pdf.js/src/core/pattern.js
Tim van der Meij 24ff738e7b
Enable the no-var linting rule for src/core/pattern.js
This is mostly done using `gulp lint --fix` with a few manual changes in
the following diff:

```diff
diff --git a/src/core/pattern.js b/src/core/pattern.js
index 365491ed3..eedd8b686 100644
--- a/src/core/pattern.js
+++ b/src/core/pattern.js
@@ -105,7 +105,7 @@ const Pattern = (function PatternClosure() {
   return Pattern;
 })();

-var Shadings = {};
+const Shadings = {};

 // A small number to offset the first/last color stops so we can insert ones to
 // support extend. Number.MIN_VALUE is too small and breaks the extend.
@@ -597,16 +597,15 @@ Shadings.Mesh = (function MeshClosure() {
       if (!(0 <= f && f <= 3)) {
         throw new FormatError("Unknown type6 flag");
       }
-      var i, ii;
       const pi = coords.length;
-      for (i = 0, ii = f !== 0 ? 8 : 12; i < ii; i++) {
+      for (let i = 0, ii = f !== 0 ? 8 : 12; i < ii; i++) {
         coords.push(reader.readCoordinate());
       }
       const ci = colors.length;
-      for (i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) {
+      for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) {
         colors.push(reader.readComponents());
       }
-      var tmp1, tmp2, tmp3, tmp4;
+      let tmp1, tmp2, tmp3, tmp4;
       switch (f) {
         // prettier-ignore
         case 0:
@@ -729,16 +728,15 @@ Shadings.Mesh = (function MeshClosure() {
       if (!(0 <= f && f <= 3)) {
         throw new FormatError("Unknown type7 flag");
       }
-      var i, ii;
       const pi = coords.length;
-      for (i = 0, ii = f !== 0 ? 12 : 16; i < ii; i++) {
+      for (let i = 0, ii = f !== 0 ? 12 : 16; i < ii; i++) {
         coords.push(reader.readCoordinate());
       }
       const ci = colors.length;
-      for (i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) {
+      for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) {
         colors.push(reader.readComponents());
       }
-      var tmp1, tmp2, tmp3, tmp4;
+      let tmp1, tmp2, tmp3, tmp4;
       switch (f) {
         // prettier-ignore
         case 0:
@@ -897,7 +895,7 @@ Shadings.Mesh = (function MeshClosure() {
         decodeType4Shading(this, reader);
         break;
       case ShadingType.LATTICE_FORM_MESH:
-        var verticesPerRow = dict.get("VerticesPerRow") | 0;
+        const verticesPerRow = dict.get("VerticesPerRow") | 0;
         if (verticesPerRow < 2) {
           throw new FormatError("Invalid VerticesPerRow");
         }
```
2021-03-14 11:43:05 +01:00

990 lines
30 KiB
JavaScript

/* Copyright 2012 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import {
assert,
FormatError,
info,
unreachable,
UNSUPPORTED_FEATURES,
Util,
warn,
} from "../shared/util.js";
import { ColorSpace } from "./colorspace.js";
import { isStream } from "./primitives.js";
import { MissingDataException } from "./core_utils.js";
const ShadingType = {
FUNCTION_BASED: 1,
AXIAL: 2,
RADIAL: 3,
FREE_FORM_MESH: 4,
LATTICE_FORM_MESH: 5,
COONS_PATCH_MESH: 6,
TENSOR_PATCH_MESH: 7,
};
const Pattern = (function PatternClosure() {
// Constructor should define this.getPattern
// eslint-disable-next-line no-shadow
function Pattern() {
unreachable("should not call Pattern constructor");
}
Pattern.prototype = {
// Input: current Canvas context
// Output: the appropriate fillStyle or strokeStyle
getPattern: function Pattern_getPattern(ctx) {
unreachable(`Should not call Pattern.getStyle: ${ctx}`);
},
};
Pattern.parseShading = function (
shading,
matrix,
xref,
res,
handler,
pdfFunctionFactory,
localColorSpaceCache
) {
const dict = isStream(shading) ? shading.dict : shading;
const type = dict.get("ShadingType");
try {
switch (type) {
case ShadingType.AXIAL:
case ShadingType.RADIAL:
// Both radial and axial shadings are handled by RadialAxial shading.
