctNumber = pi + pj * precinctParameters.numprecinctswide;
|
|
|
|
codeblock.precinctNumber = precinctNumber;
|
|
codeblock.subbandType = subband.type;
|
|
codeblock.Lblock = 3;
|
|
|
|
if (
|
|
codeblock.tbx1_ <= codeblock.tbx0_ ||
|
|
codeblock.tby1_ <= codeblock.tby0_
|
|
) {
|
|
continue;
|
|
}
|
|
codeblocks.push(codeblock);
|
|
// building precinct for the sub-band
|
|
let precinct = precincts[precinctNumber];
|
|
if (precinct !== undefined) {
|
|
if (i < precinct.cbxMin) {
|
|
precinct.cbxMin = i;
|
|
} else if (i > precinct.cbxMax) {
|
|
precinct.cbxMax = i;
|
|
}
|
|
if (j < precinct.cbyMin) {
|
|
precinct.cbxMin = j;
|
|
} else if (j > precinct.cbyMax) {
|
|
precinct.cbyMax = j;
|
|
}
|
|
} else {
|
|
precincts[precinctNumber] = precinct = {
|
|
cbxMin: i,
|
|
cbyMin: j,
|
|
cbxMax: i,
|
|
cbyMax: j,
|
|
};
|
|
}
|
|
codeblock.precinct = precinct;
|
|
}
|
|
}
|
|
subband.codeblockParameters = {
|
|
codeblockWidth: xcb_,
|
|
codeblockHeight: ycb_,
|
|
numcodeblockwide: cbx1 - cbx0 + 1,
|
|
numcodeblockhigh: cby1 - cby0 + 1,
|
|
};
|
|
subband.codeblocks = codeblocks;
|
|
subband.precincts = precincts;
|
|
}
|
|
function createPacket(resolution, precinctNumber, layerNumber) {
|
|
const precinctCodeblocks = [];
|
|
// Section B.10.8 Order of info in packet
|
|
const subbands = resolution.subbands;
|
|
// sub-bands already ordered in 'LL', 'HL', 'LH', and 'HH' sequence
|
|
for (let i = 0, ii = subbands.length; i < ii; i++) {
|
|
const subband = subbands[i];
|
|
const codeblocks = subband.codeblocks;
|
|
for (let j = 0, jj = codeblocks.length; j < jj; j++) {
|
|
const codeblock = codeblocks[j];
|
|
if (codeblock.precinctNumber !== precinctNumber) {
|
|
continue;
|
|
}
|
|
precinctCodeblocks.push(codeblock);
|
|
}
|
|
}
|
|
return {
|
|
layerNumber,
|
|
codeblocks: precinctCodeblocks,
|
|
};
|
|
}
|
|
function LayerResolutionComponentPositionIterator(context) {
|
|
const siz = context.SIZ;
|
|
const tileIndex = context.currentTile.index;
|
|
const tile = context.tiles[tileIndex];
|
|
const layersCount = tile.codingStyleDefaultParameters.layersCount;
|
|
const componentsCount = siz.Csiz;
|
|
let maxDecompositionLevelsCount = 0;
|
|
for (let q = 0; q < componentsCount; q++) {
|
|
maxDecompositionLevelsCount = Math.max(
|
|
maxDecompositionLevelsCount,
|
|
tile.components[q].codingStyleParameters.decompositionLevelsCount
|
|
);
|
|
}
|
|
|
|
let l = 0,
|
|
r = 0,
|
|
i = 0,
|
|
k = 0;
|
|
|
|
this.nextPacket = function JpxImage_nextPacket() {
|
|
// Section B.12.1.1 Layer-resolution-component-position
|
|
for (; l < layersCount; l++) {
|
|
for (; r <= maxDecompositionLevelsCount; r++) {
|
|
for (; i < componentsCount; i++) {
|
|
const component = tile.components[i];
|
|
if (r > component.codingStyleParameters.decompositionLevelsCount) {
|
|
continue;
|
|
}
|
|
|
|
const resolution = component.resolutions[r];
|
|
const numprecincts = resolution.precinctParameters.numprecincts;
|
|
for (; k < numprecincts; ) {
|
|
const packet = createPacket(resolution, k, l);
|
|
k++;
|
|
return packet;
|
|
}
|
|
k = 0;
|
|
}
|
|
i = 0;
|
|
}
|
|
r = 0;
|
|
}
|
|
throw new JpxError("Out of packets");
|
|
};
|
|
}
|
|
function ResolutionLayerComponentPositionIterator(context) {
|
|
const siz = context.SIZ;
|
|
const tileIndex = context.currentTile.index;
|
|
const tile = context.tiles[tileIndex];
|
|
const layersCount = tile.codingStyleDefaultParameters.layersCount;
|
|
const componentsCount = siz.Csiz;
|
|
let maxDecompositionLevelsCount = 0;
|
|
for (let q = 0; q < componentsCount; q++) {
|
|
maxDecompositionLevelsCount = Math.max(
|
|
maxDecompositionLevelsCount,
|
|
tile.components[q].codingStyleParameters.decompositionLevelsCount
|
|
);
|
|
}
|
|
|
|
let r = 0,
|
|
l = 0,
|
|
i = 0,
|
|
k = 0;
|
|
|
|
this.nextPacket = function JpxImage_nextPacket() {
|
|
// Section B.12.1.2 Resolution-layer-component-position
|
|
for (; r <= maxDecompositionLevelsCount; r++) {
|
|
for (; l < layersCount; l++) {
|
|
for (; i < componentsCount; i++) {
|
|
const component = tile.components[i];
|
|
if (r > component.codingStyleParameters.decompositionLevelsCount) {
|
|
continue;
|
|
}
|
|
|
|
const resolution = component.resolutions[r];
|
|
const numprecincts = resolution.precinctParameters.numprecincts;
|
|
for (; k < numprecincts; ) {
|
|
const packet = createPacket(resolution, k, l);
|
|
k++;
|
|
return packet;
|
|
}
|
|
k = 0;
|
|
}
|
|
i = 0;
|
|
}
|
|
l = 0;
|
|
}
|
|
throw new JpxError("Out of packets");
|
|
};
|
|
}
|
|
function ResolutionPositionComponentLayerIterator(context) {
|
|
const siz = context.SIZ;
|
|
const tileIndex = context.currentTile.index;
|
|
const tile = context.tiles[tileIndex];
|
|
const layersCount = tile.codingStyleDefaultParameters.layersCount;
|
|
const componentsCount = siz.Csiz;
|
|
let l, r, c, p;
|
|
let maxDecompositionLevelsCount = 0;
|
|
for (c = 0; c < componentsCount; c++) {
|
|
const component = tile.components[c];
|
|
maxDecompositionLevelsCount = Math.max(
|
|
maxDecompositionLevelsCount,
|
|
component.codingStyleParameters.decompositionLevelsCount
|
|
);
|
|
}
|
|
const maxNumPrecinctsInLevel = new Int32Array(
|
|
maxDecompositionLevelsCount + 1
|
|
);
|
|
for (r = 0; r <= maxDecompositionLevelsCount; ++r) {
|
|
let maxNumPrecincts = 0;
|
|
for (c = 0; c < componentsCount; ++c) {
|
|
const resolutions = tile.components[c].resolutions;
|
|
if (r < resolutions.length) {
|
|
maxNumPrecincts = Math.max(
|
|
maxNumPrecincts,
|
|
resolutions[r].precinctParameters.numprecincts
|
|
);
|
|
}
|
|
}
|
|
maxNumPrecinctsInLevel[r] = maxNumPrecincts;
|
|
}
|
|
l = 0;
|
|
r = 0;
|
|
c = 0;
|
|
p = 0;
|
|
|
|
this.nextPacket = function JpxImage_nextPacket() {
|
|
// Section B.12.1.3 Resolution-position-component-layer
|
|
for (; r <= maxDecompositionLevelsCount; r++) {
|
|
for (; p < maxNumPrecinctsInLevel[r]; p++) {
|
|
for (; c < componentsCount; c++) {
|
|
const component = tile.components[c];
|
|
if (r > component.codingStyleParameters.decompositionLevelsCount) {
|
|
continue;
|
|
}
|
|
const resolution = component.resolutions[r];
|
|
const numprecincts = resolution.precinctParameters.numprecincts;
|
|
if (p >= numprecincts) {
|
|
continue;
|
|
}
|
|
for (; l < layersCount; ) {
|
|
const packet = createPacket(resolution, p, l);
|
|
l++;
|
|
return packet;
|
|
}
|
|
l = 0;
|
|
}
|
|
c = 0;
|
|
}
|
|
p = 0;
|
|
}
|
|
throw new JpxError("Out of packets");
|
|
};
|
|
}
|
|
function PositionComponentResolutionLayerIterator(context) {
|
|
