a52c0c6988
Previously, when we filled image masks we didn't copy over the current transformation, this caused patterns to be misaligned when painted. Now we create a temporary canvas with the mask and have the transform copied over and offset it relative to where the mask would be painted. We also weren't properly offsetting tiling patterns. This isn't usually noticeable since patters repeat, but in the case of #13561 the pattern is only drawn once and has to be in the correct position to line up with the mask image. These fixes broke #11473, but highlighted that we were drawing that correctly by accident and not correctly handling negative bounding boxes on tiling patterns. Fixes #6297, #13561, #13441 Partially fixes #1344 (still blurry but boxes are in correct position now)
650 lines
18 KiB
JavaScript
650 lines
18 KiB
JavaScript
/* Copyright 2014 Mozilla Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
import {
|
|
FormatError,
|
|
info,
|
|
shadow,
|
|
unreachable,
|
|
Util,
|
|
} from "../shared/util.js";
|
|
import { DOMSVGFactory } from "./display_utils.js";
|
|
|
|
let svgElement;
|
|
|
|
// TODO: remove this when Firefox ESR supports DOMMatrix.
|
|
function createMatrix(matrix) {
|
|
if (typeof DOMMatrix !== "undefined") {
|
|
return new DOMMatrix(matrix);
|
|
}
|
|
if (!svgElement) {
|
|
const svgFactory = new DOMSVGFactory();
|
|
svgElement = svgFactory.createElement("svg");
|
|
}
|
|
return svgElement.createSVGMatrix(matrix);
|
|
}
|
|
|
|
function applyBoundingBox(ctx, bbox) {
|
|
if (!bbox || typeof Path2D === "undefined") {
|
|
return;
|
|
}
|
|
const width = bbox[2] - bbox[0];
|
|
const height = bbox[3] - bbox[1];
|
|
const region = new Path2D();
|
|
region.rect(bbox[0], bbox[1], width, height);
|
|
ctx.clip(region);
|
|
}
|
|
|
|
class BaseShadingPattern {
|
|
constructor() {
|
|
if (this.constructor === BaseShadingPattern) {
|
|
unreachable("Cannot initialize BaseShadingPattern.");
|
|
}
|
|
}
|
|
|
|
getPattern() {
|
|
unreachable("Abstract method `getPattern` called.");
|
|
}
|
|
}
|
|
|
|
class RadialAxialShadingPattern extends BaseShadingPattern {
|
|
constructor(IR) {
|
|
super();
|
|
this._type = IR[1];
|
|
this._bbox = IR[2];
|
|
this._colorStops = IR[3];
|
|
this._p0 = IR[4];
|
|
this._p1 = IR[5];
|
|
this._r0 = IR[6];
|
|
this._r1 = IR[7];
|
|
this._matrix = IR[8];
|
|
}
|
|
|
|
getPattern(ctx, owner, inverse, shadingFill = false) {
|
|
const tmpCanvas = owner.cachedCanvases.getCanvas(
|
|
"pattern",
|
|
owner.ctx.canvas.width,
|
|
owner.ctx.canvas.height,
|
|
true
|
|
);
|
|
|
|
const tmpCtx = tmpCanvas.context;
|
|
tmpCtx.clearRect(0, 0, tmpCtx.canvas.width, tmpCtx.canvas.height);
|
|
tmpCtx.beginPath();
|
|
tmpCtx.rect(0, 0, tmpCtx.canvas.width, tmpCtx.canvas.height);
|
|
|
|
if (!shadingFill) {
|
|
tmpCtx.setTransform.apply(tmpCtx, owner.baseTransform);
|
|
if (this._matrix) {
|
|
tmpCtx.transform.apply(tmpCtx, this._matrix);
|
|
}
|
|
} else {
|
|
tmpCtx.setTransform.apply(tmpCtx, ctx.mozCurrentTransform);
|
|
}
|
|
applyBoundingBox(tmpCtx, this._bbox);
|
|
|
|
let grad;
|
|
if (this._type === "axial") {
|
|
grad = tmpCtx.createLinearGradient(
|
|
this._p0[0],
|
|
this._p0[1],
|
|
this._p1[0],
|
|
this._p1[1]
|
|
);
|
|
} else if (this._type === "radial") {
|
|
grad = tmpCtx.createRadialGradient(
|
|
this._p0[0],
|
|
this._p0[1],
|
|
this._r0,
|
|
this._p1[0],
|
|
this._p1[1],
|
|
this._r1
|
|
);
|
|
}
|
|
|
|
for (const colorStop of this._colorStops) {
|
|
grad.addColorStop(colorStop[0], colorStop[1]);
|
|
}
|
|
tmpCtx.fillStyle = grad;
|
|
tmpCtx.fill();
|
|
|
|
const pattern = ctx.createPattern(tmpCanvas.canvas, "repeat");
|
|
pattern.setTransform(createMatrix(inverse));
|
|
return pattern;
|
|
}
|
|
}
|
|
|
|
function drawTriangle(data, context, p1, p2, p3, c1, c2, c3) {
|
|
// Very basic Gouraud-shaded triangle rasterization algorithm.