return new Shadings.RadialAxial(
dict,
matrix,
xref,
res,
pdfFunctionFactory,
localColorSpaceCache
);
case ShadingType.FREE_FORM_MESH:
case ShadingType.LATTICE_FORM_MESH:
case ShadingType.COONS_PATCH_MESH:
case ShadingType.TENSOR_PATCH_MESH:
return new Shadings.Mesh(
shading,
matrix,
xref,
res,
pdfFunctionFactory,
localColorSpaceCache
);
default:
throw new FormatError("Unsupported ShadingType: " + type);
}
} catch (ex) {
if (ex instanceof MissingDataException) {
throw ex;
}
handler.send("UnsupportedFeature", {
featureId: UNSUPPORTED_FEATURES.shadingPattern,
});
warn(ex);
return new Shadings.Dummy();
}
};
return Pattern;
})();
const Shadings = {};
// A small number to offset the first/last color stops so we can insert ones to
// support extend. Number.MIN_VALUE is too small and breaks the extend.
Shadings.SMALL_NUMBER = 1e-6;
// Radial and axial shading have very similar implementations
// If needed, the implementations can be broken into two classes
Shadings.RadialAxial = (function RadialAxialClosure() {
function RadialAxial(
dict,
matrix,
xref,
resources,
pdfFunctionFactory,
localColorSpaceCache
) {
this.matrix = matrix;
this.coordsArr = dict.getArray("Coords");
this.shadingType = dict.get("ShadingType");
this.type = "Pattern";
const cs = ColorSpace.parse({
cs: dict.getRaw("ColorSpace") || dict.getRaw("CS"),
xref,
resources,
pdfFunctionFactory,
localColorSpaceCache,
});
this.cs = cs;
const bbox = dict.getArray("BBox");
if (Array.isArray(bbox) && bbox.length === 4) {
this.bbox = Util.normalizeRect(bbox);
} else {
this.bbox = null;
}
let t0 = 0.0,
t1 = 1.0;
if (dict.has("Domain")) {
const domainArr = dict.getArray("Domain");
t0 = domainArr[0];
t1 = domainArr[1];
}
let extendStart = false,
extendEnd = false;
if (dict.has("Extend")) {
const extendArr = dict.getArray("Extend");
extendStart = extendArr[0];
extendEnd = extendArr[1];
}
if (
this.shadingType === ShadingType.RADIAL &&
(!extendStart || !extendEnd)
) {
// Radial gradient only currently works if either circle is fully within
// the other circle.
const [x1, y1, r1, x2, y2, r2] = this.coordsArr;
const distance = Math.hypot(x1 - x2, y1 - y2);
if (r1 <= r2 + distance && r2 <= r1 + distance) {
warn("Unsupported radial gradient.");
}
}
this.extendStart = extendStart;
this.extendEnd = extendEnd;
const fnObj = dict.getRaw("Function");
const fn = pdfFunctionFactory.createFromArray(fnObj);
// 10 samples seems good enough for now, but probably won't work
// if there are sharp color changes. Ideally, we would implement
// the spec faithfully and add lossless optimizations.
const NUMBER_OF_SAMPLES = 10;
const step = (t1 - t0) / NUMBER_OF_SAMPLES;
const colorStops = (this.colorStops = []);
// Protect against bad domains.
if (t0 >= t1 || step <= 0) {
// Acrobat doesn't seem to handle these cases so we'll ignore for
// now.
info("Bad shading domain.");
return;
}
const color = new Float32Array(cs.numComps),
ratio = new Float32Array(1);
let rgbColor;
for (let i = 0; i <= NUMBER_OF_SAMPLES; i++) {
ratio[0] = t0 + i * step;
fn(ratio, 0, color, 0);
rgbColor = cs.getRgb(color, 0);
const cssColor = Util.makeHexColor(rgbColor[0], rgbColor[1], rgbColor[2]);
colorStops.push([i / NUMBER_OF_SAMPLES, cssColor]);
}
let background = "transparent";
if (dict.has("Background")) {
rgbColor = cs.getRgb(dict.get("Background"), 0);
background = Util.makeHexColor(rgbColor[0], rgbColor[1], rgbColor[2]);
}
if (!extendStart) {
// Insert a color stop at the front and offset the first real color stop
// so it doesn't conflict with the one we insert.