const siz = context.SIZ;
|
|
const tileIndex = context.currentTile.index;
|
|
const tile = context.tiles[tileIndex];
|
|
const layersCount = tile.codingStyleDefaultParameters.layersCount;
|
|
const componentsCount = siz.Csiz;
|
|
const precinctsSizes = getPrecinctSizesInImageScale(tile);
|
|
const precinctsIterationSizes = precinctsSizes;
|
|
let l = 0,
|
|
r = 0,
|
|
c = 0,
|
|
px = 0,
|
|
py = 0;
|
|
|
|
this.nextPacket = function JpxImage_nextPacket() {
|
|
// Section B.12.1.4 Position-component-resolution-layer
|
|
for (; py < precinctsIterationSizes.maxNumHigh; py++) {
|
|
for (; px < precinctsIterationSizes.maxNumWide; px++) {
|
|
for (; c < componentsCount; c++) {
|
|
const component = tile.components[c];
|
|
const decompositionLevelsCount =
|
|
component.codingStyleParameters.decompositionLevelsCount;
|
|
for (; r <= decompositionLevelsCount; r++) {
|
|
const resolution = component.resolutions[r];
|
|
const sizeInImageScale =
|
|
precinctsSizes.components[c].resolutions[r];
|
|
const k = getPrecinctIndexIfExist(
|
|
px,
|
|
py,
|
|
sizeInImageScale,
|
|
precinctsIterationSizes,
|
|
resolution
|
|
);
|
|
if (k === null) {
|
|
continue;
|
|
}
|
|
for (; l < layersCount; ) {
|
|
const packet = createPacket(resolution, k, l);
|
|
l++;
|
|
return packet;
|
|
}
|
|
l = 0;
|
|
}
|
|
r = 0;
|
|
}
|
|
c = 0;
|
|
}
|
|
px = 0;
|
|
}
|
|
throw new JpxError("Out of packets");
|
|
};
|
|
}
|
|
function ComponentPositionResolutionLayerIterator(context) {
|
|
const siz = context.SIZ;
|
|
const tileIndex = context.currentTile.index;
|
|
const tile = context.tiles[tileIndex];
|
|
const layersCount = tile.codingStyleDefaultParameters.layersCount;
|
|
const componentsCount = siz.Csiz;
|
|
const precinctsSizes = getPrecinctSizesInImageScale(tile);
|
|
let l = 0,
|
|
r = 0,
|
|
c = 0,
|
|
px = 0,
|
|
py = 0;
|
|
|
|
this.nextPacket = function JpxImage_nextPacket() {
|
|
// Section B.12.1.5 Component-position-resolution-layer
|
|
for (; c < componentsCount; ++c) {
|
|
const component = tile.components[c];
|
|
const precinctsIterationSizes = precinctsSizes.components[c];
|
|
const decompositionLevelsCount =
|
|
component.codingStyleParameters.decompositionLevelsCount;
|
|
for (; py < precinctsIterationSizes.maxNumHigh; py++) {
|
|
for (; px < precinctsIterationSizes.maxNumWide; px++) {
|
|
for (; r <= decompositionLevelsCount; r++) {
|
|
const resolution = component.resolutions[r];
|
|
const sizeInImageScale = precinctsIterationSizes.resolutions[r];
|
|
const k = getPrecinctIndexIfExist(
|
|
px,
|
|
py,
|
|
sizeInImageScale,
|
|
precinctsIterationSizes,
|
|
resolution
|
|
);
|
|
if (k === null) {
|
|
continue;
|
|
}
|
|
for (; l < layersCount; ) {
|
|
const packet = createPacket(resolution, k, l);
|
|
l++;
|
|
return packet;
|
|
}
|
|
l = 0;
|
|
}
|
|
r = 0;
|
|
}
|
|
px = 0;
|
|
}
|
|
py = 0;
|
|
}
|
|
throw new JpxError("Out of packets");
|
|
};
|
|
}
|
|
function getPrecinctIndexIfExist(
|
|
pxIndex,
|
|
pyIndex,
|
|
sizeInImageScale,
|
|
precinctIterationSizes,
|
|
resolution
|
|
) {
|
|
const posX = pxIndex * precinctIterationSizes.minWidth;
|
|
const posY = pyIndex * precinctIterationSizes.minHeight;
|
|
if (
|
|
posX % sizeInImageScale.width !== 0 ||
|
|
posY % sizeInImageScale.height !== 0
|
|
) {
|
|
return null;
|
|
}
|
|
const startPrecinctRowIndex =
|
|
(posY / sizeInImageScale.width) *
|
|
resolution.precinctParameters.numprecinctswide;
|
|
return posX / sizeInImageScale.height + startPrecinctRowIndex;
|
|
}
|
|
function getPrecinctSizesInImageScale(tile) {
|
|
const componentsCount = tile.components.length;
|
|
let minWidth = Number.MAX_VALUE;
|
|
let minHeight = Number.MAX_VALUE;
|
|
let maxNumWide = 0;
|
|
let maxNumHigh = 0;
|
|
const sizePerComponent = new Array(componentsCount);
|
|
for (let c = 0; c < componentsCount; c++) {
|
|
const component = tile.components[c];
|
|
const decompositionLevelsCount =
|
|
component.codingStyleParameters.decompositionLevelsCount;
|
|
const sizePerResolution = new Array(decompositionLevelsCount + 1);
|
|
let minWidthCurrentComponent = Number.MAX_VALUE;
|
|
let minHeightCurrentComponent = Number.MAX_VALUE;
|
|
let maxNumWideCurrentComponent = 0;
|
|
let maxNumHighCurrentComponent = 0;
|
|
let scale = 1;
|
|
for (let r = decompositionLevelsCount; r >= 0; --r) {
|
|
const resolution = component.resolutions[r];
|
|
const widthCurrentResolution =
|
|
scale * resolution.precinctParameters.precinctWidth;
|
|
const heightCurrentResolution =
|
|
scale * resolution.precinctParameters.precinctHeight;
|
|
minWidthCurrentComponent = Math.min(
|
|
minWidthCurrentComponent,
|
|
widthCurrentResolution
|
|
);
|
|
minHeightCurrentComponent = Math.min(
|
|
minHeightCurrentComponent,
|
|
heightCurrentResolution
|
|
);
|
|
maxNumWideCurrentComponent = Math.max(
|
|
maxNumWideCurrentComponent,
|
|
resolution.precinctParameters.numprecinctswide
|
|
);
|
|
maxNumHighCurrentComponent = Math.max(
|
|
maxNumHighCurrentComponent,
|
|
resolution.precinctParameters.numprecinctshigh
|
|
);
|
|
sizePerResolution[r] = {
|
|
width: widthCurrentResolution,
|
|
height: heightCurrentResolution,
|
|
};
|
|
scale <<= 1;
|
|
}
|
|
minWidth = Math.min(minWidth, minWidthCurrentComponent);
|
|
minHeight = Math.min(minHeight, minHeightCurrentComponent);
|
|
maxNumWide = Math.max(maxNumWide, maxNumWideCurrentComponent);
|
|
maxNumHigh = Math.max(maxNumHigh, maxNumHighCurrentComponent);
|
|
sizePerComponent[c] = {
|
|
resolutions: sizePerResolution,
|
|
minWidth: minWidthCurrentComponent,
|
|
minHeight: minHeightCurrentComponent,
|
|
maxNumWide: maxNumWideCurrentComponent,
|
|
maxNumHigh: maxNumHighCurrentComponent,
|
|
};
|
|
}
|
|
return {
|
|
components: sizePerComponent,
|
|
minWidth,
|
|
minHeight,
|
|
maxNumWide,
|
|
maxNumHigh,
|
|
};
|
|
}
|
|
function buildPackets(context) {
|
|
const siz = context.SIZ;
|
|
const tileIndex = context.currentTile.index;
|
|
const tile = context.tiles[tileIndex];
|
|
const componentsCount = siz.Csiz;
|
|
// Creating resolutions and sub-bands for each component
|
|
for (let c = 0; c < componentsCount; c++) {
|
|
const component = tile.components[c];
|
|
const decompositionLevelsCount =
|
|
component.codingStyleParameters.decompositionLevelsCount;
|
|
// Section B.5 Resolution levels and sub-bands
|
|
const resolutions = [];
|
|
const subbands = [];
|
|
for (let r = 0; r <= decompositionLevelsCount; r++) {
|
|
const blocksDimensions = getBlocksDimensions(context, component, r);
|
|
const resolution = {};
|