|
|
const coords = context.coords,
|
|
colors = context.colors;
|
|
const bytes = data.data,
|
|
rowSize = data.width * 4;
|
|
let tmp;
|
|
if (coords[p1 + 1] > coords[p2 + 1]) {
|
|
tmp = p1;
|
|
p1 = p2;
|
|
p2 = tmp;
|
|
tmp = c1;
|
|
c1 = c2;
|
|
c2 = tmp;
|
|
}
|
|
if (coords[p2 + 1] > coords[p3 + 1]) {
|
|
tmp = p2;
|
|
p2 = p3;
|
|
p3 = tmp;
|
|
tmp = c2;
|
|
c2 = c3;
|
|
c3 = tmp;
|
|
}
|
|
if (coords[p1 + 1] > coords[p2 + 1]) {
|
|
tmp = p1;
|
|
p1 = p2;
|
|
p2 = tmp;
|
|
tmp = c1;
|
|
c1 = c2;
|
|
c2 = tmp;
|
|
}
|
|
const x1 = (coords[p1] + context.offsetX) * context.scaleX;
|
|
const y1 = (coords[p1 + 1] + context.offsetY) * context.scaleY;
|
|
const x2 = (coords[p2] + context.offsetX) * context.scaleX;
|
|
const y2 = (coords[p2 + 1] + context.offsetY) * context.scaleY;
|
|
const x3 = (coords[p3] + context.offsetX) * context.scaleX;
|
|
const y3 = (coords[p3 + 1] + context.offsetY) * context.scaleY;
|
|
if (y1 >= y3) {
|
|
return;
|
|
}
|
|
const c1r = colors[c1],
|
|
c1g = colors[c1 + 1],
|
|
c1b = colors[c1 + 2];
|
|
const c2r = colors[c2],
|
|
c2g = colors[c2 + 1],
|
|
c2b = colors[c2 + 2];
|
|
const c3r = colors[c3],
|
|
c3g = colors[c3 + 1],
|
|
c3b = colors[c3 + 2];
|
|
|
|
const minY = Math.round(y1),
|
|
maxY = Math.round(y3);
|
|
let xa, car, cag, cab;
|
|
let xb, cbr, cbg, cbb;
|
|
for (let y = minY; y <= maxY; y++) {
|
|
if (y < y2) {
|
|
let k;
|
|
if (y < y1) {
|
|
k = 0;
|
|
} else if (y1 === y2) {
|
|
k = 1;
|
|
} else {
|
|
k = (y1 - y) / (y1 - y2);
|
|
}
|
|
xa = x1 - (x1 - x2) * k;
|
|
car = c1r - (c1r - c2r) * k;
|
|
cag = c1g - (c1g - c2g) * k;
|
|
cab = c1b - (c1b - c2b) * k;
|
|
} else {
|
|
let k;
|
|
if (y > y3) {
|
|
k = 1;
|
|
} else if (y2 === y3) {
|
|
k = 0;
|
|
} else {
|
|
k = (y2 - y) / (y2 - y3);
|
|
}
|
|
xa = x2 - (x2 - x3) * k;
|
|
car = c2r - (c2r - c3r) * k;
|
|
cag = c2g - (c2g - c3g) * k;
|
|
cab = c2b - (c2b - c3b) * k;
|
|
}
|
|
|
|
let k;
|
|
if (y < y1) {
|
|
k = 0;
|
|
} else if (y > y3) {
|
|
k = 1;
|
|
} else {
|
|
k = (y1 - y) / (y1 - y3);
|
|
}
|
|
xb = x1 - (x1 - x3) * k;
|
|
cbr = c1r - (c1r - c3r) * k;
|
|
cbg = c1g - (c1g - c3g) * k;
|
|
cbb = c1b - (c1b - c3b) * k;
|
|
const x1_ = Math.round(Math.min(xa, xb));
|
|