colorStops.unshift([0, background]);
colorStops[1][0] += Shadings.SMALL_NUMBER;
}
if (!extendEnd) {
// Same idea as above in extendStart but for the end.
colorStops[colorStops.length - 1][0] -= Shadings.SMALL_NUMBER;
colorStops.push([1, background]);
}
this.colorStops = colorStops;
}
RadialAxial.prototype = {
getIR: function RadialAxial_getIR() {
const coordsArr = this.coordsArr;
const shadingType = this.shadingType;
let type, p0, p1, r0, r1;
if (shadingType === ShadingType.AXIAL) {
p0 = [coordsArr[0], coordsArr[1]];
p1 = [coordsArr[2], coordsArr[3]];
r0 = null;
r1 = null;
type = "axial";
} else if (shadingType === ShadingType.RADIAL) {
p0 = [coordsArr[0], coordsArr[1]];
p1 = [coordsArr[3], coordsArr[4]];
r0 = coordsArr[2];
r1 = coordsArr[5];
type = "radial";
} else {
unreachable(`getPattern type unknown: ${shadingType}`);
}
const matrix = this.matrix;
if (matrix) {
p0 = Util.applyTransform(p0, matrix);
p1 = Util.applyTransform(p1, matrix);
if (shadingType === ShadingType.RADIAL) {
const scale = Util.singularValueDecompose2dScale(matrix);
r0 *= scale[0];
r1 *= scale[1];
}
}
return ["RadialAxial", type, this.bbox, this.colorStops, p0, p1, r0, r1];
},
};
return RadialAxial;
})();
// All mesh shading. For now, they will be presented as set of the triangles
// to be drawn on the canvas and rgb color for each vertex.
Shadings.Mesh = (function MeshClosure() {
function MeshStreamReader(stream, context) {
this.stream = stream;
this.context = context;
this.buffer = 0;
this.bufferLength = 0;
const numComps = context.numComps;
this.tmpCompsBuf = new Float32Array(numComps);
const csNumComps = context.colorSpace.numComps;
this.tmpCsCompsBuf = context.colorFn
? new Float32Array(csNumComps)
: this.tmpCompsBuf;
}
MeshStreamReader.prototype = {
get hasData() {
if (this.stream.end) {
return this.stream.pos < this.stream.end;
}
if (this.bufferLength > 0) {
return true;
}
const nextByte = this.stream.getByte();
if (nextByte < 0) {
return false;
}
this.buffer = nextByte;
this.bufferLength = 8;
return true;
},
readBits: function MeshStreamReader_readBits(n) {
let buffer = this.buffer;
let bufferLength = this.bufferLength;
if (n === 32) {
if (bufferLength === 0) {
return (
((this.stream.getByte() << 24) |
(this.stream.getByte() << 16) |
(this.stream.getByte() << 8) |
this.stream.getByte()) >>>
0
);
}
buffer =
(buffer << 24) |
(this.stream.getByte() << 16) |
(this.stream.getByte() << 8) |
this.stream.getByte();
const nextByte = this.stream.getByte();
this.buffer = nextByte & ((1 << bufferLength) - 1);
return (
((buffer << (8 - bufferLength)) |
((nextByte & 0xff) >> bufferLength)) >>>
0
);
}
if (n === 8 && bufferLength === 0) {
return this.stream.getByte();
}
while (bufferLength < n) {
buffer = (buffer << 8) | this.stream.getByte();
bufferLength += 8;
}
bufferLength -= n;
this.bufferLength = bufferLength;
this.buffer = buffer & ((1 << bufferLength) - 1);
return buffer >> bufferLength;
},
align: function MeshStreamReader_align() {
this.buffer = 0;
this.bufferLength = 0;
},
readFlag: function MeshStreamReader_readFlag() {
return this.readBits(this.context.bitsPerFlag);
},
readCoordinate: function MeshStreamReader_readCoordinate() {
const bitsPerCoordinate = this.context.bitsPerCoordinate;
const xi = this.readBits(bitsPerCoordinate);
const yi = this.readBits(bitsPerCoordinate);
