pdf.js/src/core/crypto.js

1914 lines
58 KiB
JavaScript

/* Copyright 2012 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* eslint-disable no-var */
import {
bytesToString,
FormatError,
isArrayEqual,
PasswordException,
PasswordResponses,
stringToBytes,
unreachable,
utf8StringToString,
warn,
} from "../shared/util.js";
import { isDict, isName, Name } from "./primitives.js";
import { DecryptStream } from "./decrypt_stream.js";
class ARCFourCipher {
constructor(key) {
this.a = 0;
this.b = 0;
var s = new Uint8Array(256);
var i,
j = 0,
tmp,
keyLength = key.length;
for (i = 0; i < 256; ++i) {
s[i] = i;
}
for (i = 0; i < 256; ++i) {
tmp = s[i];
j = (j + tmp + key[i % keyLength]) & 0xff;
s[i] = s[j];
s[j] = tmp;
}
this.s = s;
}
encryptBlock(data) {
var i,
n = data.length,
tmp,
tmp2;
var a = this.a,
b = this.b,
s = this.s;
var output = new Uint8Array(n);
for (i = 0; i < n; ++i) {
a = (a + 1) & 0xff;
tmp = s[a];
b = (b + tmp) & 0xff;
tmp2 = s[b];
s[a] = tmp2;
s[b] = tmp;
output[i] = data[i] ^ s[(tmp + tmp2) & 0xff];
}
this.a = a;
this.b = b;
return output;
}
decryptBlock(data) {
return this.encryptBlock(data);
}
encrypt(data) {
return this.encryptBlock(data);
}
}
var calculateMD5 = (function calculateMD5Closure() {
// prettier-ignore
var r = new Uint8Array([
7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21]);
// prettier-ignore
var k = new Int32Array([
-680876936, -389564586, 606105819, -1044525330, -176418897, 1200080426,
-1473231341, -45705983, 1770035416, -1958414417, -42063, -1990404162,
1804603682, -40341101, -1502002290, 1236535329, -165796510, -1069501632,
643717713, -373897302, -701558691, 38016083, -660478335, -405537848,
568446438, -1019803690, -187363961, 1163531501, -1444681467, -51403784,
1735328473, -1926607734, -378558, -2022574463, 1839030562, -35309556,
-1530992060, 1272893353, -155497632, -1094730640, 681279174, -358537222,
-722521979, 76029189, -640364487, -421815835, 530742520, -995338651,
-198630844, 1126891415, -1416354905, -57434055, 1700485571, -1894986606,
-1051523, -2054922799, 1873313359, -30611744, -1560198380, 1309151649,
-145523070, -1120210379, 718787259, -343485551]);
function hash(data, offset, length) {
var h0 = 1732584193,
h1 = -271733879,
h2 = -1732584194,
h3 = 271733878;
// pre-processing
var paddedLength = (length + 72) & ~63; // data + 9 extra bytes
var padded = new Uint8Array(paddedLength);
var i, j, n;
for (i = 0; i < length; ++i) {
padded[i] = data[offset++];
}
padded[i++] = 0x80;
n = paddedLength - 8;
while (i < n) {
padded[i++] = 0;
}
padded[i++] = (length << 3) & 0xff;
padded[i++] = (length >> 5) & 0xff;
padded[i++] = (length >> 13) & 0xff;
padded[i++] = (length >> 21) & 0xff;
padded[i++] = (length >>> 29) & 0xff;
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = 0;
var w = new Int32Array(16);
for (i = 0; i < paddedLength; ) {
for (j = 0; j < 16; ++j, i += 4) {
w[j] =
padded[i] |
(padded[i + 1] << 8) |
(padded[i + 2] << 16) |
(padded[i + 3] << 24);
}
var a = h0,
b = h1,
c = h2,
d = h3,
f,
g;
for (j = 0; j < 64; ++j) {
if (j < 16) {
f = (b & c) | (~b & d);
g = j;
} else if (j < 32) {
f = (d & b) | (~d & c);
g = (5 * j + 1) & 15;
} else if (j < 48) {
f = b ^ c ^ d;
g = (3 * j + 5) & 15;
} else {
f = c ^ (b | ~d);
g = (7 * j) & 15;
}
var tmp = d,
rotateArg = (a + f + k[j] + w[g]) | 0,
rotate = r[j];
d = c;
c = b;
b = (b + ((rotateArg << rotate) | (rotateArg >>> (32 - rotate)))) | 0;
a = tmp;
}
h0 = (h0 + a) | 0;
h1 = (h1 + b) | 0;
h2 = (h2 + c) | 0;
h3 = (h3 + d) | 0;
}
// prettier-ignore
return new Uint8Array([
h0 & 0xFF, (h0 >> 8) & 0xFF, (h0 >> 16) & 0xFF, (h0 >>> 24) & 0xFF,
h1 & 0xFF, (h1 >> 8) & 0xFF, (h1 >> 16) & 0xFF, (h1 >>> 24) & 0xFF,
h2 & 0xFF, (h2 >> 8) & 0xFF, (h2 >> 16) & 0xFF, (h2 >>> 24) & 0xFF,
h3 & 0xFF, (h3 >> 8) & 0xFF, (h3 >> 16) & 0xFF, (h3 >>> 24) & 0xFF
]);
}
return hash;
})();
class Word64 {
constructor(highInteger, lowInteger) {
this.high = highInteger | 0;
this.low = lowInteger | 0;
}
and(word) {
this.high &= word.high;
this.low &= word.low;
}
xor(word) {
this.high ^= word.high;
this.low ^= word.low;
}
or(word) {
this.high |= word.high;
this.low |= word.low;
}
shiftRight(places) {
if (places >= 32) {
this.low = (this.high >>> (places - 32)) | 0;
this.high = 0;
} else {
this.low = (this.low >>> places) | (this.high << (32 - places));
this.high = (this.high >>> places) | 0;
}
}
shiftLeft(places) {
if (places >= 32) {
this.high = this.low << (places - 32);
this.low = 0;
} else {
this.high = (this.high << places) | (this.low >>> (32 - places));
this.low = this.low << places;
}
}
rotateRight(places) {
var low, high;
if (places & 32) {
high = this.low;
low = this.high;
} else {
low = this.low;
high = this.high;
}
places &= 31;
this.low = (low >>> places) | (high << (32 - places));
this.high = (high >>> places) | (low << (32 - places));
}
not() {
this.high = ~this.high;
this.low = ~this.low;
}
add(word) {
var lowAdd = (this.low >>> 0) + (word.low >>> 0);
var highAdd = (this.high >>> 0) + (word.high >>> 0);