const x2_ = Math.round(Math.max(xa, xb));
|
|
let j = rowSize * y + x1_ * 4;
|
|
for (let x = x1_; x <= x2_; x++) {
|
|
k = (xa - x) / (xa - xb);
|
|
if (k < 0) {
|
|
k = 0;
|
|
} else if (k > 1) {
|
|
k = 1;
|
|
}
|
|
bytes[j++] = (car - (car - cbr) * k) | 0;
|
|
bytes[j++] = (cag - (cag - cbg) * k) | 0;
|
|
bytes[j++] = (cab - (cab - cbb) * k) | 0;
|
|
bytes[j++] = 255;
|
|
}
|
|
}
|
|
}
|
|
|
|
function drawFigure(data, figure, context) {
|
|
const ps = figure.coords;
|
|
const cs = figure.colors;
|
|
let i, ii;
|
|
switch (figure.type) {
|
|
case "lattice":
|
|
const verticesPerRow = figure.verticesPerRow;
|
|
const rows = Math.floor(ps.length / verticesPerRow) - 1;
|
|
const cols = verticesPerRow - 1;
|
|
for (i = 0; i < rows; i++) {
|
|
let q = i * verticesPerRow;
|
|
for (let j = 0; j < cols; j++, q++) {
|
|
drawTriangle(
|
|
data,
|
|
context,
|
|
ps[q],
|
|
ps[q + 1],
|
|
ps[q + verticesPerRow],
|
|
cs[q],
|
|
cs[q + 1],
|
|
cs[q + verticesPerRow]
|
|
);
|
|
drawTriangle(
|
|
data,
|
|
context,
|
|
ps[q + verticesPerRow + 1],
|
|
ps[q + 1],
|
|
ps[q + verticesPerRow],
|
|
cs[q + verticesPerRow + 1],
|
|
cs[q + 1],
|
|
cs[q + verticesPerRow]
|
|
);
|
|
}
|
|
}
|
|
break;
|
|
case "triangles":
|
|
for (i = 0, ii = ps.length; i < ii; i += 3) {
|
|
drawTriangle(
|
|
data,
|
|
context,
|
|
ps[i],
|
|
ps[i + 1],
|
|
ps[i + 2],
|
|
cs[i],
|
|
cs[i + 1],
|
|
cs[i + 2]
|
|
);
|
|
}
|
|
break;
|
|
default:
|
|
throw new Error("illegal figure");
|
|
}
|
|
}
|
|
|
|
class MeshShadingPattern extends BaseShadingPattern {
|
|
constructor(IR) {
|
|
super();
|
|
this._coords = IR[2];
|
|
this._colors = IR[3];
|
|
this._figures = IR[4];
|
|
this._bounds = IR[5];
|
|
this._matrix = IR[6];
|
|
this._bbox = IR[7];
|
|
this._background = IR[8];
|
|
}
|
|
|
|
_createMeshCanvas(combinedScale, backgroundColor, cachedCanvases) {
|
|
// we will increase scale on some weird factor to let antialiasing take
|
|
// care of "rough" edges
|
|
const EXPECTED_SCALE = 1.1;
|
|
// MAX_PATTERN_SIZE is used to avoid OOM situation.
|
|
const MAX_PATTERN_SIZE = 3000; // 10in @ 300dpi shall be enough
|
|
// We need to keep transparent border around our pattern for fill():
|
|
// createPattern with 'no-repeat' will bleed edges across entire area.