const decode = this.context.decode;
const scale =
bitsPerCoordinate < 32
? 1 / ((1 << bitsPerCoordinate) - 1)
: 2.3283064365386963e-10; // 2 ^ -32
return [
xi * scale * (decode[1] - decode[0]) + decode[0],
yi * scale * (decode[3] - decode[2]) + decode[2],
];
},
readComponents: function MeshStreamReader_readComponents() {
const numComps = this.context.numComps;
const bitsPerComponent = this.context.bitsPerComponent;
const scale =
bitsPerComponent < 32
? 1 / ((1 << bitsPerComponent) - 1)
: 2.3283064365386963e-10; // 2 ^ -32
const decode = this.context.decode;
const components = this.tmpCompsBuf;
for (let i = 0, j = 4; i < numComps; i++, j += 2) {
const ci = this.readBits(bitsPerComponent);
components[i] = ci * scale * (decode[j + 1] - decode[j]) + decode[j];
}
const color = this.tmpCsCompsBuf;
if (this.context.colorFn) {
this.context.colorFn(components, 0, color, 0);
}
return this.context.colorSpace.getRgb(color, 0);
},
};
function decodeType4Shading(mesh, reader) {
const coords = mesh.coords;
const colors = mesh.colors;
const operators = [];
const ps = []; // not maintaining cs since that will match ps
let verticesLeft = 0; // assuming we have all data to start a new triangle
while (reader.hasData) {
const f = reader.readFlag();
const coord = reader.readCoordinate();
const color = reader.readComponents();
if (verticesLeft === 0) {
// ignoring flags if we started a triangle
if (!(0 <= f && f <= 2)) {
throw new FormatError("Unknown type4 flag");
}
switch (f) {
case 0:
verticesLeft = 3;
break;
case 1:
ps.push(ps[ps.length - 2], ps[ps.length - 1]);
verticesLeft = 1;
break;
case 2:
ps.push(ps[ps.length - 3], ps[ps.length - 1]);
verticesLeft = 1;
break;
}
operators.push(f);
}
ps.push(coords.length);
coords.push(coord);
colors.push(color);
verticesLeft--;
reader.align();
}
mesh.figures.push({
type: "triangles",
coords: new Int32Array(ps),
colors: new Int32Array(ps),
});
}
function decodeType5Shading(mesh, reader, verticesPerRow) {
const coords = mesh.coords;
const colors = mesh.colors;
const ps = []; // not maintaining cs since that will match ps
while (reader.hasData) {
const coord = reader.readCoordinate();
const color = reader.readComponents();
ps.push(coords.length);
coords.push(coord);
colors.push(color);
}
mesh.figures.push({
type: "lattice",
coords: new Int32Array(ps),
colors: new Int32Array(ps),
verticesPerRow,
});
}
const MIN_SPLIT_PATCH_CHUNKS_AMOUNT = 3;
const MAX_SPLIT_PATCH_CHUNKS_AMOUNT = 20;
const TRIANGLE_DENSITY = 20; // count of triangles per entire mesh bounds
const getB = (function getBClosure() {
function buildB(count) {
const lut = [];
for (let i = 0; i <= count; i++) {
const t = i / count,
t_ = 1 - t;
lut.push(
new Float32Array([
t_ * t_ * t_,
3 * t * t_ * t_,
3 * t * t * t_,
t * t * t,
])
);
}
return lut;
}
const cache = [];
// eslint-disable-next-line no-shadow
return function getB(count) {
if (!cache[count]) {
cache[count] = buildB(count);
}
return cache[count];
};
})();
function buildFigureFromPatch(mesh, index) {
const figure = mesh.figures[index];
assert(figure.type === "patch", "Unexpected patch mesh figure");
const coords = mesh.coords,
colors = mesh.colors;
const pi = figure.coords;
const ci = figure.colors;
const figureMinX = Math.min(
coords[pi[0]][0],
coords[pi[3]][0],
coords[pi[12]][0],
coords[pi[15]][0]
);
const figureMinY = Math.min(