if (lowAdd > 0xffffffff) {
highAdd += 1;
}
this.low = lowAdd | 0;
this.high = highAdd | 0;
}
copyTo(bytes, offset) {
bytes[offset] = (this.high >>> 24) & 0xff;
bytes[offset + 1] = (this.high >> 16) & 0xff;
bytes[offset + 2] = (this.high >> 8) & 0xff;
bytes[offset + 3] = this.high & 0xff;
bytes[offset + 4] = (this.low >>> 24) & 0xff;
bytes[offset + 5] = (this.low >> 16) & 0xff;
bytes[offset + 6] = (this.low >> 8) & 0xff;
bytes[offset + 7] = this.low & 0xff;
}
assign(word) {
this.high = word.high;
this.low = word.low;
}
}
var calculateSHA256 = (function calculateSHA256Closure() {
function rotr(x, n) {
return (x >>> n) | (x << (32 - n));
}
function ch(x, y, z) {
return (x & y) ^ (~x & z);
}
function maj(x, y, z) {
return (x & y) ^ (x & z) ^ (y & z);
}
function sigma(x) {
return rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22);
}
function sigmaPrime(x) {
return rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25);
}
function littleSigma(x) {
return rotr(x, 7) ^ rotr(x, 18) ^ (x >>> 3);
}
function littleSigmaPrime(x) {
return rotr(x, 17) ^ rotr(x, 19) ^ (x >>> 10);
}
// prettier-ignore
var k = [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2];
function hash(data, offset, length) {
// initial hash values
var h0 = 0x6a09e667,
h1 = 0xbb67ae85,
h2 = 0x3c6ef372,
h3 = 0xa54ff53a,
h4 = 0x510e527f,
h5 = 0x9b05688c,
h6 = 0x1f83d9ab,
h7 = 0x5be0cd19;
// pre-processing
var paddedLength = Math.ceil((length + 9) / 64) * 64;
var padded = new Uint8Array(paddedLength);
var i, j, n;
for (i = 0; i < length; ++i) {
padded[i] = data[offset++];
}
padded[i++] = 0x80;
n = paddedLength - 8;
while (i < n) {
padded[i++] = 0;
}
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = (length >>> 29) & 0xff;
padded[i++] = (length >> 21) & 0xff;
padded[i++] = (length >> 13) & 0xff;
padded[i++] = (length >> 5) & 0xff;
padded[i++] = (length << 3) & 0xff;
var w = new Uint32Array(64);
// for each 512 bit block
for (i = 0; i < paddedLength; ) {
for (j = 0; j < 16; ++j) {
w[j] =
(padded[i] << 24) |
(padded[i + 1] << 16) |
(padded[i + 2] << 8) |
padded[i + 3];
i += 4;
}
for (j = 16; j < 64; ++j) {
w[j] =
(littleSigmaPrime(w[j - 2]) +
w[j - 7] +
littleSigma(w[j - 15]) +
w[j - 16]) |
0;
}
var a = h0,
b = h1,
c = h2,
d = h3,
e = h4,
f = h5,
g = h6,
h = h7,
t1,
t2;
for (j = 0; j < 64; ++j) {
t1 = h + sigmaPrime(e) + ch(e, f, g) + k[j] + w[j];
t2 = sigma(a) + maj(a, b, c);
h = g;
g = f;
f = e;
e = (d + t1) | 0;
d = c;
c = b;
b = a;
a = (t1 + t2) | 0;
}
h0 = (h0 + a) | 0;
h1 = (h1 + b) | 0;
h2 = (h2 + c) | 0;
h3 = (h3 + d) | 0;
h4 = (h4 + e) | 0;
h5 = (h5 + f) | 0;
h6 = (h6 + g) | 0;
h7 = (h7 + h) | 0;
}
// prettier-ignore
return new Uint8Array([
(h0 >> 24) & 0xFF, (h0 >> 16) & 0xFF, (h0 >> 8) & 0xFF, (h0) & 0xFF,
(h1 >> 24) & 0xFF, (h1 >> 16) & 0xFF, (h1 >> 8) & 0xFF, (h1) & 0xFF,
(h2 >> 24) & 0xFF, (h2 >> 16) & 0xFF, (h2 >> 8) & 0xFF, (h2) & 0xFF,
(h3 >> 24) & 0xFF, (h3 >> 16) & 0xFF, (h3 >> 8) & 0xFF, (h3) & 0xFF,
(h4 >> 24) & 0xFF, (h4 >> 16) & 0xFF, (h4 >> 8) & 0xFF, (h4) & 0xFF,
(h5 >> 24) & 0xFF, (h5 >> 16) & 0xFF, (h5 >> 8) & 0xFF, (h5) & 0xFF,
(h6 >> 24) & 0xFF, (h6 >> 16) & 0xFF, (h6 >> 8) & 0xFF, (h6) & 0xFF,
(h7 >> 24) & 0xFF, (h7 >> 16) & 0xFF, (h7 >> 8) & 0xFF, (h7) & 0xFF
]);
}
return hash;
})();
var calculateSHA512 = (function calculateSHA512Closure() {
function ch(result, x, y, z, tmp) {
result.assign(x);
result.and(y);
tmp.assign(x);
tmp.not();
tmp.and(z);
result.xor(tmp);
}
function maj(result, x, y, z, tmp) {
result.assign(x);
result.and(y);
tmp.assign(x);
tmp.and(z);
result.xor(tmp);
tmp.assign(y);
tmp.and(z);
result.xor(tmp);
}
function sigma(result, x, tmp) {
result.assign(x);
result.rotateRight(28);
tmp.assign(x);
tmp.rotateRight(34);
result.xor(tmp);
tmp.assign(x);
tmp.rotateRight(39);
result.xor(tmp);
}
function sigmaPrime(result, x, tmp) {
result.assign(x);
result.rotateRight(14);
tmp.assign(x);
tmp.rotateRight(18);
result.xor(tmp);
tmp.assign(x);
tmp.rotateRight(41);
result.xor(tmp);
}
function littleSigma(result, x, tmp) {
result.assign(x);
result.rotateRight(1);
tmp.assign(x);
tmp.rotateRight(8);
result.xor(tmp);
tmp.assign(x);
tmp.shiftRight(7);
result.xor(tmp);
}
function littleSigmaPrime(result, x, tmp) {
result.assign(x);
result.rotateRight(19);
tmp.assign(x);
tmp.rotateRight(61);
result.xor(tmp);
tmp.assign(x);
tmp.shiftRight(6);
result.xor(tmp);
}
// prettier-ignore
var k = [
new Word64(0x428a2f98, 0xd728ae22), new Word64(0x71374491, 0x23ef65cd),
new Word64(0xb5c0fbcf, 0xec4d3b2f), new Word64(0xe9b5dba5, 0x8189dbbc),
new Word64(0x3956c25b, 0xf348b538), new Word64(0x59f111f1, 0xb605d019),
new Word64(0x923f82a4, 0xaf194f9b), new Word64(0xab1c5ed5, 0xda6d8118),
new Word64(0xd807aa98, 0xa3030242), new Word64(0x12835b01, 0x45706fbe),
new Word64(0x243185be, 0x4ee4b28c), new Word64(0x550c7dc3, 0xd5ffb4e2),
new Word64(0x72be5d74, 0xf27b896f), new Word64(0x80deb1fe, 0x3b1696b1),
new Word64(0x9bdc06a7, 0x25c71235), new Word64(0xc19bf174, 0xcf692694),