|
|
const BORDER_SIZE = 2;
|
|
|
|
const offsetX = Math.floor(this._bounds[0]);
|
|
const offsetY = Math.floor(this._bounds[1]);
|
|
const boundsWidth = Math.ceil(this._bounds[2]) - offsetX;
|
|
const boundsHeight = Math.ceil(this._bounds[3]) - offsetY;
|
|
|
|
const width = Math.min(
|
|
Math.ceil(Math.abs(boundsWidth * combinedScale[0] * EXPECTED_SCALE)),
|
|
MAX_PATTERN_SIZE
|
|
);
|
|
const height = Math.min(
|
|
Math.ceil(Math.abs(boundsHeight * combinedScale[1] * EXPECTED_SCALE)),
|
|
MAX_PATTERN_SIZE
|
|
);
|
|
const scaleX = boundsWidth / width;
|
|
const scaleY = boundsHeight / height;
|
|
|
|
const context = {
|
|
coords: this._coords,
|
|
colors: this._colors,
|
|
offsetX: -offsetX,
|
|
offsetY: -offsetY,
|
|
scaleX: 1 / scaleX,
|
|
scaleY: 1 / scaleY,
|
|
};
|
|
|
|
const paddedWidth = width + BORDER_SIZE * 2;
|
|
const paddedHeight = height + BORDER_SIZE * 2;
|
|
|
|
const tmpCanvas = cachedCanvases.getCanvas(
|
|
"mesh",
|
|
paddedWidth,
|
|
paddedHeight,
|
|
false
|
|
);
|
|
const tmpCtx = tmpCanvas.context;
|
|
|
|
const data = tmpCtx.createImageData(width, height);
|
|
if (backgroundColor) {
|
|
const bytes = data.data;
|
|
for (let i = 0, ii = bytes.length; i < ii; i += 4) {
|
|
bytes[i] = backgroundColor[0];
|
|
bytes[i + 1] = backgroundColor[1];
|
|
bytes[i + 2] = backgroundColor[2];
|
|
bytes[i + 3] = 255;
|
|
}
|
|
}
|
|
for (const figure of this._figures) {
|
|
drawFigure(data, figure, context);
|
|
}
|
|
tmpCtx.putImageData(data, BORDER_SIZE, BORDER_SIZE);
|
|
const canvas = tmpCanvas.canvas;
|
|
|
|
return {
|
|
canvas,
|
|
offsetX: offsetX - BORDER_SIZE * scaleX,
|
|
offsetY: offsetY - BORDER_SIZE * scaleY,
|
|
scaleX,
|
|
scaleY,
|
|
};
|
|
}
|
|
|
|
getPattern(ctx, owner, inverse, shadingFill = false) {
|
|
applyBoundingBox(ctx, this._bbox);
|
|
let scale;
|
|
if (shadingFill) {
|
|
scale = Util.singularValueDecompose2dScale(ctx.mozCurrentTransform);
|
|
} else {
|
|
// Obtain scale from matrix and current transformation matrix.
|
|
scale = Util.singularValueDecompose2dScale(owner.baseTransform);
|
|
if (this._matrix) {
|
|
const matrixScale = Util.singularValueDecompose2dScale(this._matrix);
|
|
scale = [scale[0] * matrixScale[0], scale[1] * matrixScale[1]];
|
|
}
|
|
}
|
|
|
|
// Rasterizing on the main thread since sending/queue large canvases
|
|
// might cause OOM.
|
|
const temporaryPatternCanvas = this._createMeshCanvas(
|
|
scale,
|
|
shadingFill ? null : this._background,
|
|
owner.cachedCanvases
|
|
);
|
|
|
|
if (!shadingFill) {
|
|
ctx.setTransform.apply(ctx, owner.baseTransform);
|
|
if (this._matrix) {
|
|
ctx.transform.apply(ctx, this._matrix);
|
|
}
|
|
}
|
|
|
|
ctx.translate(
|
|
temporaryPatternCanvas.offsetX,
|
|
temporaryPatternCanvas.offsetY
|
|
);
|
|
ctx.scale(temporaryPatternCanvas.scaleX, temporaryPatternCanvas.scaleY);
|
|
|
|
return ctx.createPattern(temporaryPatternCanvas.canvas, "no-repeat");
|
|
}
|
|
}
|
|
|
|
class DummyShadingPattern extends BaseShadingPattern {
|
|
getPattern() {
|
|
return "hotpink";
|
|
}
|
|
}
|
|
|
|
function getShadingPattern(IR) {
|
|
switch (IR[0]) {
|
|
case "RadialAxial":
|
|
return new RadialAxialShadingPattern(IR);
|
|
case "Mesh":
|
|
return new MeshShadingPattern(IR);
|
|
case "Dummy":
|
|
return new DummyShadingPattern();
|
|
}
|
|
throw new Error(`Unknown IR type: ${IR[0]}`);
|
|
}
|
|
|
|
const PaintType = {
|
|
COLORED: 1,
|
|
UNCOLORED: 2,
|
|
};
|
|
|
|
class TilingPattern {
|
|
// 10in @ 300dpi shall be enough.