|
const scale = 1 << (decompositionLevelsCount - r);
|
|
resolution.trx0 = Math.ceil(component.tcx0 / scale);
|
|
resolution.try0 = Math.ceil(component.tcy0 / scale);
|
|
resolution.trx1 = Math.ceil(component.tcx1 / scale);
|
|
resolution.try1 = Math.ceil(component.tcy1 / scale);
|
|
resolution.resLevel = r;
|
|
buildPrecincts(context, resolution, blocksDimensions);
|
|
resolutions.push(resolution);
|
|
|
|
let subband;
|
|
if (r === 0) {
|
|
// one sub-band (LL) with last decomposition
|
|
subband = {};
|
|
subband.type = "LL";
|
|
subband.tbx0 = Math.ceil(component.tcx0 / scale);
|
|
subband.tby0 = Math.ceil(component.tcy0 / scale);
|
|
subband.tbx1 = Math.ceil(component.tcx1 / scale);
|
|
subband.tby1 = Math.ceil(component.tcy1 / scale);
|
|
subband.resolution = resolution;
|
|
buildCodeblocks(context, subband, blocksDimensions);
|
|
subbands.push(subband);
|
|
resolution.subbands = [subband];
|
|
} else {
|
|
const bscale = 1 << (decompositionLevelsCount - r + 1);
|
|
const resolutionSubbands = [];
|
|
// three sub-bands (HL, LH and HH) with rest of decompositions
|
|
subband = {};
|
|
subband.type = "HL";
|
|
subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5);
|
|
subband.tby0 = Math.ceil(component.tcy0 / bscale);
|
|
subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5);
|
|
subband.tby1 = Math.ceil(component.tcy1 / bscale);
|
|
subband.resolution = resolution;
|
|
buildCodeblocks(context, subband, blocksDimensions);
|
|
subbands.push(subband);
|
|
resolutionSubbands.push(subband);
|
|
|
|
subband = {};
|
|
subband.type = "LH";
|
|
subband.tbx0 = Math.ceil(component.tcx0 / bscale);
|
|
subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5);
|
|
subband.tbx1 = Math.ceil(component.tcx1 / bscale);
|
|
subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5);
|
|
subband.resolution = resolution;
|
|
buildCodeblocks(context, subband, blocksDimensions);
|
|
subbands.push(subband);
|
|
resolutionSubbands.push(subband);
|
|
|
|
subband = {};
|
|
subband.type = "HH";
|
|
subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5);
|
|
subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5);
|
|
subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5);
|
|
subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5);
|
|
subband.resolution = resolution;
|
|
buildCodeblocks(context, subband, blocksDimensions);
|
|
subbands.push(subband);
|
|
resolutionSubbands.push(subband);
|
|
|
|
resolution.subbands = resolutionSubbands;
|
|
}
|
|
}
|
|
component.resolutions = resolutions;
|
|
component.subbands = subbands;
|
|
}
|
|
// Generate the packets sequence
|
|
const progressionOrder = tile.codingStyleDefaultParameters.progressionOrder;
|
|
switch (progressionOrder) {
|
|
case 0:
|
|
tile.packetsIterator = new LayerResolutionComponentPositionIterator(
|
|
context
|
|
);
|
|
break;
|
|
case 1:
|
|
tile.packetsIterator = new ResolutionLayerComponentPositionIterator(
|
|
context
|
|
);
|
|
break;
|
|
case 2:
|
|
tile.packetsIterator = new ResolutionPositionComponentLayerIterator(
|
|
context
|
|
);
|
|
break;
|
|
case 3:
|
|
tile.packetsIterator = new PositionComponentResolutionLayerIterator(
|
|
context
|
|
);
|
|
break;
|
|
case 4:
|
|
tile.packetsIterator = new ComponentPositionResolutionLayerIterator(
|
|
context
|
|
);
|
|
break;
|
|
default:
|
|
throw new JpxError(`Unsupported progression order ${progressionOrder}`);
|
|
}
|
|
}
|
|
function parseTilePackets(context, data, offset, dataLength) {
|
|
let position = 0;
|
|
let buffer,
|
|
bufferSize = 0,
|
|
skipNextBit = false;
|
|
function readBits(count) {
|
|
while (bufferSize < count) {
|
|
const b = data[offset + position];
|
|
position++;
|
|
if (skipNextBit) {
|
|
buffer = (buffer << 7) | b;
|
|
bufferSize += 7;
|
|
skipNextBit = false;
|
|
} else {
|
|
buffer = (buffer << 8) | b;
|
|
bufferSize += 8;
|
|
}
|
|
if (b === 0xff) {
|
|
skipNextBit = true;
|
|
}
|
|
}
|
|
bufferSize -= count;
|
|
return (buffer >>> bufferSize) & ((1 << count) - 1);
|
|
}
|
|
function skipMarkerIfEqual(value) {
|
|
if (
|
|
data[offset + position - 1] === 0xff &&
|
|
data[offset + position] === value
|
|
) {
|
|
skipBytes(1);
|
|
return true;
|
|
} else if (
|
|
data[offset + position] === 0xff &&
|
|
data[offset + position + 1] === value
|
|
) {
|
|
skipBytes(2);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
function skipBytes(count) {
|
|
position += count;
|
|
}
|
|
function alignToByte() {
|
|
bufferSize = 0;
|
|
if (skipNextBit) {
|
|
position++;
|
|
skipNextBit = false;
|
|
}
|
|
}
|
|
function readCodingpasses() {
|
|
if (readBits(1) === 0) {
|
|
return 1;
|
|
}
|
|
if (readBits(1) === 0) {
|
|
return 2;
|
|
}
|
|
let value = readBits(2);
|
|
if (value < 3) {
|
|
return value + 3;
|
|
}
|
|
value = readBits(5);
|
|
if (value < 31) {
|
|
return value + 6;
|
|
}
|
|
value = readBits(7);
|
|
return value + 37;
|
|
}
|
|
const tileIndex = context.currentTile.index;
|
|
const tile = context.tiles[tileIndex];
|
|
const sopMarkerUsed = context.COD.sopMarkerUsed;
|
|
const ephMarkerUsed = context.COD.ephMarkerUsed;
|
|
const packetsIterator = tile.packetsIterator;
|
|
while (position < dataLength) {
|
|
alignToByte();
|
|
if (sopMarkerUsed && skipMarkerIfEqual(0x91)) {
|
|
// Skip also marker segment length and packet sequence ID
|
|
skipBytes(4);
|
|
}
|
|
const packet = packetsIterator.nextPacket();
|
|
if (!readBits(1)) {
|
|
continue;
|
|
}
|
|
const layerNumber = packet.layerNumber,
|
|
queue = [];
|
|
let codeblock;
|
|
for (let i = 0, ii = packet.codeblocks.length; i < ii; i++) {
|
|
codeblock = packet.codeblocks[i];
|
|
let precinct = codeblock.precinct;
|
|
const codeblockColumn = codeblock.cbx - precinct.cbxMin;
|
|
const codeblockRow = codeblock.cby - precinct.cbyMin;
|
|
let codeblockIncluded = false;
|
|
let firstTimeInclusion = false;
|
|
let valueReady, zeroBitPlanesTree;
|
|
if (codeblock.included !== undefined) {
|
|
codeblockIncluded = !!readBits(1);
|
|
} else {
|
|
// reading inclusion tree
|
|
precinct = codeblock.precinct;
|
|
let inclusionTree;
|
|
if (precinct.inclusionTree !== undefined) {
|
|
inclusionTree = precinct.inclusionTree;
|
|
} else {
|
|
// building inclusion and zero bit-planes trees
|
|
const width = precinct.cbxMax - precinct.cbxMin + 1;
|
|
const height = precinct.cbyMax - precinct.cbyMin + 1;
|
|
inclusionTree = new InclusionTree(width, height, layerNumber);
|
|
zeroBitPlanesTree = new TagTree(width, height);
|
|
precinct.inclusionTree = inclusionTree;