new Word64(0xe49b69c1, 0x9ef14ad2), new Word64(0xefbe4786, 0x384f25e3),
new Word64(0x0fc19dc6, 0x8b8cd5b5), new Word64(0x240ca1cc, 0x77ac9c65),
new Word64(0x2de92c6f, 0x592b0275), new Word64(0x4a7484aa, 0x6ea6e483),
new Word64(0x5cb0a9dc, 0xbd41fbd4), new Word64(0x76f988da, 0x831153b5),
new Word64(0x983e5152, 0xee66dfab), new Word64(0xa831c66d, 0x2db43210),
new Word64(0xb00327c8, 0x98fb213f), new Word64(0xbf597fc7, 0xbeef0ee4),
new Word64(0xc6e00bf3, 0x3da88fc2), new Word64(0xd5a79147, 0x930aa725),
new Word64(0x06ca6351, 0xe003826f), new Word64(0x14292967, 0x0a0e6e70),
new Word64(0x27b70a85, 0x46d22ffc), new Word64(0x2e1b2138, 0x5c26c926),
new Word64(0x4d2c6dfc, 0x5ac42aed), new Word64(0x53380d13, 0x9d95b3df),
new Word64(0x650a7354, 0x8baf63de), new Word64(0x766a0abb, 0x3c77b2a8),
new Word64(0x81c2c92e, 0x47edaee6), new Word64(0x92722c85, 0x1482353b),
new Word64(0xa2bfe8a1, 0x4cf10364), new Word64(0xa81a664b, 0xbc423001),
new Word64(0xc24b8b70, 0xd0f89791), new Word64(0xc76c51a3, 0x0654be30),
new Word64(0xd192e819, 0xd6ef5218), new Word64(0xd6990624, 0x5565a910),
new Word64(0xf40e3585, 0x5771202a), new Word64(0x106aa070, 0x32bbd1b8),
new Word64(0x19a4c116, 0xb8d2d0c8), new Word64(0x1e376c08, 0x5141ab53),
new Word64(0x2748774c, 0xdf8eeb99), new Word64(0x34b0bcb5, 0xe19b48a8),
new Word64(0x391c0cb3, 0xc5c95a63), new Word64(0x4ed8aa4a, 0xe3418acb),
new Word64(0x5b9cca4f, 0x7763e373), new Word64(0x682e6ff3, 0xd6b2b8a3),
new Word64(0x748f82ee, 0x5defb2fc), new Word64(0x78a5636f, 0x43172f60),
new Word64(0x84c87814, 0xa1f0ab72), new Word64(0x8cc70208, 0x1a6439ec),
new Word64(0x90befffa, 0x23631e28), new Word64(0xa4506ceb, 0xde82bde9),
new Word64(0xbef9a3f7, 0xb2c67915), new Word64(0xc67178f2, 0xe372532b),
new Word64(0xca273ece, 0xea26619c), new Word64(0xd186b8c7, 0x21c0c207),
new Word64(0xeada7dd6, 0xcde0eb1e), new Word64(0xf57d4f7f, 0xee6ed178),
new Word64(0x06f067aa, 0x72176fba), new Word64(0x0a637dc5, 0xa2c898a6),
new Word64(0x113f9804, 0xbef90dae), new Word64(0x1b710b35, 0x131c471b),
new Word64(0x28db77f5, 0x23047d84), new Word64(0x32caab7b, 0x40c72493),
new Word64(0x3c9ebe0a, 0x15c9bebc), new Word64(0x431d67c4, 0x9c100d4c),
new Word64(0x4cc5d4be, 0xcb3e42b6), new Word64(0x597f299c, 0xfc657e2a),
new Word64(0x5fcb6fab, 0x3ad6faec), new Word64(0x6c44198c, 0x4a475817)];
function hash(data, offset, length, mode384 = false) {
// initial hash values
var h0, h1, h2, h3, h4, h5, h6, h7;
if (!mode384) {
h0 = new Word64(0x6a09e667, 0xf3bcc908);
h1 = new Word64(0xbb67ae85, 0x84caa73b);
h2 = new Word64(0x3c6ef372, 0xfe94f82b);
h3 = new Word64(0xa54ff53a, 0x5f1d36f1);
h4 = new Word64(0x510e527f, 0xade682d1);
h5 = new Word64(0x9b05688c, 0x2b3e6c1f);
h6 = new Word64(0x1f83d9ab, 0xfb41bd6b);
h7 = new Word64(0x5be0cd19, 0x137e2179);
} else {
// SHA384 is exactly the same
// except with different starting values and a trimmed result
h0 = new Word64(0xcbbb9d5d, 0xc1059ed8);
h1 = new Word64(0x629a292a, 0x367cd507);
h2 = new Word64(0x9159015a, 0x3070dd17);
h3 = new Word64(0x152fecd8, 0xf70e5939);
h4 = new Word64(0x67332667, 0xffc00b31);
h5 = new Word64(0x8eb44a87, 0x68581511);
h6 = new Word64(0xdb0c2e0d, 0x64f98fa7);
h7 = new Word64(0x47b5481d, 0xbefa4fa4);
}
// pre-processing
var paddedLength = Math.ceil((length + 17) / 128) * 128;
var padded = new Uint8Array(paddedLength);
var i, j, n;
for (i = 0; i < length; ++i) {
padded[i] = data[offset++];
}
padded[i++] = 0x80;
n = paddedLength - 16;
while (i < n) {
padded[i++] = 0;
}
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = 0;
padded[i++] = (length >>> 29) & 0xff;
padded[i++] = (length >> 21) & 0xff;
padded[i++] = (length >> 13) & 0xff;
padded[i++] = (length >> 5) & 0xff;
padded[i++] = (length << 3) & 0xff;
var w = new Array(80);
for (i = 0; i < 80; i++) {
w[i] = new Word64(0, 0);
}
var a = new Word64(0, 0),
b = new Word64(0, 0),
c = new Word64(0, 0);
var d = new Word64(0, 0),
e = new Word64(0, 0),
f = new Word64(0, 0);
var g = new Word64(0, 0),
h = new Word64(0, 0);
var t1 = new Word64(0, 0),
t2 = new Word64(0, 0);
var tmp1 = new Word64(0, 0),
tmp2 = new Word64(0, 0),
tmp3;
// for each 1024 bit block
for (i = 0; i < paddedLength; ) {
for (j = 0; j < 16; ++j) {
w[j].high =
(padded[i] << 24) |
(padded[i + 1] << 16) |
(padded[i + 2] << 8) |
padded[i + 3];
w[j].low =
(padded[i + 4] << 24) |
(padded[i + 5] << 16) |
(padded[i + 6] << 8) |
padded[i + 7];
i += 8;
}
for (j = 16; j < 80; ++j) {
tmp3 = w[j];
littleSigmaPrime(tmp3, w[j - 2], tmp2);
tmp3.add(w[j - 7]);
littleSigma(tmp1, w[j - 15], tmp2);
tmp3.add(tmp1);
tmp3.add(w[j - 16]);
}
a.assign(h0);
b.assign(h1);
c.assign(h2);
d.assign(h3);
e.assign(h4);
f.assign(h5);
g.assign(h6);
h.assign(h7);
for (j = 0; j < 80; ++j) {
t1.assign(h);
sigmaPrime(tmp1, e, tmp2);
t1.add(tmp1);
ch(tmp1, e, f, g, tmp2);
t1.add(tmp1);
t1.add(k[j]);
t1.add(w[j]);
sigma(t2, a, tmp2);
maj(tmp1, a, b, c, tmp2);
t2.add(tmp1);
tmp3 = h;
h = g;
g = f;
f = e;
d.add(t1);
e = d;
d = c;
c = b;
b = a;
tmp3.assign(t1);
tmp3.add(t2);
a = tmp3;
}
h0.add(a);
h1.add(b);