|
|
static get MAX_PATTERN_SIZE() {
|
|
return shadow(this, "MAX_PATTERN_SIZE", 3000);
|
|
}
|
|
|
|
constructor(IR, color, ctx, canvasGraphicsFactory, baseTransform) {
|
|
this.operatorList = IR[2];
|
|
this.matrix = IR[3] || [1, 0, 0, 1, 0, 0];
|
|
this.bbox = IR[4];
|
|
this.xstep = IR[5];
|
|
this.ystep = IR[6];
|
|
this.paintType = IR[7];
|
|
this.tilingType = IR[8];
|
|
this.color = color;
|
|
this.ctx = ctx;
|
|
this.canvasGraphicsFactory = canvasGraphicsFactory;
|
|
this.baseTransform = baseTransform;
|
|
}
|
|
|
|
createPatternCanvas(owner) {
|
|
const operatorList = this.operatorList;
|
|
const bbox = this.bbox;
|
|
const xstep = this.xstep;
|
|
const ystep = this.ystep;
|
|
const paintType = this.paintType;
|
|
const tilingType = this.tilingType;
|
|
const color = this.color;
|
|
const canvasGraphicsFactory = this.canvasGraphicsFactory;
|
|
|
|
info("TilingType: " + tilingType);
|
|
|
|
// A tiling pattern as defined by PDF spec 8.7.2 is a cell whose size is
|
|
// described by bbox, and may repeat regularly by shifting the cell by
|
|
// xstep and ystep.
|
|
// Because the HTML5 canvas API does not support pattern repetition with
|
|
// gaps in between, we use the xstep/ystep instead of the bbox's size.
|
|
//
|
|
// This has the following consequences (similarly for ystep):
|
|
//
|
|
// - If xstep is the same as bbox, then there is no observable difference.
|
|
//
|
|
// - If xstep is larger than bbox, then the pattern canvas is partially
|
|
// empty: the area bounded by bbox is painted, the outside area is void.
|
|
//
|
|
// - If xstep is smaller than bbox, then the pixels between xstep and the
|
|
// bbox boundary will be missing. This is INCORRECT behavior.
|
|
// "Figures on adjacent tiles should not overlap" (PDF spec 8.7.3.1),
|
|
// but overlapping cells without common pixels are still valid.
|
|
// TODO: Fix the implementation, to allow this scenario to be painted
|
|
// correctly.
|
|
|
|
const x0 = bbox[0],
|
|
y0 = bbox[1],
|
|
x1 = bbox[2],
|
|
y1 = bbox[3];
|
|
|
|
// Obtain scale from matrix and current transformation matrix.
|
|
const matrixScale = Util.singularValueDecompose2dScale(this.matrix);
|
|
const curMatrixScale = Util.singularValueDecompose2dScale(
|
|
this.baseTransform
|
|
);
|
|
const combinedScale = [
|
|
matrixScale[0] * curMatrixScale[0],
|
|
matrixScale[1] * curMatrixScale[1],
|
|
];
|
|
|
|
// Use width and height values that are as close as possible to the end
|
|
// result when the pattern is used. Too low value makes the pattern look
|
|
// blurry. Too large value makes it look too crispy.
|
|
const dimx = this.getSizeAndScale(
|
|
xstep,
|
|
this.ctx.canvas.width,
|
|
combinedScale[0]
|
|
);
|
|
const dimy = this.getSizeAndScale(
|
|
ystep,
|
|
this.ctx.canvas.height,
|
|
combinedScale[1]
|
|
);
|
|
|
|
const tmpCanvas = owner.cachedCanvases.getCanvas(
|
|
"pattern",
|
|
dimx.size,
|
|
dimy.size,
|
|
true
|
|
);
|
|
const tmpCtx = tmpCanvas.context;
|
|
const graphics = canvasGraphicsFactory.createCanvasGraphics(tmpCtx);
|
|
graphics.groupLevel = owner.groupLevel;
|
|
|
|
this.setFillAndStrokeStyleToContext(graphics, paintType, color);
|
|
|
|
let adjustedX0 = x0;
|
|
let adjustedY0 = y0;
|
|
let adjustedX1 = x1;
|
|
let adjustedY1 = y1;
|
|
// Some bounding boxes have negative x0/y0 cordinates which will cause the
|
|
// some of the drawing to be off of the canvas. To avoid this shift the
|
|
// bounding box over.