|
|
precinct.zeroBitPlanesTree = zeroBitPlanesTree;
|
|
for (let l = 0; l < layerNumber; l++) {
|
|
if (readBits(1) !== 0) {
|
|
throw new JpxError("Invalid tag tree");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (inclusionTree.reset(codeblockColumn, codeblockRow, layerNumber)) {
|
|
while (true) {
|
|
if (readBits(1)) {
|
|
valueReady = !inclusionTree.nextLevel();
|
|
if (valueReady) {
|
|
codeblock.included = true;
|
|
codeblockIncluded = firstTimeInclusion = true;
|
|
break;
|
|
}
|
|
} else {
|
|
inclusionTree.incrementValue(layerNumber);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!codeblockIncluded) {
|
|
continue;
|
|
}
|
|
if (firstTimeInclusion) {
|
|
zeroBitPlanesTree = precinct.zeroBitPlanesTree;
|
|
zeroBitPlanesTree.reset(codeblockColumn, codeblockRow);
|
|
while (true) {
|
|
if (readBits(1)) {
|
|
valueReady = !zeroBitPlanesTree.nextLevel();
|
|
if (valueReady) {
|
|
break;
|
|
}
|
|
} else {
|
|
zeroBitPlanesTree.incrementValue();
|
|
}
|
|
}
|
|
codeblock.zeroBitPlanes = zeroBitPlanesTree.value;
|
|
}
|
|
const codingpasses = readCodingpasses();
|
|
while (readBits(1)) {
|
|
codeblock.Lblock++;
|
|
}
|
|
const codingpassesLog2 = log2(codingpasses);
|
|
// rounding down log2
|
|
const bits =
|
|
(codingpasses < 1 << codingpassesLog2
|
|
? codingpassesLog2 - 1
|
|
: codingpassesLog2) + codeblock.Lblock;
|
|
const codedDataLength = readBits(bits);
|
|
queue.push({
|
|
codeblock,
|
|
codingpasses,
|
|
dataLength: codedDataLength,
|
|
});
|
|
}
|
|
alignToByte();
|
|
if (ephMarkerUsed) {
|
|
skipMarkerIfEqual(0x92);
|
|
}
|
|
while (queue.length > 0) {
|
|
const packetItem = queue.shift();
|
|
codeblock = packetItem.codeblock;
|
|
if (codeblock.data === undefined) {
|
|
codeblock.data = [];
|
|
}
|
|
codeblock.data.push({
|
|
data,
|
|
start: offset + position,
|
|
end: offset + position + packetItem.dataLength,
|
|
codingpasses: packetItem.codingpasses,
|
|
});
|
|
position += packetItem.dataLength;
|
|
}
|
|
}
|
|
return position;
|
|
}
|
|
function copyCoefficients(
|
|
coefficients,
|
|
levelWidth,
|
|
levelHeight,
|
|
subband,
|
|
delta,
|
|
mb,
|
|
reversible,
|
|
segmentationSymbolUsed
|
|
) {
|
|
const x0 = subband.tbx0;
|
|
const y0 = subband.tby0;
|
|
const width = subband.tbx1 - subband.tbx0;
|
|
const codeblocks = subband.codeblocks;
|
|
const right = subband.type.charAt(0) === "H" ? 1 : 0;
|
|
const bottom = subband.type.charAt(1) === "H" ? levelWidth : 0;
|
|
|
|
for (let i = 0, ii = codeblocks.length; i < ii; ++i) {
|
|
const codeblock = codeblocks[i];
|
|
const blockWidth = codeblock.tbx1_ - codeblock.tbx0_;
|
|
const blockHeight = codeblock.tby1_ - codeblock.tby0_;
|
|
if (blockWidth === 0 || blockHeight === 0) {
|
|
continue;
|
|
}
|
|
if (codeblock.data === undefined) {
|
|
continue;
|
|
}
|
|
|
|
const bitModel = new BitModel(
|
|
blockWidth,
|
|
blockHeight,
|
|
codeblock.subbandType,
|
|
codeblock.zeroBitPlanes,
|
|
mb
|
|
);
|
|
let currentCodingpassType = 2; // first bit plane starts from cleanup
|
|
|
|
// collect data
|
|
const data = codeblock.data;
|
|
let totalLength = 0,
|
|
codingpasses = 0;
|
|
let j, jj, dataItem;
|
|
for (j = 0, jj = data.length; j < jj; j++) {
|
|
dataItem = data[j];
|
|
totalLength += dataItem.end - dataItem.start;
|
|
codingpasses += dataItem.codingpasses;
|
|
}
|
|
const encodedData = new Uint8Array(totalLength);
|
|
let position = 0;
|
|
for (j = 0, jj = data.length; j < jj; j++) {
|
|
dataItem = data[j];
|
|
const chunk = dataItem.data.subarray(dataItem.start, dataItem.end);
|
|
encodedData.set(chunk, position);
|
|
position += chunk.length;
|
|
}
|
|
// decoding the item
|
|
const decoder = new ArithmeticDecoder(encodedData, 0, totalLength);
|
|
bitModel.setDecoder(decoder);
|
|
|
|
for (j = 0; j < codingpasses; j++) {
|
|
switch (currentCodingpassType) {
|
|
case 0:
|
|
bitModel.runSignificancePropagationPass();
|
|
break;
|
|
case 1:
|
|
bitModel.runMagnitudeRefinementPass();
|
|
break;
|
|
case 2:
|
|
bitModel.runCleanupPass();
|
|
if (segmentationSymbolUsed) {
|
|
bitModel.checkSegmentationSymbol();
|
|
}
|
|
break;
|
|
}
|
|
currentCodingpassType = (currentCodingpassType + 1) % 3;
|
|
}
|
|
|
|
let offset = codeblock.tbx0_ - x0 + (codeblock.tby0_ - y0) * width;
|
|
const sign = bitModel.coefficentsSign;
|
|
const magnitude = bitModel.coefficentsMagnitude;
|
|
const bitsDecoded = bitModel.bitsDecoded;
|
|
const magnitudeCorrection = reversible ? 0 : 0.5;
|
|
let k, n, nb;
|
|
position = 0;
|
|
// Do the interleaving of Section F.3.3 here, so we do not need
|
|
// to copy later. LL level is not interleaved, just copied.
|
|
const interleave = subband.type !== "LL";
|
|
for (j = 0; j < blockHeight; j++) {
|
|
const row = (offset / width) | 0; // row in the non-interleaved subband
|
|
const levelOffset = 2 * row * (levelWidth - width) + right + bottom;
|
|
for (k = 0; k < blockWidth; k++) {
|
|
n = magnitude[position];
|
|
if (n !== 0) {
|
|
n = (n + magnitudeCorrection) * delta;
|
|
if (sign[position] !== 0) {
|
|
n = -n;
|
|
}
|
|
nb = bitsDecoded[position];
|
|
const pos = interleave ? levelOffset + (offset << 1) : offset;
|
|
if (reversible && nb >= mb) {
|
|
coefficients[pos] = n;
|
|
} else {
|
|
coefficients[pos] = n * (1 << (mb - nb));
|
|
}
|
|
}
|
|
offset++;
|
|
position++;
|
|
}
|
|
offset += width - blockWidth;
|
|
}
|
|
}
|
|
}
|
|
function transformTile(context, tile, c) {
|
|
const component = tile.components[c];
|
|
const codingStyleParameters = component.codingStyleParameters;
|
|
const quantizationParameters = component.quantizationParameters;
|
|
const decompositionLevelsCount =
|
|
codingStyleParameters.decompositionLevelsCount;
|
|
const spqcds = quantizationParameters.SPqcds;
|
|
const scalarExpounded = quantizationParameters.scalarExpounded;
|
|
const guardBits = quantizationParameters.guardBits;
|
|
const segmentationSymbolUsed = codingStyleParameters.segmentationSymbolUsed;
|
|
const precision = context.components[c].precision;
|
|
|
|
const reversible = codingStyleParameters.reversibleTransformation;
|
|
const transform = reversible
|
|
? new ReversibleTransform()
|
|
: new IrreversibleTransform();
|
|
|
|
const subbandCoefficients = [];
|
|
let b = 0;
|
|
for (let i = 0; i <= decompositionLevelsCount; i++) {
|
|
const resolution = component.resolutions[i];
|
|
|
|
const width = resolution.trx1 - resolution.trx0;
|
|
const height = resolution.try1 - resolution.try0;
|
|
// Allocate space for the whole sublevel.