h2.add(c);
h3.add(d);
h4.add(e);
h5.add(f);
h6.add(g);
h7.add(h);
}
var result;
if (!mode384) {
result = new Uint8Array(64);
h0.copyTo(result, 0);
h1.copyTo(result, 8);
h2.copyTo(result, 16);
h3.copyTo(result, 24);
h4.copyTo(result, 32);
h5.copyTo(result, 40);
h6.copyTo(result, 48);
h7.copyTo(result, 56);
} else {
result = new Uint8Array(48);
h0.copyTo(result, 0);
h1.copyTo(result, 8);
h2.copyTo(result, 16);
h3.copyTo(result, 24);
h4.copyTo(result, 32);
h5.copyTo(result, 40);
}
return result;
}
return hash;
})();
function calculateSHA384(data, offset, length) {
return calculateSHA512(data, offset, length, /* mode384 = */ true);
}
class NullCipher {
decryptBlock(data) {
return data;
}
encrypt(data) {
return data;
}
}
class AESBaseCipher {
constructor() {
if (this.constructor === AESBaseCipher) {
unreachable("Cannot initialize AESBaseCipher.");
}
// prettier-ignore
this._s = new Uint8Array([
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
0xb0, 0x54, 0xbb, 0x16,
]);
// prettier-ignore
this._inv_s = new Uint8Array([
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e,
0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32,
0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49,
0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50,
0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05,
0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8,
0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b,
0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59,
0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d,
0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63,
0x55, 0x21, 0x0c, 0x7d,
]);
// prettier-ignore
this._mix = new Uint32Array([
0x00000000, 0x0e090d0b, 0x1c121a16, 0x121b171d, 0x3824342c, 0x362d3927,
0x24362e3a, 0x2a3f2331, 0x70486858, 0x7e416553, 0x6c5a724e, 0x62537f45,
0x486c5c74, 0x4665517f, 0x547e4662, 0x5a774b69, 0xe090d0b0, 0xee99ddbb,
0xfc82caa6, 0xf28bc7ad, 0xd8b4e49c, 0xd6bde997, 0xc4a6fe8a, 0xcaaff381,
0x90d8b8e8, 0x9ed1b5e3, 0x8ccaa2fe, 0x82c3aff5, 0xa8fc8cc4, 0xa6f581cf,
0xb4ee96d2, 0xbae79bd9, 0xdb3bbb7b, 0xd532b670, 0xc729a16d, 0xc920ac66,
0xe31f8f57, 0xed16825c, 0xff0d9541, 0xf104984a, 0xab73d323, 0xa57ade28,
0xb761c935, 0xb968c43e, 0x9357e70f, 0x9d5eea04, 0x8f45fd19, 0x814cf012,
0x3bab6bcb, 0x35a266c0, 0x27b971dd, 0x29b07cd6, 0x038f5fe7, 0x0d8652ec,
0x1f9d45f1, 0x119448fa, 0x4be30393, 0x45ea0e98, 0x57f11985, 0x59f8148e,
0x73c737bf, 0x7dce3ab4, 0x6fd52da9, 0x61dc20a2, 0xad766df6, 0xa37f60fd,
0xb16477e0, 0xbf6d7aeb, 0x955259da, 0x9b5b54d1, 0x894043cc, 0x87494ec7,
0xdd3e05ae, 0xd33708a5, 0xc12c1fb8, 0xcf2512b3, 0xe51a3182, 0xeb133c89,
0xf9082b94, 0xf701269f, 0x4de6bd46, 0x43efb04d, 0x51f4a750, 0x5ffdaa5b,
0x75c2896a, 0x7bcb8461, 0x69d0937c, 0x67d99e77, 0x3daed51e, 0x33a7d815,
0x21bccf08, 0x2fb5c203, 0x058ae132, 0x0b83ec39, 0x1998fb24, 0x1791f62f,
0x764dd68d, 0x7844db86, 0x6a5fcc9b, 0x6456c190, 0x4e69e2a1, 0x4060efaa,
0x527bf8b7, 0x5c72f5bc, 0x0605bed5, 0x080cb3de, 0x1a17a4c3, 0x141ea9c8,
0x3e218af9, 0x302887f2, 0x223390ef, 0x2c3a9de4, 0x96dd063d, 0x98d40b36,
0x8acf1c2b, 0x84c61120, 0xaef93211, 0xa0f03f1a, 0xb2eb2807, 0xbce2250c,
0xe6956e65, 0xe89c636e, 0xfa877473, 0xf48e7978, 0xdeb15a49, 0xd0b85742,
0xc2a3405f, 0xccaa4d54, 0x41ecdaf7, 0x4fe5d7fc, 0x5dfec0e1, 0x53f7cdea,
0x79c8eedb, 0x77c1e3d0, 0x65daf4cd, 0x6bd3f9c6, 0x31a4b2af, 0x3fadbfa4,
0x2db6a8b9, 0x23bfa5b2, 0x09808683, 0x07898b88, 0x15929c95, 0x1b9b919e,
0xa17c0a47, 0xaf75074c, 0xbd6e1051, 0xb3671d5a, 0x99583e6b, 0x97513360,
0x854a247d, 0x8b432976, 0xd134621f, 0xdf3d6f14, 0xcd267809, 0xc32f7502,
0xe9105633, 0xe7195b38, 0xf5024c25, 0xfb0b412e, 0x9ad7618c, 0x94de6c87,
0x86c57b9a, 0x88cc7691, 0xa2f355a0, 0xacfa58ab, 0xbee14fb6, 0xb0e842bd,
0xea9f09d4, 0xe49604df, 0xf68d13c2, 0xf8841ec9, 0xd2bb3df8, 0xdcb230f3,
0xcea927ee, 0xc0a02ae5, 0x7a47b13c, 0x744ebc37, 0x6655ab2a, 0x685ca621,
0x42638510, 0x4c6a881b, 0x5e719f06, 0x5078920d, 0x0a0fd964, 0x0406d46f,
0x161dc372, 0x1814ce79, 0x322bed48, 0x3c22e043, 0x2e39f75e, 0x2030fa55,
0xec9ab701, 0xe293ba0a, 0xf088ad17, 0xfe81a01c, 0xd4be832d, 0xdab78e26,
0xc8ac993b, 0xc6a59430, 0x9cd2df59, 0x92dbd252, 0x80c0c54f, 0x8ec9c844,
0xa4f6eb75, 0xaaffe67e, 0xb8e4f163, 0xb6edfc68, 0x0c0a67b1, 0x02036aba,
0x10187da7, 0x1e1170ac, 0x342e539d, 0x3a275e96, 0x283c498b, 0x26354480,
0x7c420fe9, 0x724b02e2, 0x605015ff, 0x6e5918f4, 0x44663bc5, 0x4a6f36ce,
0x587421d3, 0x567d2cd8, 0x37a10c7a, 0x39a80171, 0x2bb3166c, 0x25ba1b67,
0x0f853856, 0x018c355d, 0x13972240, 0x1d9e2f4b, 0x47e96422, 0x49e06929,
0x5bfb7e34, 0x55f2733f, 0x7fcd500e, 0x71c45d05, 0x63df4a18, 0x6dd64713,
0xd731dcca, 0xd938d1c1, 0xcb23c6dc, 0xc52acbd7, 0xef15e8e6, 0xe11ce5ed,
0xf307f2f0, 0xfd0efffb, 0xa779b492, 0xa970b999, 0xbb6bae84, 0xb562a38f,
0x9f5d80be, 0x91548db5, 0x834f9aa8, 0x8d4697a3,
]);
this._mixCol = new Uint8Array(256);
for (let i = 0; i < 256; i++) {
if (i < 128) {
this._mixCol[i] = i << 1;
} else {
this._mixCol[i] = (i << 1) ^ 0x1b;
}
}
this.buffer = new Uint8Array(16);
this.bufferPosition = 0;