coords[pi[0]][1],
coords[pi[3]][1],
coords[pi[12]][1],
coords[pi[15]][1]
);
const figureMaxX = Math.max(
coords[pi[0]][0],
coords[pi[3]][0],
coords[pi[12]][0],
coords[pi[15]][0]
);
const figureMaxY = Math.max(
coords[pi[0]][1],
coords[pi[3]][1],
coords[pi[12]][1],
coords[pi[15]][1]
);
let splitXBy = Math.ceil(
((figureMaxX - figureMinX) * TRIANGLE_DENSITY) /
(mesh.bounds[2] - mesh.bounds[0])
);
splitXBy = Math.max(
MIN_SPLIT_PATCH_CHUNKS_AMOUNT,
Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitXBy)
);
let splitYBy = Math.ceil(
((figureMaxY - figureMinY) * TRIANGLE_DENSITY) /
(mesh.bounds[3] - mesh.bounds[1])
);
splitYBy = Math.max(
MIN_SPLIT_PATCH_CHUNKS_AMOUNT,
Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitYBy)
);
const verticesPerRow = splitXBy + 1;
const figureCoords = new Int32Array((splitYBy + 1) * verticesPerRow);
const figureColors = new Int32Array((splitYBy + 1) * verticesPerRow);
let k = 0;
const cl = new Uint8Array(3),
cr = new Uint8Array(3);
const c0 = colors[ci[0]],
c1 = colors[ci[1]],
c2 = colors[ci[2]],
c3 = colors[ci[3]];
const bRow = getB(splitYBy),
bCol = getB(splitXBy);
for (let row = 0; row <= splitYBy; row++) {
cl[0] = ((c0[0] * (splitYBy - row) + c2[0] * row) / splitYBy) | 0;
cl[1] = ((c0[1] * (splitYBy - row) + c2[1] * row) / splitYBy) | 0;
cl[2] = ((c0[2] * (splitYBy - row) + c2[2] * row) / splitYBy) | 0;
cr[0] = ((c1[0] * (splitYBy - row) + c3[0] * row) / splitYBy) | 0;
cr[1] = ((c1[1] * (splitYBy - row) + c3[1] * row) / splitYBy) | 0;
cr[2] = ((c1[2] * (splitYBy - row) + c3[2] * row) / splitYBy) | 0;
for (let col = 0; col <= splitXBy; col++, k++) {
if (
(row === 0 || row === splitYBy) &&
(col === 0 || col === splitXBy)
) {
continue;
}
let x = 0,
y = 0;
let q = 0;
for (let i = 0; i <= 3; i++) {
for (let j = 0; j <= 3; j++, q++) {
const m = bRow[row][i] * bCol[col][j];
x += coords[pi[q]][0] * m;
y += coords[pi[q]][1] * m;
}
}
figureCoords[k] = coords.length;
coords.push([x, y]);
figureColors[k] = colors.length;
const newColor = new Uint8Array(3);
newColor[0] = ((cl[0] * (splitXBy - col) + cr[0] * col) / splitXBy) | 0;
newColor[1] = ((cl[1] * (splitXBy - col) + cr[1] * col) / splitXBy) | 0;
newColor[2] = ((cl[2] * (splitXBy - col) + cr[2] * col) / splitXBy) | 0;
colors.push(newColor);
}
}
figureCoords[0] = pi[0];
figureColors[0] = ci[0];
figureCoords[splitXBy] = pi[3];
figureColors[splitXBy] = ci[1];
figureCoords[verticesPerRow * splitYBy] = pi[12];
figureColors[verticesPerRow * splitYBy] = ci[2];
figureCoords[verticesPerRow * splitYBy + splitXBy] = pi[15];
figureColors[verticesPerRow * splitYBy + splitXBy] = ci[3];
mesh.figures[index] = {
type: "lattice",
coords: figureCoords,
colors: figureColors,
verticesPerRow,
};
}
function decodeType6Shading(mesh, reader) {
// A special case of Type 7. The p11, p12, p21, p22 automatically filled
const coords = mesh.coords;
const colors = mesh.colors;
const ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33
const cs = new Int32Array(4); // c00, c30, c03, c33
while (reader.hasData) {
const f = reader.readFlag();
if (!(0 <= f && f <= 3)) {
throw new FormatError("Unknown type6 flag");
}
const pi = coords.length;
for (let i = 0, ii = f !== 0 ? 8 : 12; i < ii; i++) {
coords.push(reader.readCoordinate());
}
const ci = colors.length;
for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) {