|
|
const coefficients = new Float32Array(width * height);
|
|
|
|
for (let j = 0, jj = resolution.subbands.length; j < jj; j++) {
|
|
let mu, epsilon;
|
|
if (!scalarExpounded) {
|
|
// formula E-5
|
|
mu = spqcds[0].mu;
|
|
epsilon = spqcds[0].epsilon + (i > 0 ? 1 - i : 0);
|
|
} else {
|
|
mu = spqcds[b].mu;
|
|
epsilon = spqcds[b].epsilon;
|
|
b++;
|
|
}
|
|
|
|
const subband = resolution.subbands[j];
|
|
const gainLog2 = SubbandsGainLog2[subband.type];
|
|
|
|
// calculate quantization coefficient (Section E.1.1.1)
|
|
const delta = reversible
|
|
? 1
|
|
: 2 ** (precision + gainLog2 - epsilon) * (1 + mu / 2048);
|
|
const mb = guardBits + epsilon - 1;
|
|
|
|
// In the first resolution level, copyCoefficients will fill the
|
|
// whole array with coefficients. In the succeeding passes,
|
|
// copyCoefficients will consecutively fill in the values that belong
|
|
// to the interleaved positions of the HL, LH, and HH coefficients.
|
|
// The LL coefficients will then be interleaved in Transform.iterate().
|
|
copyCoefficients(
|
|
coefficients,
|
|
width,
|
|
height,
|
|
subband,
|
|
delta,
|
|
mb,
|
|
reversible,
|
|
segmentationSymbolUsed
|
|
);
|
|
}
|
|
subbandCoefficients.push({
|
|
width,
|
|
height,
|
|
items: coefficients,
|
|
});
|
|
}
|
|
|
|
const result = transform.calculate(
|
|
subbandCoefficients,
|
|
component.tcx0,
|
|
component.tcy0
|
|
);
|
|
return {
|
|
left: component.tcx0,
|
|
top: component.tcy0,
|
|
width: result.width,
|
|
height: result.height,
|
|
items: result.items,
|
|
};
|
|
}
|
|
function transformComponents(context) {
|
|
const siz = context.SIZ;
|
|
const components = context.components;
|
|
const componentsCount = siz.Csiz;
|
|
const resultImages = [];
|
|
for (let i = 0, ii = context.tiles.length; i < ii; i++) {
|
|
const tile = context.tiles[i];
|
|
const transformedTiles = [];
|
|
for (let c = 0; c < componentsCount; c++) {
|
|
transformedTiles[c] = transformTile(context, tile, c);
|
|
}
|
|
const tile0 = transformedTiles[0];
|
|
const out = new Uint8ClampedArray(tile0.items.length * componentsCount);
|
|
const result = {
|
|
left: tile0.left,
|
|
top: tile0.top,
|
|
width: tile0.width,
|
|
height: tile0.height,
|
|
items: out,
|
|
};
|
|
|
|
// Section G.2.2 Inverse multi component transform
|
|
let shift, offset;
|
|
let pos = 0,
|
|
j,
|
|
jj,
|
|
y0,
|
|
y1,
|
|
y2;
|
|
if (tile.codingStyleDefaultParameters.multipleComponentTransform) {
|
|
const fourComponents = componentsCount === 4;
|
|
const y0items = transformedTiles[0].items;
|
|
const y1items = transformedTiles[1].items;
|
|
const y2items = transformedTiles[2].items;
|
|
const y3items = fourComponents ? transformedTiles[3].items : null;
|
|
|
|
// HACK: The multiple component transform formulas below assume that
|
|
// all components have the same precision. With this in mind, we
|
|
// compute shift and offset only once.
|
|
shift = components[0].precision - 8;
|
|
offset = (128 << shift) + 0.5;
|
|
|
|
const component0 = tile.components[0];
|
|
const alpha01 = componentsCount - 3;
|
|
jj = y0items.length;
|
|
if (!component0.codingStyleParameters.reversibleTransformation) {
|
|
// inverse irreversible multiple component transform
|
|
for (j = 0; j < jj; j++, pos += alpha01) {
|
|
y0 = y0items[j] + offset;
|
|
y1 = y1items[j];
|
|
y2 = y2items[j];
|
|
out[pos++] = (y0 + 1.402 * y2) >> shift;
|
|
out[pos++] = (y0 - 0.34413 * y1 - 0.71414 * y2) >> shift;
|
|
out[pos++] = (y0 + 1.772 * y1) >> shift;
|
|
}
|
|
} else {
|
|
// inverse reversible multiple component transform
|
|
for (j = 0; j < jj; j++, pos += alpha01) {
|
|
y0 = y0items[j] + offset;
|
|
y1 = y1items[j];
|
|
y2 = y2items[j];
|
|
const g = y0 - ((y2 + y1) >> 2);
|
|
|
|
out[pos++] = (g + y2) >> shift;
|
|
out[pos++] = g >> shift;
|
|
out[pos++] = (g + y1) >> shift;
|
|
}
|
|
}
|
|
if (fourComponents) {
|
|
for (j = 0, pos = 3; j < jj; j++, pos += 4) {
|
|
out[pos] = (y3items[j] + offset) >> shift;
|
|
}
|
|
}
|
|
} else {
|
|
// no multi-component transform
|
|
for (let c = 0; c < componentsCount; c++) {
|
|
const items = transformedTiles[c].items;
|
|
shift = components[c].precision - 8;
|
|
offset = (128 << shift) + 0.5;
|
|
for (pos = c, j = 0, jj = items.length; j < jj; j++) {
|
|
out[pos] = (items[j] + offset) >> shift;
|
|
pos += componentsCount;
|
|
}
|
|
}
|
|
}
|
|
resultImages.push(result);
|
|
}
|
|
return resultImages;
|
|
}
|
|
function initializeTile(context, tileIndex) {
|
|
const siz = context.SIZ;
|
|
const componentsCount = siz.Csiz;
|
|
const tile = context.tiles[tileIndex];
|
|
for (let c = 0; c < componentsCount; c++) {
|
|
const component = tile.components[c];
|
|
const qcdOrQcc =
|
|
context.currentTile.QCC[c] !== undefined
|
|
? context.currentTile.QCC[c]
|
|
: context.currentTile.QCD;
|
|
component.quantizationParameters = qcdOrQcc;
|
|
const codOrCoc =
|
|
context.currentTile.COC[c] !== undefined
|
|
? context.currentTile.COC[c]
|
|
: context.currentTile.COD;
|
|
component.codingStyleParameters = codOrCoc;
|
|
}
|
|
tile.codingStyleDefaultParameters = context.currentTile.COD;
|
|
}
|
|
|
|
// Section B.10.2 Tag trees
|
|
class TagTree {
|
|
constructor(width, height) {
|
|
const levelsLength = log2(Math.max(width, height)) + 1;
|
|
this.levels = [];
|
|
for (let i = 0; i < levelsLength; i++) {
|
|
const level = {
|
|
width,
|
|
height,
|
|
items: [],
|
|
};
|
|
this.levels.push(level);
|
|
width = Math.ceil(width / 2);
|
|
height = Math.ceil(height / 2);
|
|
}
|
|
}
|
|
|
|
reset(i, j) {
|
|
let currentLevel = 0,
|
|
value = 0,
|
|
level;
|
|
while (currentLevel < this.levels.length) {
|
|
level = this.levels[currentLevel];
|
|
const index = i + j * level.width;
|
|
if (level.items[index] !== undefined) {
|
|
value = level.items[index];
|
|
break;
|
|
}
|
|
level.index = index;
|
|
i >>= 1;
|
|
j >>= 1;
|
|
currentLevel++;
|
|
}
|
|
currentLevel--;
|
|
level = this.levels[currentLevel];
|
|
level.items[level.index] = value;
|
|
this.currentLevel = currentLevel;
|
|
delete this.value;
|
|
}
|
|
|
|
incrementValue() {
|
|
const level = this.levels[this.currentLevel];
|
|
level.items[level.index]++;
|
|
}
|
|
|
|
nextLevel() {
|
|
let currentLevel = this.currentLevel;
|
|
let level = this.levels[currentLevel];
|
|
const value = level.items[level.index];
|
|
currentLevel--;
|
|
if (currentLevel < 0) {
|
|
this.value = value;
|
|
return false;
|
|
}
|
|
|
|
this.currentLevel = currentLevel;
|
|
level = this.levels[currentLevel];
|
|
level.items[level.index] = value;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
class InclusionTree {
|
|
constructor(width, height, defaultValue) {
|
|
const levelsLength = log2(Math.max(width, height)) + 1;
|
|
this.levels = [];
|
|
for (let i = 0; i < levelsLength; i++) {
|
|
const items = new Uint8Array(width * height);
|
|
for (let j = 0, jj = items.length; j < jj; j++) {
|
|
items[j] = defaultValue;
|
|
}
|
|
|
|
const level = {
|
|
width,
|
|
height,
|
|
items,
|
|
};
|
|
this.levels.push(level);
|
|
|
|
width = Math.ceil(width / 2);
|
|
height = Math.ceil(height / 2);
|
|
}
|
|
}
|
|
|
|
reset(i, j, stopValue) {
|
|
let currentLevel = 0;
|
|
while (currentLevel < this.levels.length) {
|
|
const level = this.levels[currentLevel];
|
|
const index = i + j * level.width;
|
|
level.index = index;
|
|
const value = level.items[index];
|
|
|
|
if (value === 0xff) {
|
|
break;
|
|
}
|
|
|
|
if (value > stopValue) {
|
|
this.currentLevel = currentLevel;