}
_expandKey(cipherKey) {
unreachable("Cannot call `_expandKey` on the base class");
}
_decrypt(input, key) {
let t, u, v;
const state = new Uint8Array(16);
state.set(input);
// AddRoundKey
for (let j = 0, k = this._keySize; j < 16; ++j, ++k) {
state[j] ^= key[k];
}
for (let i = this._cyclesOfRepetition - 1; i >= 1; --i) {
// InvShiftRows
t = state[13];
state[13] = state[9];
state[9] = state[5];
state[5] = state[1];
state[1] = t;
t = state[14];
u = state[10];
state[14] = state[6];
state[10] = state[2];
state[6] = t;
state[2] = u;
t = state[15];
u = state[11];
v = state[7];
state[15] = state[3];
state[11] = t;
state[7] = u;
state[3] = v;
// InvSubBytes
for (let j = 0; j < 16; ++j) {
state[j] = this._inv_s[state[j]];
}
// AddRoundKey
for (let j = 0, k = i * 16; j < 16; ++j, ++k) {
state[j] ^= key[k];
}
// InvMixColumns
for (let j = 0; j < 16; j += 4) {
const s0 = this._mix[state[j]];
const s1 = this._mix[state[j + 1]];
const s2 = this._mix[state[j + 2]];
const s3 = this._mix[state[j + 3]];
t =
s0 ^
(s1 >>> 8) ^
(s1 << 24) ^
(s2 >>> 16) ^
(s2 << 16) ^
(s3 >>> 24) ^
(s3 << 8);
state[j] = (t >>> 24) & 0xff;
state[j + 1] = (t >> 16) & 0xff;
state[j + 2] = (t >> 8) & 0xff;
state[j + 3] = t & 0xff;
}
}
// InvShiftRows
t = state[13];
state[13] = state[9];
state[9] = state[5];
state[5] = state[1];
state[1] = t;
t = state[14];
u = state[10];
state[14] = state[6];
state[10] = state[2];
state[6] = t;
state[2] = u;
t = state[15];
u = state[11];
v = state[7];
state[15] = state[3];
state[11] = t;
state[7] = u;
state[3] = v;
for (let j = 0; j < 16; ++j) {
// InvSubBytes
state[j] = this._inv_s[state[j]];
// AddRoundKey
state[j] ^= key[j];
}
return state;
}
_encrypt(input, key) {
const s = this._s;
let t, u, v;
const state = new Uint8Array(16);
state.set(input);
for (let j = 0; j < 16; ++j) {
// AddRoundKey
state[j] ^= key[j];
}
for (let i = 1; i < this._cyclesOfRepetition; i++) {
// SubBytes
for (let j = 0; j < 16; ++j) {
state[j] = s[state[j]];
}
// ShiftRows
v = state[1];
state[1] = state[5];
state[5] = state[9];
state[9] = state[13];
state[13] = v;
v = state[2];
u = state[6];
state[2] = state[10];
state[6] = state[14];
state[10] = v;
state[14] = u;
v = state[3];
u = state[7];
t = state[11];
state[3] = state[15];
state[7] = v;
state[11] = u;
state[15] = t;
// MixColumns
for (let j = 0; j < 16; j += 4) {
const s0 = state[j + 0];
const s1 = state[j + 1];
const s2 = state[j + 2];
const s3 = state[j + 3];
t = s0 ^ s1 ^ s2 ^ s3;
state[j + 0] ^= t ^ this._mixCol[s0 ^ s1];
state[j + 1] ^= t ^ this._mixCol[s1 ^ s2];
state[j + 2] ^= t ^ this._mixCol[s2 ^ s3];
state[j + 3] ^= t ^ this._mixCol[s3 ^ s0];
}
// AddRoundKey
for (let j = 0, k = i * 16; j < 16; ++j, ++k) {
state[j] ^= key[k];
}
}
// SubBytes
for (let j = 0; j < 16; ++j) {
state[j] = s[state[j]];
}
// ShiftRows
v = state[1];
state[1] = state[5];
state[5] = state[9];
state[9] = state[13];
state[13] = v;
v = state[2];
u = state[6];
state[2] = state[10];
state[6] = state[14];
state[10] = v;
state[14] = u;
v = state[3];
u = state[7];
t = state[11];
state[3] = state[15];
state[7] = v;
state[11] = u;
state[15] = t;
// AddRoundKey
for (let j = 0, k = this._keySize; j < 16; ++j, ++k) {
state[j] ^= key[k];
}
return state;
}
_decryptBlock2(data, finalize) {
const sourceLength = data.length;
let buffer = this.buffer,
bufferLength = this.bufferPosition;
const result = [];
let iv = this.iv;
for (let i = 0; i < sourceLength; ++i) {
buffer[bufferLength] = data[i];
++bufferLength;
if (bufferLength < 16) {
continue;
}
// buffer is full, decrypting
const plain = this._decrypt(buffer, this._key);
// xor-ing the IV vector to get plain text
for (let j = 0; j < 16; ++j) {
plain[j] ^= iv[j];
}
iv = buffer;
result.push(plain);
buffer = new Uint8Array(16);
bufferLength = 0;
}
// saving incomplete buffer
this.buffer = buffer;
this.bufferLength = bufferLength;
this.iv = iv;
if (result.length === 0) {
return new Uint8Array(0);
}
// combining plain text blocks into one
let outputLength = 16 * result.length;
if (finalize) {
// undo a padding that is described in RFC 2898
const lastBlock = result[result.length - 1];
let psLen = lastBlock[15];
if (psLen <= 16) {
for (let i = 15, ii = 16 - psLen; i >= ii; --i) {
if (lastBlock[i] !== psLen) {
// Invalid padding, assume that the block has no padding.
psLen = 0;
break;
}
}
outputLength -= psLen;
result[result.length - 1] = lastBlock.subarray(0, 16 - psLen);
}
}
const output = new Uint8Array(outputLength);
for (let i = 0, j = 0, ii = result.length; i < ii; ++i, j += 16) {
output.set(result[i], j);
}
return output;
}
decryptBlock(data, finalize, iv = null) {
const sourceLength = data.length;
const buffer = this.buffer;
let bufferLength = this.bufferPosition;
// If an IV is not supplied, wait for IV values. They are at the start
// of the stream.
if (iv) {
this.iv = iv;
} else {
for (
let i = 0;
bufferLength < 16 && i < sourceLength;
++i, ++bufferLength
) {
buffer[bufferLength] = data[i];
}
if (bufferLength < 16) {
// Need more data.