colors.push(reader.readComponents());
}
let tmp1, tmp2, tmp3, tmp4;
switch (f) {
// prettier-ignore
case 0:
ps[12] = pi + 3; ps[13] = pi + 4; ps[14] = pi + 5; ps[15] = pi + 6;
ps[ 8] = pi + 2; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 7;
ps[ 4] = pi + 1; /* calculated below */ ps[ 7] = pi + 8;
ps[ 0] = pi; ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9;
cs[2] = ci + 1; cs[3] = ci + 2;
cs[0] = ci; cs[1] = ci + 3;
break;
// prettier-ignore
case 1:
tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15];
ps[12] = tmp4; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = tmp3; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3;
ps[ 4] = tmp2; /* calculated below */ ps[ 7] = pi + 4;
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
tmp1 = cs[2]; tmp2 = cs[3];
cs[2] = tmp2; cs[3] = ci;
cs[0] = tmp1; cs[1] = ci + 1;
break;
// prettier-ignore
case 2:
tmp1 = ps[15];
tmp2 = ps[11];
ps[12] = ps[3]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = ps[7]; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3;
ps[ 4] = tmp2; /* calculated below */ ps[ 7] = pi + 4;
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
tmp1 = cs[3];
cs[2] = cs[1]; cs[3] = ci;
cs[0] = tmp1; cs[1] = ci + 1;
break;
// prettier-ignore
case 3:
ps[12] = ps[0]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = ps[1]; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3;
ps[ 4] = ps[2]; /* calculated below */ ps[ 7] = pi + 4;
ps[ 0] = ps[3]; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
cs[2] = cs[0]; cs[3] = ci;
cs[0] = cs[1]; cs[1] = ci + 1;
break;
}
// set p11, p12, p21, p22
ps[5] = coords.length;
coords.push([
(-4 * coords[ps[0]][0] -
coords[ps[15]][0] +
6 * (coords[ps[4]][0] + coords[ps[1]][0]) -
2 * (coords[ps[12]][0] + coords[ps[3]][0]) +
3 * (coords[ps[13]][0] + coords[ps[7]][0])) /
9,
(-4 * coords[ps[0]][1] -
coords[ps[15]][1] +
6 * (coords[ps[4]][1] + coords[ps[1]][1]) -
2 * (coords[ps[12]][1] + coords[ps[3]][1]) +
3 * (coords[ps[13]][1] + coords[ps[7]][1])) /
9,
]);
ps[6] = coords.length;
coords.push([
(-4 * coords[ps[3]][0] -
coords[ps[12]][0] +
6 * (coords[ps[2]][0] + coords[ps[7]][0]) -
2 * (coords[ps[0]][0] + coords[ps[15]][0]) +
3 * (coords[ps[4]][0] + coords[ps[14]][0])) /
9,
(-4 * coords[ps[3]][1] -
coords[ps[12]][1] +
6 * (coords[ps[2]][1] + coords[ps[7]][1]) -
2 * (coords[ps[0]][1] + coords[ps[15]][1]) +
3 * (coords[ps[4]][1] + coords[ps[14]][1])) /
9,
]);
ps[9] = coords.length;
coords.push([
(-4 * coords[ps[12]][0] -
coords[ps[3]][0] +
6 * (coords[ps[8]][0] + coords[ps[13]][0]) -
2 * (coords[ps[0]][0] + coords[ps[15]][0]) +
3 * (coords[ps[11]][0] + coords[ps[1]][0])) /
9,
(-4 * coords[ps[12]][1] -
coords[ps[3]][1] +
6 * (coords[ps[8]][1] + coords[ps[13]][1]) -
2 * (coords[ps[0]][1] + coords[ps[15]][1]) +
3 * (coords[ps[11]][1] + coords[ps[1]][1])) /
9,
]);
ps[10] = coords.length;
coords.push([
(-4 * coords[ps[15]][0] -
coords[ps[0]][0] +
6 * (coords[ps[11]][0] + coords[ps[14]][0]) -
2 * (coords[ps[12]][0] + coords[ps[3]][0]) +
3 * (coords[ps[2]][0] + coords[ps[8]][0])) /
9,
(-4 * coords[ps[15]][1] -
coords[ps[0]][1] +
6 * (coords[ps[11]][1] + coords[ps[14]][1]) -
2 * (coords[ps[12]][1] + coords[ps[3]][1]) +
3 * (coords[ps[2]][1] + coords[ps[8]][1])) /
9,
]);
mesh.figures.push({
type: "patch",
coords: new Int32Array(ps), // making copies of ps and cs