|
|
// already know about this one, propagating the value to top levels
|
|
this.propagateValues();
|
|
return false;
|
|
}
|
|
|
|
i >>= 1;
|
|
j >>= 1;
|
|
currentLevel++;
|
|
}
|
|
this.currentLevel = currentLevel - 1;
|
|
return true;
|
|
}
|
|
|
|
incrementValue(stopValue) {
|
|
const level = this.levels[this.currentLevel];
|
|
level.items[level.index] = stopValue + 1;
|
|
this.propagateValues();
|
|
}
|
|
|
|
propagateValues() {
|
|
let levelIndex = this.currentLevel;
|
|
let level = this.levels[levelIndex];
|
|
const currentValue = level.items[level.index];
|
|
while (--levelIndex >= 0) {
|
|
level = this.levels[levelIndex];
|
|
level.items[level.index] = currentValue;
|
|
}
|
|
}
|
|
|
|
nextLevel() {
|
|
let currentLevel = this.currentLevel;
|
|
let level = this.levels[currentLevel];
|
|
const value = level.items[level.index];
|
|
level.items[level.index] = 0xff;
|
|
currentLevel--;
|
|
if (currentLevel < 0) {
|
|
return false;
|
|
}
|
|
|
|
this.currentLevel = currentLevel;
|
|
level = this.levels[currentLevel];
|
|
level.items[level.index] = value;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Section D. Coefficient bit modeling
|
|
const BitModel = (function BitModelClosure() {
|
|
const UNIFORM_CONTEXT = 17;
|
|
const RUNLENGTH_CONTEXT = 18;
|
|
// Table D-1
|
|
// The index is binary presentation: 0dddvvhh, ddd - sum of Di (0..4),
|
|
// vv - sum of Vi (0..2), and hh - sum of Hi (0..2)
|
|
const LLAndLHContextsLabel = new Uint8Array([
|
|
0, 5, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 1, 6, 8, 0, 3, 7, 8, 0, 4,
|
|
7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6,
|
|
8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8,
|
|
]);
|
|
const HLContextLabel = new Uint8Array([
|
|
0, 3, 4, 0, 5, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 1, 3, 4, 0, 6, 7, 7, 0, 8,
|
|
8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3,
|
|
4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8,
|
|
]);
|
|
const HHContextLabel = new Uint8Array([
|
|
0, 1, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 4, 5, 0, 4, 5, 5, 0, 5,
|
|
5, 5, 0, 0, 0, 0, 0, 6, 7, 7, 0, 7, 7, 7, 0, 7, 7, 7, 0, 0, 0, 0, 0, 8, 8,
|
|
8, 0, 8, 8, 8, 0, 8, 8, 8, 0, 0, 0, 0, 0, 8, 8, 8, 0, 8, 8, 8, 0, 8, 8, 8,
|
|
]);
|
|
|
|
// eslint-disable-next-line no-shadow
|
|
class BitModel {
|
|
constructor(width, height, subband, zeroBitPlanes, mb) {
|
|
this.width = width;
|
|
this.height = height;
|
|
|
|
let contextLabelTable;
|
|
if (subband === "HH") {
|
|
contextLabelTable = HHContextLabel;
|
|
} else if (subband === "HL") {
|
|
contextLabelTable = HLContextLabel;
|
|
} else {
|
|
contextLabelTable = LLAndLHContextsLabel;
|
|
}
|
|
this.contextLabelTable = contextLabelTable;
|
|
|
|
const coefficientCount = width * height;
|
|
|
|
// coefficients outside the encoding region treated as insignificant
|
|
// add border state cells for significanceState
|
|
this.neighborsSignificance = new Uint8Array(coefficientCount);
|
|
this.coefficentsSign = new Uint8Array(coefficientCount);
|
|
let coefficentsMagnitude;
|
|
if (mb > 14) {
|
|
coefficentsMagnitude = new Uint32Array(coefficientCount);
|
|
} else if (mb > 6) {
|
|
coefficentsMagnitude = new Uint16Array(coefficientCount);
|
|
} else {
|
|
coefficentsMagnitude = new Uint8Array(coefficientCount);
|
|
}
|
|
this.coefficentsMagnitude = coefficentsMagnitude;
|
|
this.processingFlags = new Uint8Array(coefficientCount);
|
|
|
|
const bitsDecoded = new Uint8Array(coefficientCount);
|
|
if (zeroBitPlanes !== 0) {
|
|
for (let i = 0; i < coefficientCount; i++) {
|
|
bitsDecoded[i] = zeroBitPlanes;
|
|
}
|
|
}
|
|
this.bitsDecoded = bitsDecoded;
|
|
|
|
this.reset();
|
|
}
|
|
|
|
setDecoder(decoder) {
|
|
this.decoder = decoder;
|
|
}
|
|
|
|
reset() {
|
|
// We have 17 contexts that are accessed via context labels,
|
|
// plus the uniform and runlength context.
|
|
this.contexts = new Int8Array(19);
|
|
|
|
// Contexts are packed into 1 byte:
|
|
// highest 7 bits carry the index, lowest bit carries mps
|
|
this.contexts[0] = (4 << 1) | 0;
|
|
this.contexts[UNIFORM_CONTEXT] = (46 << 1) | 0;
|
|
this.contexts[RUNLENGTH_CONTEXT] = (3 << 1) | 0;
|
|
}
|
|
|
|
setNeighborsSignificance(row, column, index) {
|
|
const neighborsSignificance = this.neighborsSignificance;
|
|
const width = this.width,
|
|
height = this.height;
|
|
const left = column > 0;
|
|
const right = column + 1 < width;
|
|
let i;
|
|
|
|
if (row > 0) {
|
|
i = index - width;
|
|
if (left) {
|
|
neighborsSignificance[i - 1] += 0x10;
|
|
}
|
|
if (right) {
|
|
neighborsSignificance[i + 1] += 0x10;
|
|
}
|
|
neighborsSignificance[i] += 0x04;
|
|
}
|
|
|
|
if (row + 1 < height) {
|
|
i = index + width;
|
|
if (left) {
|
|
neighborsSignificance[i - 1] += 0x10;
|
|
}
|
|
if (right) {
|
|
neighborsSignificance[i + 1] += 0x10;
|
|
}
|
|
neighborsSignificance[i] += 0x04;
|
|
}
|
|
|
|
if (left) {
|
|
neighborsSignificance[index - 1] += 0x01;
|
|
}
|
|
if (right) {
|
|
neighborsSignificance[index + 1] += 0x01;
|
|
}
|
|
neighborsSignificance[index] |= 0x80;
|
|
}
|
|
|
|
runSignificancePropagationPass() {
|
|
const decoder = this.decoder;
|
|
const width = this.width,
|
|
height = this.height;
|
|
const coefficentsMagnitude = this.coefficentsMagnitude;
|
|
const coefficentsSign = this.coefficentsSign;
|
|
const neighborsSignificance = this.neighborsSignificance;
|
|
const processingFlags = this.processingFlags;
|
|
const contexts = this.contexts;
|
|
const labels = this.contextLabelTable;
|
|
const bitsDecoded = this.bitsDecoded;
|
|
const processedInverseMask = ~1;
|
|
const processedMask = 1;
|
|
const firstMagnitudeBitMask = 2;
|
|
|
|
for (let i0 = 0; i0 < height; i0 += 4) {
|
|
for (let j = 0; j < width; j++) {
|
|
let index = i0 * width + j;
|
|
for (let i1 = 0; i1 < 4; i1++, index += width) {
|
|
const i = i0 + i1;
|
|
if (i >= height) {
|
|
break;
|
|
}
|
|
// clear processed flag first
|
|
processingFlags[index] &= processedInverseMask;
|
|
|
|
if (coefficentsMagnitude[index] || !neighborsSignificance[index]) {
|
|
continue;
|
|
}
|
|
|
|
const contextLabel = labels[neighborsSignificance[index]];
|
|
const decision = decoder.readBit(contexts, contextLabel);
|
|
if (decision) {
|
|
const sign = this.decodeSignBit(i, j, index);
|
|
coefficentsSign[index] = sign;
|
|
coefficentsMagnitude[index] = 1;
|
|
this.setNeighborsSignificance(i, j, index);
|
|
processingFlags[index] |= firstMagnitudeBitMask;
|
|
}
|
|
bitsDecoded[index]++;
|
|
processingFlags[index] |= processedMask;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
decodeSignBit(row, column, index) {
|
|
const width = this.width,
|
|
height = this.height;
|
|
const coefficentsMagnitude = this.coefficentsMagnitude;
|
|
const coefficentsSign = this.coefficentsSign;
|
|
let contribution, sign0, sign1, significance1;
|
|
let contextLabel, decoded;
|
|
|
|
// calculate horizontal contribution
|
|
significance1 = column > 0 && coefficentsMagnitude[index - 1] !== 0;
|
|
if (column + 1 < width && coefficentsMagnitude[index + 1] !== 0) {
|
|
sign1 = coefficentsSign[index + 1];
|
|
if (significance1) {
|
|
sign0 = coefficentsSign[index - 1];
|
|
contribution = 1 - sign1 - sign0;
|
|
} else {
|
|
contribution = 1 - sign1 - sign1;
|
|
}
|
|
} else if (significance1) {
|
|
sign0 = coefficentsSign[index - 1];
|
|
contribution = 1 - sign0 - sign0;
|
|
} else {
|
|
contribution = 0;
|
|
}
|
|
const horizontalContribution = 3 * contribution;