this.bufferLength = bufferLength;
return new Uint8Array(0);
}
this.iv = buffer;
data = data.subarray(16);
}
this.buffer = new Uint8Array(16);
this.bufferLength = 0;
// starting decryption
this.decryptBlock = this._decryptBlock2;
return this.decryptBlock(data, finalize);
}
encrypt(data, iv) {
const sourceLength = data.length;
let buffer = this.buffer,
bufferLength = this.bufferPosition;
const result = [];
if (!iv) {
iv = new Uint8Array(16);
}
for (let i = 0; i < sourceLength; ++i) {
buffer[bufferLength] = data[i];
++bufferLength;
if (bufferLength < 16) {
continue;
}
for (let j = 0; j < 16; ++j) {
buffer[j] ^= iv[j];
}
// buffer is full, encrypting
const cipher = this._encrypt(buffer, this._key);
iv = cipher;
result.push(cipher);
buffer = new Uint8Array(16);
bufferLength = 0;
}
// saving incomplete buffer
this.buffer = buffer;
this.bufferLength = bufferLength;
this.iv = iv;
if (result.length === 0) {
return new Uint8Array(0);
}
// combining plain text blocks into one
const outputLength = 16 * result.length;
const output = new Uint8Array(outputLength);
for (let i = 0, j = 0, ii = result.length; i < ii; ++i, j += 16) {
output.set(result[i], j);
}
return output;
}
}
class AES128Cipher extends AESBaseCipher {
constructor(key) {
super();
this._cyclesOfRepetition = 10;
this._keySize = 160; // bits
// prettier-ignore
this._rcon = new Uint8Array([
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a,
0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6,
0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10,
0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e,
0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02,
0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb,
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a,
0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d,
]);
this._key = this._expandKey(key);
}
_expandKey(cipherKey) {
const b = 176;
const s = this._s;
const rcon = this._rcon;
const result = new Uint8Array(b);
result.set(cipherKey);
for (let j = 16, i = 1; j < b; ++i) {
// RotWord
let t1 = result[j - 3];
let t2 = result[j - 2];
let t3 = result[j - 1];
let t4 = result[j - 4];
// SubWord
t1 = s[t1];
t2 = s[t2];
t3 = s[t3];
t4 = s[t4];
// Rcon
t1 = t1 ^ rcon[i];
for (let n = 0; n < 4; ++n) {
result[j] = t1 ^= result[j - 16];
j++;
result[j] = t2 ^= result[j - 16];
j++;
result[j] = t3 ^= result[j - 16];
j++;
result[j] = t4 ^= result[j - 16];
j++;
}
}
return result;
}
}
class AES256Cipher extends AESBaseCipher {
constructor(key) {
super();
this._cyclesOfRepetition = 14;
this._keySize = 224; // bits
this._key = this._expandKey(key);
}
_expandKey(cipherKey) {
const b = 240;
const s = this._s;
const result = new Uint8Array(b);
result.set(cipherKey);
let r = 1;
let t1, t2, t3, t4;
for (let j = 32, i = 1; j < b; ++i) {
if (j % 32 === 16) {
t1 = s[t1];
t2 = s[t2];
t3 = s[t3];
t4 = s[t4];
} else if (j % 32 === 0) {
// RotWord
t1 = result[j - 3];
t2 = result[j - 2];
t3 = result[j - 1];
t4 = result[j - 4];
// SubWord
t1 = s[t1];
t2 = s[t2];
t3 = s[t3];
t4 = s[t4];
// Rcon
t1 = t1 ^ r;
if ((r <<= 1) >= 256) {
r = (r ^ 0x1b) & 0xff;
}
}
for (let n = 0; n < 4; ++n) {
result[j] = t1 ^= result[j - 32];
j++;
result[j] = t2 ^= result[j - 32];
j++;
result[j] = t3 ^= result[j - 32];
j++;
result[j] = t4 ^= result[j - 32];
j++;
}
}
return result;
}
}
class PDF17 {
checkOwnerPassword(password, ownerValidationSalt, userBytes, ownerPassword) {
var hashData = new Uint8Array(password.length + 56);
hashData.set(password, 0);
hashData.set(ownerValidationSalt, password.length);
hashData.set(userBytes, password.length + ownerValidationSalt.length);
var result = calculateSHA256(hashData, 0, hashData.length);
return isArrayEqual(result, ownerPassword);
}
checkUserPassword(password, userValidationSalt, userPassword) {
var hashData = new Uint8Array(password.length + 8);
hashData.set(password, 0);
hashData.set(userValidationSalt, password.length);
var result = calculateSHA256(hashData, 0, hashData.length);
return isArrayEqual(result, userPassword);
}
getOwnerKey(password, ownerKeySalt, userBytes, ownerEncryption) {
var hashData = new Uint8Array(password.length + 56);
hashData.set(password, 0);
hashData.set(ownerKeySalt, password.length);
hashData.set(userBytes, password.length + ownerKeySalt.length);
var key = calculateSHA256(hashData, 0, hashData.length);
var cipher = new AES256Cipher(key);
return cipher.decryptBlock(ownerEncryption, false, new Uint8Array(16));
}
getUserKey(password, userKeySalt, userEncryption) {
var hashData = new Uint8Array(password.length + 8);
hashData.set(password, 0);
hashData.set(userKeySalt, password.length);
// `key` is the decryption key for the UE string.
var key = calculateSHA256(hashData, 0, hashData.length);
var cipher = new AES256Cipher(key);
return cipher.decryptBlock(userEncryption, false, new Uint8Array(16));
}
}
var PDF20 = (function PDF20Closure() {
function calculatePDF20Hash(password, input, userBytes) {
// This refers to Algorithm 2.B as defined in ISO 32000-2.
var k = calculateSHA256(input, 0, input.length).subarray(0, 32);
var e = [0];
var i = 0;
while (i < 64 || e[e.length - 1] > i - 32) {
const combinedLength = password.length + k.length + userBytes.length,
combinedArray = new Uint8Array(combinedLength);
let writeOffset = 0;
combinedArray.set(password, writeOffset);
writeOffset += password.length;
combinedArray.set(k, writeOffset);
writeOffset += k.length;
combinedArray.set(userBytes, writeOffset);
var k1 = new Uint8Array(combinedLength * 64);
for (var j = 0, pos = 0; j < 64; j++, pos += combinedLength) {
k1.set(combinedArray, pos);
}
// AES128 CBC NO PADDING with first 16 bytes of k as the key
// and the second 16 as the iv.
var cipher = new AES128Cipher(k.subarray(0, 16));
e = cipher.encrypt(k1, k.subarray(16, 32));
// Now we have to take the first 16 bytes of an unsigned big endian
// integer and compute the remainder modulo 3. That is a fairly large
// number and JavaScript isn't going to handle that well, so we're using
// a trick that allows us to perform modulo math byte by byte.
var remainder = 0;
for (var z = 0; z < 16; z++) {
remainder *= 256 % 3;
remainder %= 3;
remainder += (e[z] >>> 0) % 3;
remainder %= 3;
}
if (remainder === 0) {
k = calculateSHA256(e, 0, e.length);
} else if (remainder === 1) {
k = calculateSHA384(e, 0, e.length);
} else if (remainder === 2) {
k = calculateSHA512(e, 0, e.length);
}
i++;
}
return k.subarray(0, 32);
}
// eslint-disable-next-line no-shadow
class PDF20 {
hash(password, concatBytes, userBytes) {
return calculatePDF20Hash(password, concatBytes, userBytes);
}
checkOwnerPassword(
password,
ownerValidationSalt,
userBytes,
ownerPassword
) {
var hashData = new Uint8Array(password.length + 56);
hashData.set(password, 0);
hashData.set(ownerValidationSalt, password.length);
hashData.set(userBytes, password.length + ownerValidationSalt.length);
var result = calculatePDF20Hash(password, hashData, userBytes);
return isArrayEqual(result, ownerPassword);
}
checkUserPassword(password, userValidationSalt, userPassword) {
var hashData = new Uint8Array(password.length + 8);
hashData.set(password, 0);
hashData.set(userValidationSalt, password.length);
var result = calculatePDF20Hash(password, hashData, []);
return isArrayEqual(result, userPassword);
}
getOwnerKey(password, ownerKeySalt, userBytes, ownerEncryption) {
var hashData = new Uint8Array(password.length + 56);
hashData.set(password, 0);
hashData.set(ownerKeySalt, password.length);
hashData.set(userBytes, password.length + ownerKeySalt.length);
var key = calculatePDF20Hash(password, hashData, userBytes);
var cipher = new AES256Cipher(key);
return cipher.decryptBlock(ownerEncryption, false, new Uint8Array(16));
}
getUserKey(password, userKeySalt, userEncryption) {
var hashData = new Uint8Array(password.length + 8);
hashData.set(password, 0);
hashData.set(userKeySalt, password.length);
// `key` is the decryption key for the UE string.