colors: new Int32Array(cs),
});
}
}
function decodeType7Shading(mesh, reader) {
const coords = mesh.coords;
const colors = mesh.colors;
const ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33
const cs = new Int32Array(4); // c00, c30, c03, c33
while (reader.hasData) {
const f = reader.readFlag();
if (!(0 <= f && f <= 3)) {
throw new FormatError("Unknown type7 flag");
}
const pi = coords.length;
for (let i = 0, ii = f !== 0 ? 12 : 16; i < ii; i++) {
coords.push(reader.readCoordinate());
}
const ci = colors.length;
for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) {
colors.push(reader.readComponents());
}
let tmp1, tmp2, tmp3, tmp4;
switch (f) {
// prettier-ignore
case 0:
ps[12] = pi + 3; ps[13] = pi + 4; ps[14] = pi + 5; ps[15] = pi + 6;
ps[ 8] = pi + 2; ps[ 9] = pi + 13; ps[10] = pi + 14; ps[11] = pi + 7;
ps[ 4] = pi + 1; ps[ 5] = pi + 12; ps[ 6] = pi + 15; ps[ 7] = pi + 8;
ps[ 0] = pi; ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9;
cs[2] = ci + 1; cs[3] = ci + 2;
cs[0] = ci; cs[1] = ci + 3;
break;
// prettier-ignore
case 1:
tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15];
ps[12] = tmp4; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = tmp3; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3;
ps[ 4] = tmp2; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4;
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
tmp1 = cs[2]; tmp2 = cs[3];
cs[2] = tmp2; cs[3] = ci;
cs[0] = tmp1; cs[1] = ci + 1;
break;
// prettier-ignore
case 2:
tmp1 = ps[15];
tmp2 = ps[11];
ps[12] = ps[3]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = ps[7]; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3;
ps[ 4] = tmp2; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4;
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
tmp1 = cs[3];
cs[2] = cs[1]; cs[3] = ci;
cs[0] = tmp1; cs[1] = ci + 1;
break;
// prettier-ignore
case 3:
ps[12] = ps[0]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = ps[1]; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3;
ps[ 4] = ps[2]; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4;
ps[ 0] = ps[3]; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
cs[2] = cs[0]; cs[3] = ci;
cs[0] = cs[1]; cs[1] = ci + 1;
break;
}
mesh.figures.push({
type: "patch",
coords: new Int32Array(ps), // making copies of ps and cs
colors: new Int32Array(cs),
});
}
}
function updateBounds(mesh) {
let minX = mesh.coords[0][0],
minY = mesh.coords[0][1],
maxX = minX,
maxY = minY;
for (let i = 1, ii = mesh.coords.length; i < ii; i++) {
const x = mesh.coords[i][0],
y = mesh.coords[i][1];
minX = minX > x ? x : minX;
minY = minY > y ? y : minY;
maxX = maxX < x ? x : maxX;
maxY = maxY < y ? y : maxY;
}
mesh.bounds = [minX, minY, maxX, maxY];
}
function packData(mesh) {
let i, ii, j, jj;
const coords = mesh.coords;
const coordsPacked = new Float32Array(coords.length * 2);
for (i = 0, j = 0, ii = coords.length; i < ii; i++) {
const xy = coords[i];
coordsPacked[j++] = xy[0];
coordsPacked[j++] = xy[1];
}
mesh.coords = coordsPacked;
const colors = mesh.colors;
const colorsPacked = new Uint8Array(colors.length * 3);
for (i = 0, j = 0, ii = colors.length; i < ii; i++) {
const c = colors[i];
colorsPacked[j++] = c[0];
colorsPacked[j++] = c[1];
colorsPacked[j++] = c[2];
}
mesh.colors = colorsPacked;
const figures = mesh.figures;