|
|
|
|
// calculate vertical contribution and combine with the horizontal
|
|
significance1 = row > 0 && coefficentsMagnitude[index - width] !== 0;
|
|
if (row + 1 < height && coefficentsMagnitude[index + width] !== 0) {
|
|
sign1 = coefficentsSign[index + width];
|
|
if (significance1) {
|
|
sign0 = coefficentsSign[index - width];
|
|
contribution = 1 - sign1 - sign0 + horizontalContribution;
|
|
} else {
|
|
contribution = 1 - sign1 - sign1 + horizontalContribution;
|
|
}
|
|
} else if (significance1) {
|
|
sign0 = coefficentsSign[index - width];
|
|
contribution = 1 - sign0 - sign0 + horizontalContribution;
|
|
} else {
|
|
contribution = horizontalContribution;
|
|
}
|
|
|
|
if (contribution >= 0) {
|
|
contextLabel = 9 + contribution;
|
|
decoded = this.decoder.readBit(this.contexts, contextLabel);
|
|
} else {
|
|
contextLabel = 9 - contribution;
|
|
decoded = this.decoder.readBit(this.contexts, contextLabel) ^ 1;
|
|
}
|
|
return decoded;
|
|
}
|
|
|
|
runMagnitudeRefinementPass() {
|
|
const decoder = this.decoder;
|
|
const width = this.width,
|
|
height = this.height;
|
|
const coefficentsMagnitude = this.coefficentsMagnitude;
|
|
const neighborsSignificance = this.neighborsSignificance;
|
|
const contexts = this.contexts;
|
|
const bitsDecoded = this.bitsDecoded;
|
|
const processingFlags = this.processingFlags;
|
|
const processedMask = 1;
|
|
const firstMagnitudeBitMask = 2;
|
|
const length = width * height;
|
|
const width4 = width * 4;
|
|
|
|
for (let index0 = 0, indexNext; index0 < length; index0 = indexNext) {
|
|
indexNext = Math.min(length, index0 + width4);
|
|
for (let j = 0; j < width; j++) {
|
|
for (let index = index0 + j; index < indexNext; index += width) {
|
|
// significant but not those that have just become
|
|
if (
|
|
!coefficentsMagnitude[index] ||
|
|
(processingFlags[index] & processedMask) !== 0
|
|
) {
|
|
continue;
|
|
}
|
|
|
|
let contextLabel = 16;
|
|
if ((processingFlags[index] & firstMagnitudeBitMask) !== 0) {
|
|
processingFlags[index] ^= firstMagnitudeBitMask;
|
|
// first refinement
|
|
const significance = neighborsSignificance[index] & 127;
|
|
contextLabel = significance === 0 ? 15 : 14;
|
|
}
|
|
|
|
const bit = decoder.readBit(contexts, contextLabel);
|
|
coefficentsMagnitude[index] =
|
|
(coefficentsMagnitude[index] << 1) | bit;
|
|
bitsDecoded[index]++;
|
|
processingFlags[index] |= processedMask;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
runCleanupPass() {
|
|
const decoder = this.decoder;
|
|
const width = this.width,
|
|
height = this.height;
|
|
const neighborsSignificance = this.neighborsSignificance;
|
|
const coefficentsMagnitude = this.coefficentsMagnitude;
|
|
const coefficentsSign = this.coefficentsSign;
|
|
const contexts = this.contexts;
|
|
const labels = this.contextLabelTable;
|
|
const bitsDecoded = this.bitsDecoded;
|
|
const processingFlags = this.processingFlags;
|
|
const processedMask = 1;
|
|
const firstMagnitudeBitMask = 2;
|
|
const oneRowDown = width;
|
|
const twoRowsDown = width * 2;
|
|
const threeRowsDown = width * 3;
|
|
let iNext;
|
|
for (let i0 = 0; i0 < height; i0 = iNext) {
|
|
iNext = Math.min(i0 + 4, height);
|
|
const indexBase = i0 * width;
|
|
const checkAllEmpty = i0 + 3 < height;
|
|
for (let j = 0; j < width; j++) {
|
|
const index0 = indexBase + j;
|
|
// using the property: labels[neighborsSignificance[index]] === 0
|
|
// when neighborsSignificance[index] === 0
|
|
const allEmpty =
|
|
checkAllEmpty &&
|
|
processingFlags[index0] === 0 &&
|
|
processingFlags[index0 + oneRowDown] === 0 &&
|
|
processingFlags[index0 + twoRowsDown] === 0 &&
|
|
processingFlags[index0 + threeRowsDown] === 0 &&
|
|
neighborsSignificance[index0] === 0 &&
|
|
neighborsSignificance[index0 + oneRowDown] === 0 &&
|
|
neighborsSignificance[index0 + twoRowsDown] === 0 &&
|
|
neighborsSignificance[index0 + threeRowsDown] === 0;
|
|
let i1 = 0,
|
|
index = index0;
|
|
let i = i0,
|
|
sign;
|
|
if (allEmpty) {
|
|
const hasSignificantCoefficent = decoder.readBit(
|
|
contexts,
|
|
RUNLENGTH_CONTEXT
|
|
);
|
|
if (!hasSignificantCoefficent) {
|
|
bitsDecoded[index0]++;
|
|
bitsDecoded[index0 + oneRowDown]++;
|
|
bitsDecoded[index0 + twoRowsDown]++;
|
|
bitsDecoded[index0 + threeRowsDown]++;
|
|
continue; // next column
|
|
}
|
|
i1 =
|
|
(decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) |
|
|
decoder.readBit(contexts, UNIFORM_CONTEXT);
|
|
if (i1 !== 0) {
|
|
i = i0 + i1;
|
|
index += i1 * width;
|
|
}
|
|
|
|
sign = this.decodeSignBit(i, j, index);
|
|
coefficentsSign[index] = sign;
|
|
coefficentsMagnitude[index] = 1;
|
|
this.setNeighborsSignificance(i, j, index);
|
|
processingFlags[index] |= firstMagnitudeBitMask;
|
|
|
|
index = index0;
|
|
for (let i2 = i0; i2 <= i; i2++, index += width) {
|
|
bitsDecoded[index]++;
|
|
}
|
|
|
|
i1++;
|
|
}
|
|
for (i = i0 + i1; i < iNext; i++, index += width) {
|
|
if (
|
|
coefficentsMagnitude[index] ||
|
|
(processingFlags[index] & processedMask) !== 0
|
|
) {
|
|
continue;
|
|
}
|
|
|
|
const contextLabel = labels[neighborsSignificance[index]];
|
|
const decision = decoder.readBit(contexts, contextLabel);
|
|
if (decision === 1) {
|
|
sign = this.decodeSignBit(i, j, index);
|
|
coefficentsSign[index] = sign;
|
|
coefficentsMagnitude[index] = 1;
|
|
this.setNeighborsSignificance(i, j, index);
|
|
processingFlags[index] |= firstMagnitudeBitMask;
|
|
}
|
|
bitsDecoded[index]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
checkSegmentationSymbol() {
|
|
const decoder = this.decoder;
|
|
const contexts = this.contexts;
|
|
const symbol =
|
|
(decoder.readBit(contexts, UNIFORM_CONTEXT) << 3) |
|
|
(decoder.readBit(contexts, UNIFORM_CONTEXT) << 2) |
|
|
(decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) |
|
|
decoder.readBit(contexts, UNIFORM_CONTEXT);
|
|
if (symbol !== 0xa) {
|
|
throw new JpxError("Invalid segmentation symbol");
|
|
}
|
|
}
|
|
}
|
|
|
|
return BitModel;
|
|
})();
|
|
|
|
// Section F, Discrete wavelet transformation
|
|
class Transform {
|
|
constructor() {
|
|
if (this.constructor === Transform) {
|
|
unreachable("Cannot initialize Transform.");
|
|
}
|
|
}
|
|
|
|
calculate(subbands, u0, v0) {
|
|
let ll = subbands[0];
|
|
for (let i = 1, ii = subbands.length; i < ii; i++) {
|
|
ll = this.iterate(ll, subbands[i], u0, v0);
|
|
}
|
|
return ll;
|
|
}
|
|
|
|
extend(buffer, offset, size) {
|
|
// Section F.3.7 extending... using max extension of 4
|
|
let i1 = offset - 1,
|
|
j1 = offset + 1;
|
|
let i2 = offset + size - 2,
|
|
j2 = offset + size;
|
|
buffer[i1--] = buffer[j1++];
|
|
buffer[j2++] = buffer[i2--];
|
|
buffer[i1--] = buffer[j1++];
|
|
buffer[j2++] = buffer[i2--];
|
|
buffer[i1--] = buffer[j1++];
|
|
buffer[j2++] = buffer[i2--];
|
|
buffer[i1] = buffer[j1];
|
|
buffer[j2] = buffer[i2];
|
|
}
|
|
|
|
filter(x, offset, length) {
|
|
unreachable("Abstract method `filter` called");
|
|
}
|
|
|
|
iterate(ll, hl_lh_hh, u0, v0) {
|
|
const llWidth = ll.width,
|
|
llHeight = ll.height;
|
|
let llItems = ll.items;
|
|
const width = hl_lh_hh.width;
|
|
const height = hl_lh_hh.height;
|
|
const items = hl_lh_hh.items;
|
|
let i, j, k, l, u, v;
|
|
|
|
// Interleave LL according to Section F.3.3
|
|
for (k = 0, i = 0; i < llHeight; i++) {
|
|
l = i * 2 * width;
|
|
for (j = 0; j < llWidth; j++, k++, l += 2) {
|
|
items[l] = llItems[k];
|
|
}
|
|
}
|
|
// The LL band is not needed anymore.