var key = calculatePDF20Hash(password, hashData, []);
var cipher = new AES256Cipher(key);
return cipher.decryptBlock(userEncryption, false, new Uint8Array(16));
}
}
return PDF20;
})();
class CipherTransform {
constructor(stringCipherConstructor, streamCipherConstructor) {
this.StringCipherConstructor = stringCipherConstructor;
this.StreamCipherConstructor = streamCipherConstructor;
}
createStream(stream, length) {
var cipher = new this.StreamCipherConstructor();
return new DecryptStream(
stream,
length,
function cipherTransformDecryptStream(data, finalize) {
return cipher.decryptBlock(data, finalize);
}
);
}
decryptString(s) {
var cipher = new this.StringCipherConstructor();
var data = stringToBytes(s);
data = cipher.decryptBlock(data, true);
return bytesToString(data);
}
encryptString(s) {
const cipher = new this.StringCipherConstructor();
if (cipher instanceof AESBaseCipher) {
// Append some chars equal to "16 - (M mod 16)"
// where M is the string length (see section 7.6.2 in PDF specification)
// to have a final string where the length is a multiple of 16.
const strLen = s.length;
const pad = 16 - (strLen % 16);
if (pad !== 16) {
s = s.padEnd(16 * Math.ceil(strLen / 16), String.fromCharCode(pad));
}
// Generate an initialization vector
const iv = new Uint8Array(16);
if (typeof crypto !== "undefined") {
crypto.getRandomValues(iv);
} else {
for (let i = 0; i < 16; i++) {
iv[i] = Math.floor(256 * Math.random());
}
}
let data = stringToBytes(s);
data = cipher.encrypt(data, iv);
const buf = new Uint8Array(16 + data.length);
buf.set(iv);
buf.set(data, 16);
return bytesToString(buf);
}
let data = stringToBytes(s);
data = cipher.encrypt(data);
return bytesToString(data);
}
}
var CipherTransformFactory = (function CipherTransformFactoryClosure() {
// prettier-ignore
var defaultPasswordBytes = new Uint8Array([
0x28, 0xBF, 0x4E, 0x5E, 0x4E, 0x75, 0x8A, 0x41,
0x64, 0x00, 0x4E, 0x56, 0xFF, 0xFA, 0x01, 0x08,
0x2E, 0x2E, 0x00, 0xB6, 0xD0, 0x68, 0x3E, 0x80,
0x2F, 0x0C, 0xA9, 0xFE, 0x64, 0x53, 0x69, 0x7A]);
function createEncryptionKey20(
revision,
password,
ownerPassword,
ownerValidationSalt,
ownerKeySalt,
uBytes,
userPassword,
userValidationSalt,
userKeySalt,
ownerEncryption,
userEncryption,
perms
) {
if (password) {
var passwordLength = Math.min(127, password.length);
password = password.subarray(0, passwordLength);
} else {
password = [];
}
var pdfAlgorithm;
if (revision === 6) {
pdfAlgorithm = new PDF20();
} else {
pdfAlgorithm = new PDF17();
}
if (
pdfAlgorithm.checkUserPassword(password, userValidationSalt, userPassword)
) {
return pdfAlgorithm.getUserKey(password, userKeySalt, userEncryption);
} else if (
password.length &&
pdfAlgorithm.checkOwnerPassword(
password,
ownerValidationSalt,
uBytes,
ownerPassword
)
) {
return pdfAlgorithm.getOwnerKey(
password,
ownerKeySalt,
uBytes,
ownerEncryption
);
}
return null;
}
function prepareKeyData(
fileId,
password,
ownerPassword,
userPassword,
flags,
revision,
keyLength,
encryptMetadata
) {
var hashDataSize = 40 + ownerPassword.length + fileId.length;
var hashData = new Uint8Array(hashDataSize),
i = 0,
j,
n;
if (password) {
n = Math.min(32, password.length);
for (; i < n; ++i) {
hashData[i] = password[i];
}
}
j = 0;
while (i < 32) {
hashData[i++] = defaultPasswordBytes[j++];
}
// as now the padded password in the hashData[0..i]
for (j = 0, n = ownerPassword.length; j < n; ++j) {
hashData[i++] = ownerPassword[j];
}
hashData[i++] = flags & 0xff;
hashData[i++] = (flags >> 8) & 0xff;
hashData[i++] = (flags >> 16) & 0xff;
hashData[i++] = (flags >>> 24) & 0xff;
for (j = 0, n = fileId.length; j < n; ++j) {
hashData[i++] = fileId[j];
}
if (revision >= 4 && !encryptMetadata) {
hashData[i++] = 0xff;
hashData[i++] = 0xff;
hashData[i++] = 0xff;
hashData[i++] = 0xff;
}
var hash = calculateMD5(hashData, 0, i);
var keyLengthInBytes = keyLength >> 3;
if (revision >= 3) {
for (j = 0; j < 50; ++j) {
hash = calculateMD5(hash, 0, keyLengthInBytes);
}
}
var encryptionKey = hash.subarray(0, keyLengthInBytes);
var cipher, checkData;
if (revision >= 3) {
for (i = 0; i < 32; ++i) {
hashData[i] = defaultPasswordBytes[i];
}
for (j = 0, n = fileId.length; j < n; ++j) {
hashData[i++] = fileId[j];
}
cipher = new ARCFourCipher(encryptionKey);
checkData = cipher.encryptBlock(calculateMD5(hashData, 0, i));
n = encryptionKey.length;
var derivedKey = new Uint8Array(n),
k;
for (j = 1; j <= 19; ++j) {
for (k = 0; k < n; ++k) {
derivedKey[k] = encryptionKey[k] ^ j;
}
cipher = new ARCFourCipher(derivedKey);
checkData = cipher.encryptBlock(checkData);
}
for (j = 0, n = checkData.length; j < n; ++j) {
if (userPassword[j] !== checkData[j]) {
return null;
}
}
} else {
cipher = new ARCFourCipher(encryptionKey);
checkData = cipher.encryptBlock(defaultPasswordBytes);
for (j = 0, n = checkData.length; j < n; ++j) {
if (userPassword[j] !== checkData[j]) {
return null;
}
}
}
return encryptionKey;
}
function decodeUserPassword(password, ownerPassword, revision, keyLength) {
var hashData = new Uint8Array(32),
i = 0,
j,
n;
n = Math.min(32, password.length);
for (; i < n; ++i) {
hashData[i] = password[i];
}
j = 0;
while (i < 32) {
hashData[i++] = defaultPasswordBytes[j++];
}
var hash = calculateMD5(hashData, 0, i);
var keyLengthInBytes = keyLength >> 3;
if (revision >= 3) {
for (j = 0; j < 50; ++j) {
hash = calculateMD5(hash, 0, hash.length);
}
}
var cipher, userPassword;
if (revision >= 3) {
userPassword = ownerPassword;
var derivedKey = new Uint8Array(keyLengthInBytes),
k;
for (j = 19; j >= 0; j--) {
for (k = 0; k < keyLengthInBytes; ++k) {
derivedKey[k] = hash[k] ^ j;
}
cipher = new ARCFourCipher(derivedKey);
userPassword = cipher.encryptBlock(userPassword);
}
} else {
cipher = new ARCFourCipher(hash.subarray(0, keyLengthInBytes));
userPassword = cipher.encryptBlock(ownerPassword);
}
return userPassword;
}
var identityName = Name.get("Identity");
function buildObjectKey(num, gen, encryptionKey, isAes = false) {
var key = new Uint8Array(encryptionKey.length + 9),
i,
n;
for (i = 0, n = encryptionKey.length; i < n; ++i) {