for (i = 0, ii = figures.length; i < ii; i++) {
const figure = figures[i],
ps = figure.coords,
cs = figure.colors;
for (j = 0, jj = ps.length; j < jj; j++) {
ps[j] *= 2;
cs[j] *= 3;
}
}
}
function Mesh(
stream,
matrix,
xref,
resources,
pdfFunctionFactory,
localColorSpaceCache
) {
if (!isStream(stream)) {
throw new FormatError("Mesh data is not a stream");
}
const dict = stream.dict;
this.matrix = matrix;
this.shadingType = dict.get("ShadingType");
this.type = "Pattern";
const bbox = dict.getArray("BBox");
if (Array.isArray(bbox) && bbox.length === 4) {
this.bbox = Util.normalizeRect(bbox);
} else {
this.bbox = null;
}
const cs = ColorSpace.parse({
cs: dict.getRaw("ColorSpace") || dict.getRaw("CS"),
xref,
resources,
pdfFunctionFactory,
localColorSpaceCache,
});
this.cs = cs;
this.background = dict.has("Background")
? cs.getRgb(dict.get("Background"), 0)
: null;
const fnObj = dict.getRaw("Function");
const fn = fnObj ? pdfFunctionFactory.createFromArray(fnObj) : null;
this.coords = [];
this.colors = [];
this.figures = [];
const decodeContext = {
bitsPerCoordinate: dict.get("BitsPerCoordinate"),
bitsPerComponent: dict.get("BitsPerComponent"),
bitsPerFlag: dict.get("BitsPerFlag"),
decode: dict.getArray("Decode"),
colorFn: fn,
colorSpace: cs,
numComps: fn ? 1 : cs.numComps,
};
const reader = new MeshStreamReader(stream, decodeContext);
let patchMesh = false;
switch (this.shadingType) {
case ShadingType.FREE_FORM_MESH:
decodeType4Shading(this, reader);
break;
case ShadingType.LATTICE_FORM_MESH:
const verticesPerRow = dict.get("VerticesPerRow") | 0;
if (verticesPerRow < 2) {
throw new FormatError("Invalid VerticesPerRow");
}
decodeType5Shading(this, reader, verticesPerRow);
break;
case ShadingType.COONS_PATCH_MESH:
decodeType6Shading(this, reader);
patchMesh = true;
break;
case ShadingType.TENSOR_PATCH_MESH:
decodeType7Shading(this, reader);
patchMesh = true;
break;
default:
unreachable("Unsupported mesh type.");
break;
}
if (patchMesh) {
// dirty bounds calculation for determining, how dense shall be triangles
updateBounds(this);
for (let i = 0, ii = this.figures.length; i < ii; i++) {
buildFigureFromPatch(this, i);
}
}
// calculate bounds
updateBounds(this);
packData(this);
}
Mesh.prototype = {
getIR: function Mesh_getIR() {
return [
"Mesh",
this.shadingType,
this.coords,
this.colors,
this.figures,
this.bounds,
this.matrix,
this.bbox,
this.background,
];
},
};
return Mesh;
})();
Shadings.Dummy = (function DummyClosure() {
function Dummy() {
this.type = "Pattern";
}
Dummy.prototype = {
getIR: function Dummy_getIR() {
return ["Dummy"];
},
};
return Dummy;
})();
function getTilingPatternIR(operatorList, dict, color) {
const matrix = dict.getArray("Matrix");
const bbox = Util.normalizeRect(dict.getArray("BBox"));
const xstep = dict.get("XStep");
const ystep = dict.get("YStep");
const paintType = dict.get("PaintType");
const tilingType = dict.get("TilingType");
// Ensure that the pattern has a non-zero width and height, to prevent errors
// in `pattern_helper.js` (fixes issue8330.pdf).
if (bbox[2] - bbox[0] === 0 || bbox[3] - bbox[1] === 0) {
throw new FormatError(`Invalid getTilingPatternIR /BBox array: [${bbox}].`);
}
return [
"TilingPattern",
color,
operatorList,
matrix,
bbox,
xstep,
ystep,
paintType,
tilingType,
];
}
export { getTilingPatternIR, Pattern };