|
|
llItems = ll.items = null;
|
|
|
|
const bufferPadding = 4;
|
|
const rowBuffer = new Float32Array(width + 2 * bufferPadding);
|
|
|
|
// Section F.3.4 HOR_SR
|
|
if (width === 1) {
|
|
// if width = 1, when u0 even keep items as is, when odd divide by 2
|
|
if ((u0 & 1) !== 0) {
|
|
for (v = 0, k = 0; v < height; v++, k += width) {
|
|
items[k] *= 0.5;
|
|
}
|
|
}
|
|
} else {
|
|
for (v = 0, k = 0; v < height; v++, k += width) {
|
|
rowBuffer.set(items.subarray(k, k + width), bufferPadding);
|
|
|
|
this.extend(rowBuffer, bufferPadding, width);
|
|
this.filter(rowBuffer, bufferPadding, width);
|
|
|
|
items.set(rowBuffer.subarray(bufferPadding, bufferPadding + width), k);
|
|
}
|
|
}
|
|
|
|
// Accesses to the items array can take long, because it may not fit into
|
|
// CPU cache and has to be fetched from main memory. Since subsequent
|
|
// accesses to the items array are not local when reading columns, we
|
|
// have a cache miss every time. To reduce cache misses, get up to
|
|
// 'numBuffers' items at a time and store them into the individual
|
|
// buffers. The colBuffers should be small enough to fit into CPU cache.
|
|
let numBuffers = 16;
|
|
const colBuffers = [];
|
|
for (i = 0; i < numBuffers; i++) {
|
|
colBuffers.push(new Float32Array(height + 2 * bufferPadding));
|
|
}
|
|
let b,
|
|
currentBuffer = 0;
|
|
ll = bufferPadding + height;
|
|
|
|
// Section F.3.5 VER_SR
|
|
if (height === 1) {
|
|
// if height = 1, when v0 even keep items as is, when odd divide by 2
|
|
if ((v0 & 1) !== 0) {
|
|
for (u = 0; u < width; u++) {
|
|
items[u] *= 0.5;
|
|
}
|
|
}
|
|
} else {
|
|
for (u = 0; u < width; u++) {
|
|
// if we ran out of buffers, copy several image columns at once
|
|
if (currentBuffer === 0) {
|
|
numBuffers = Math.min(width - u, numBuffers);
|
|
for (k = u, l = bufferPadding; l < ll; k += width, l++) {
|
|
for (b = 0; b < numBuffers; b++) {
|
|
colBuffers[b][l] = items[k + b];
|
|
}
|
|
}
|
|
currentBuffer = numBuffers;
|
|
}
|
|
|
|
currentBuffer--;
|
|
const buffer = colBuffers[currentBuffer];
|
|
this.extend(buffer, bufferPadding, height);
|
|
this.filter(buffer, bufferPadding, height);
|
|
|
|
// If this is last buffer in this group of buffers, flush all buffers.
|
|
if (currentBuffer === 0) {
|
|
k = u - numBuffers + 1;
|
|
for (l = bufferPadding; l < ll; k += width, l++) {
|
|
for (b = 0; b < numBuffers; b++) {
|
|
items[k + b] = colBuffers[b][l];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return { width, height, items };
|
|
}
|
|
}
|
|
|
|
// Section 3.8.2 Irreversible 9-7 filter
|
|
class IrreversibleTransform extends Transform {
|
|
filter(x, offset, length) {
|
|
const len = length >> 1;
|
|
offset |= 0;
|
|
let j, n, current, next;
|
|
|
|
const alpha = -1.586134342059924;
|
|
const beta = -0.052980118572961;
|
|
const gamma = 0.882911075530934;
|
|
const delta = 0.443506852043971;
|
|
const K = 1.230174104914001;
|
|
const K_ = 1 / K;
|
|
|
|
// step 1 is combined with step 3
|
|
|
|
// step 2
|
|
j = offset - 3;
|
|
for (n = len + 4; n--; j += 2) {
|
|
x[j] *= K_;
|
|
}
|
|
|
|
// step 1 & 3
|
|
j = offset - 2;
|
|
current = delta * x[j - 1];
|
|
for (n = len + 3; n--; j += 2) {
|
|
next = delta * x[j + 1];
|
|
x[j] = K * x[j] - current - next;
|
|
if (n--) {
|
|
j += 2;
|
|
current = delta * x[j + 1];
|
|
x[j] = K * x[j] - current - next;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// step 4
|
|
j = offset - 1;
|
|
current = gamma * x[j - 1];
|
|
for (n = len + 2; n--; j += 2) {
|
|
next = gamma * x[j + 1];
|
|
x[j] -= current + next;
|
|
if (n--) {
|
|
j += 2;
|
|
current = gamma * x[j + 1];
|
|
x[j] -= current + next;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// step 5
|
|
j = offset;
|
|
current = beta * x[j - 1];
|
|
for (n = len + 1; n--; j += 2) {
|
|
next = beta * x[j + 1];
|
|
x[j] -= current + next;
|
|
if (n--) {
|
|
j += 2;
|
|
current = beta * x[j + 1];
|
|
x[j] -= current + next;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// step 6
|
|
if (len !== 0) {
|
|
j = offset + 1;
|
|
current = alpha * x[j - 1];
|
|
for (n = len; n--; j += 2) {
|
|
next = alpha * x[j + 1];
|
|
x[j] -= current + next;
|
|
if (n--) {
|
|
j += 2;
|
|
current = alpha * x[j + 1];
|
|
x[j] -= current + next;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Section 3.8.1 Reversible 5-3 filter
|
|
class ReversibleTransform extends Transform {
|
|
filter(x, offset, length) {
|
|
const len = length >> 1;
|
|
offset |= 0;
|
|
let j, n;
|
|
|
|
for (j = offset, n = len + 1; n--; j += 2) {
|
|
x[j] -= (x[j - 1] + x[j + 1] + 2) >> 2;
|
|
}
|
|
|
|
for (j = offset + 1, n = len; n--; j += 2) {
|
|
x[j] += (x[j - 1] + x[j + 1]) >> 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
export { JpxImage };
|