key[i] = encryptionKey[i];
}
key[i++] = num & 0xff;
key[i++] = (num >> 8) & 0xff;
key[i++] = (num >> 16) & 0xff;
key[i++] = gen & 0xff;
key[i++] = (gen >> 8) & 0xff;
if (isAes) {
key[i++] = 0x73;
key[i++] = 0x41;
key[i++] = 0x6c;
key[i++] = 0x54;
}
var hash = calculateMD5(key, 0, i);
return hash.subarray(0, Math.min(encryptionKey.length + 5, 16));
}
function buildCipherConstructor(cf, name, num, gen, key) {
if (!isName(name)) {
throw new FormatError("Invalid crypt filter name.");
}
var cryptFilter = cf.get(name.name);
var cfm;
if (cryptFilter !== null && cryptFilter !== undefined) {
cfm = cryptFilter.get("CFM");
}
if (!cfm || cfm.name === "None") {
return function cipherTransformFactoryBuildCipherConstructorNone() {
return new NullCipher();
};
}
if (cfm.name === "V2") {
return function cipherTransformFactoryBuildCipherConstructorV2() {
return new ARCFourCipher(
buildObjectKey(num, gen, key, /* isAes = */ false)
);
};
}
if (cfm.name === "AESV2") {
return function cipherTransformFactoryBuildCipherConstructorAESV2() {
return new AES128Cipher(
buildObjectKey(num, gen, key, /* isAes = */ true)
);
};
}
if (cfm.name === "AESV3") {
return function cipherTransformFactoryBuildCipherConstructorAESV3() {
return new AES256Cipher(key);
};
}
throw new FormatError("Unknown crypto method");
}
// eslint-disable-next-line no-shadow
class CipherTransformFactory {
constructor(dict, fileId, password) {
var filter = dict.get("Filter");
if (!isName(filter, "Standard")) {
throw new FormatError("unknown encryption method");
}
this.dict = dict;
var algorithm = dict.get("V");
if (
!Number.isInteger(algorithm) ||
(algorithm !== 1 &&
algorithm !== 2 &&
algorithm !== 4 &&
algorithm !== 5)
) {
throw new FormatError("unsupported encryption algorithm");
}
this.algorithm = algorithm;
var keyLength = dict.get("Length");
if (!keyLength) {
// Spec asks to rely on encryption dictionary's Length entry, however
// some PDFs don't have it. Trying to recover.
if (algorithm <= 3) {
// For 1 and 2 it's fixed to 40-bit, for 3 40-bit is a minimal value.
keyLength = 40;
} else {
// Trying to find default handler -- it usually has Length.
var cfDict = dict.get("CF");
var streamCryptoName = dict.get("StmF");
if (isDict(cfDict) && isName(streamCryptoName)) {
cfDict.suppressEncryption = true; // See comment below.
var handlerDict = cfDict.get(streamCryptoName.name);
keyLength = (handlerDict && handlerDict.get("Length")) || 128;
if (keyLength < 40) {
// Sometimes it's incorrect value of bits, generators specify
// bytes.
keyLength <<= 3;
}
}
}
}
if (
!Number.isInteger(keyLength) ||
keyLength < 40 ||
keyLength % 8 !== 0
) {
throw new FormatError("invalid key length");
}
// prepare keys
var ownerPassword = stringToBytes(dict.get("O")).subarray(0, 32);
var userPassword = stringToBytes(dict.get("U")).subarray(0, 32);
var flags = dict.get("P");
var revision = dict.get("R");
// meaningful when V is 4 or 5
var encryptMetadata =
(algorithm === 4 || algorithm === 5) &&
dict.get("EncryptMetadata") !== false;
this.encryptMetadata = encryptMetadata;
var fileIdBytes = stringToBytes(fileId);
var passwordBytes;
if (password) {
if (revision === 6) {
try {
password = utf8StringToString(password);
} catch (ex) {
warn(
"CipherTransformFactory: " +
"Unable to convert UTF8 encoded password."
);
}
}
passwordBytes = stringToBytes(password);
}
var encryptionKey;
if (algorithm !== 5) {
encryptionKey = prepareKeyData(
fileIdBytes,
passwordBytes,
ownerPassword,
userPassword,
flags,
revision,
keyLength,
encryptMetadata
);
} else {
var ownerValidationSalt = stringToBytes(dict.get("O")).subarray(32, 40);
var ownerKeySalt = stringToBytes(dict.get("O")).subarray(40, 48);
var uBytes = stringToBytes(dict.get("U")).subarray(0, 48);
var userValidationSalt = stringToBytes(dict.get("U")).subarray(32, 40);
var userKeySalt = stringToBytes(dict.get("U")).subarray(40, 48);
var ownerEncryption = stringToBytes(dict.get("OE"));
var userEncryption = stringToBytes(dict.get("UE"));
var perms = stringToBytes(dict.get("Perms"));
encryptionKey = createEncryptionKey20(
revision,
passwordBytes,
ownerPassword,
ownerValidationSalt,
ownerKeySalt,
uBytes,
userPassword,
userValidationSalt,
userKeySalt,
ownerEncryption,
userEncryption,
perms
);
}
if (!encryptionKey && !password) {
throw new PasswordException(
"No password given",
PasswordResponses.NEED_PASSWORD
);
} else if (!encryptionKey && password) {
// Attempting use the password as an owner password
var decodedPassword = decodeUserPassword(
passwordBytes,
ownerPassword,
revision,
keyLength
);
encryptionKey = prepareKeyData(
fileIdBytes,
decodedPassword,
ownerPassword,
userPassword,
flags,
revision,
keyLength,
encryptMetadata
);
}
if (!encryptionKey) {
throw new PasswordException(
"Incorrect Password",
PasswordResponses.INCORRECT_PASSWORD
);
}
this.encryptionKey = encryptionKey;
if (algorithm >= 4) {
var cf = dict.get("CF");
if (isDict(cf)) {
// The 'CF' dictionary itself should not be encrypted, and by setting
// `suppressEncryption` we can prevent an infinite loop inside of
// `XRef_fetchUncompressed` if the dictionary contains indirect
// objects (fixes issue7665.pdf).
cf.suppressEncryption = true;
}
this.cf = cf;
this.stmf = dict.get("StmF") || identityName;
this.strf = dict.get("StrF") || identityName;
this.eff = dict.get("EFF") || this.stmf;
}
}
createCipherTransform(num, gen) {
if (this.algorithm === 4 || this.algorithm === 5) {
return new CipherTransform(
buildCipherConstructor(
this.cf,
this.stmf,
num,
gen,
this.encryptionKey
),
buildCipherConstructor(
this.cf,
this.strf,
num,
gen,
this.encryptionKey
)
);
}
// algorithms 1 and 2
var key = buildObjectKey(
num,
gen,
this.encryptionKey,
/* isAes = */ false
);
var cipherConstructor = function buildCipherCipherConstructor() {
return new ARCFourCipher(key);
};
return new CipherTransform(cipherConstructor, cipherConstructor);
}
}
return CipherTransformFactory;
})();
export {
AES128Cipher,
AES256Cipher,
ARCFourCipher,
calculateMD5,
calculateSHA256,
calculateSHA384,
calculateSHA512,
CipherTransformFactory,
PDF17,
PDF20,
};