|
|
if (x0 < 0) {
|
|
adjustedX0 = 0;
|
|
adjustedX1 += Math.abs(x0);
|
|
}
|
|
if (y0 < 0) {
|
|
adjustedY0 = 0;
|
|
adjustedY1 += Math.abs(y0);
|
|
}
|
|
tmpCtx.translate(-(dimx.scale * adjustedX0), -(dimy.scale * adjustedY0));
|
|
graphics.transform(dimx.scale, 0, 0, dimy.scale, 0, 0);
|
|
|
|
this.clipBbox(graphics, adjustedX0, adjustedY0, adjustedX1, adjustedY1);
|
|
|
|
graphics.baseTransform = graphics.ctx.mozCurrentTransform.slice();
|
|
|
|
graphics.executeOperatorList(operatorList);
|
|
|
|
graphics.endDrawing();
|
|
|
|
return {
|
|
canvas: tmpCanvas.canvas,
|
|
scaleX: dimx.scale,
|
|
scaleY: dimy.scale,
|
|
offsetX: adjustedX0,
|
|
offsetY: adjustedY0,
|
|
};
|
|
}
|
|
|
|
getSizeAndScale(step, realOutputSize, scale) {
|
|
// xstep / ystep may be negative -- normalize.
|
|
step = Math.abs(step);
|
|
// MAX_PATTERN_SIZE is used to avoid OOM situation.
|
|
// Use the destination canvas's size if it is bigger than the hard-coded
|
|
// limit of MAX_PATTERN_SIZE to avoid clipping patterns that cover the
|
|
// whole canvas.
|
|
const maxSize = Math.max(TilingPattern.MAX_PATTERN_SIZE, realOutputSize);
|
|
let size = Math.ceil(step * scale);
|
|
if (size >= maxSize) {
|
|
size = maxSize;
|
|
} else {
|
|
scale = size / step;
|
|
}
|
|
return { scale, size };
|
|
}
|
|
|
|
clipBbox(graphics, x0, y0, x1, y1) {
|
|
const bboxWidth = x1 - x0;
|
|
const bboxHeight = y1 - y0;
|
|
graphics.ctx.rect(x0, y0, bboxWidth, bboxHeight);
|
|
graphics.clip();
|
|
graphics.endPath();
|
|
}
|
|
|
|
setFillAndStrokeStyleToContext(graphics, paintType, color) {
|
|
const context = graphics.ctx,
|
|
current = graphics.current;
|
|
switch (paintType) {
|
|
case PaintType.COLORED:
|
|
const ctx = this.ctx;
|
|
context.fillStyle = ctx.fillStyle;
|
|
context.strokeStyle = ctx.strokeStyle;
|
|
current.fillColor = ctx.fillStyle;
|
|
current.strokeColor = ctx.strokeStyle;
|
|
break;
|
|
case PaintType.UNCOLORED:
|
|
const cssColor = Util.makeHexColor(color[0], color[1], color[2]);
|
|
context.fillStyle = cssColor;
|
|
context.strokeStyle = cssColor;
|
|
// Set color needed by image masks (fixes issues 3226 and 8741).
|
|
current.fillColor = cssColor;
|
|
current.strokeColor = cssColor;
|
|
break;
|
|
default:
|
|
throw new FormatError(`Unsupported paint type: ${paintType}`);
|
|
}
|
|
}
|
|
|
|
getPattern(ctx, owner, inverse, shadingFill = false) {
|
|
// PDF spec 8.7.2 NOTE 1: pattern's matrix is relative to initial matrix.
|
|
let matrix = inverse;
|
|
if (!shadingFill) {
|
|
matrix = Util.transform(matrix, owner.baseTransform);
|
|
if (this.matrix) {
|
|
matrix = Util.transform(matrix, this.matrix);
|
|
}
|
|
}
|
|
|
|
const temporaryPatternCanvas = this.createPatternCanvas(owner);
|
|
|
|
let domMatrix = createMatrix(matrix);
|
|
// Rescale and so that the ctx.createPattern call generates a pattern with
|
|
// the desired size.
|
|
domMatrix = domMatrix.translate(
|
|
temporaryPatternCanvas.offsetX,
|
|
temporaryPatternCanvas.offsetY
|
|
);
|
|
domMatrix = domMatrix.scale(
|
|
1 / temporaryPatternCanvas.scaleX,
|
|
1 / temporaryPatternCanvas.scaleY
|
|
);
|
|
|
|
const pattern = ctx.createPattern(temporaryPatternCanvas.canvas, "repeat");
|
|
pattern.setTransform(domMatrix);
|
|
|
|
return pattern;
|
|
}
|
|
}
|
|
|
|
export { createMatrix, getShadingPattern, TilingPattern };
|