24ff738e7b
This is mostly done using `gulp lint --fix` with a few manual changes in the following diff: ```diff diff --git a/src/core/pattern.js b/src/core/pattern.js index 365491ed3..eedd8b686 100644 --- a/src/core/pattern.js +++ b/src/core/pattern.js @@ -105,7 +105,7 @@ const Pattern = (function PatternClosure() { return Pattern; })(); -var Shadings = {}; +const Shadings = {}; // A small number to offset the first/last color stops so we can insert ones to // support extend. Number.MIN_VALUE is too small and breaks the extend. @@ -597,16 +597,15 @@ Shadings.Mesh = (function MeshClosure() { if (!(0 <= f && f <= 3)) { throw new FormatError("Unknown type6 flag"); } - var i, ii; const pi = coords.length; - for (i = 0, ii = f !== 0 ? 8 : 12; i < ii; i++) { + for (let i = 0, ii = f !== 0 ? 8 : 12; i < ii; i++) { coords.push(reader.readCoordinate()); } const ci = colors.length; - for (i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) { + for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) { colors.push(reader.readComponents()); } - var tmp1, tmp2, tmp3, tmp4; + let tmp1, tmp2, tmp3, tmp4; switch (f) { // prettier-ignore case 0: @@ -729,16 +728,15 @@ Shadings.Mesh = (function MeshClosure() { if (!(0 <= f && f <= 3)) { throw new FormatError("Unknown type7 flag"); } - var i, ii; const pi = coords.length; - for (i = 0, ii = f !== 0 ? 12 : 16; i < ii; i++) { + for (let i = 0, ii = f !== 0 ? 12 : 16; i < ii; i++) { coords.push(reader.readCoordinate()); } const ci = colors.length; - for (i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) { + for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) { colors.push(reader.readComponents()); } - var tmp1, tmp2, tmp3, tmp4; + let tmp1, tmp2, tmp3, tmp4; switch (f) { // prettier-ignore case 0: @@ -897,7 +895,7 @@ Shadings.Mesh = (function MeshClosure() { decodeType4Shading(this, reader); break; case ShadingType.LATTICE_FORM_MESH: - var verticesPerRow = dict.get("VerticesPerRow") | 0; + const verticesPerRow = dict.get("VerticesPerRow") | 0; if (verticesPerRow < 2) { throw new FormatError("Invalid VerticesPerRow"); } ```
990 lines
30 KiB
JavaScript
990 lines
30 KiB
JavaScript
/* Copyright 2012 Mozilla Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
import {
|
|
assert,
|
|
FormatError,
|
|
info,
|
|
unreachable,
|
|
UNSUPPORTED_FEATURES,
|
|
Util,
|
|
warn,
|
|
} from "../shared/util.js";
|
|
import { ColorSpace } from "./colorspace.js";
|
|
import { isStream } from "./primitives.js";
|
|
import { MissingDataException } from "./core_utils.js";
|
|
|
|
const ShadingType = {
|
|
FUNCTION_BASED: 1,
|
|
AXIAL: 2,
|
|
RADIAL: 3,
|
|
FREE_FORM_MESH: 4,
|
|
LATTICE_FORM_MESH: 5,
|
|
COONS_PATCH_MESH: 6,
|
|
TENSOR_PATCH_MESH: 7,
|
|
};
|
|
|
|
const Pattern = (function PatternClosure() {
|
|
// Constructor should define this.getPattern
|
|
// eslint-disable-next-line no-shadow
|
|
function Pattern() {
|
|
unreachable("should not call Pattern constructor");
|
|
}
|
|
|
|
Pattern.prototype = {
|
|
// Input: current Canvas context
|
|
// Output: the appropriate fillStyle or strokeStyle
|
|
getPattern: function Pattern_getPattern(ctx) {
|
|
unreachable(`Should not call Pattern.getStyle: ${ctx}`);
|
|
},
|
|
};
|
|
|
|
Pattern.parseShading = function (
|
|
shading,
|
|
matrix,
|
|
xref,
|
|
res,
|
|
handler,
|
|
pdfFunctionFactory,
|
|
localColorSpaceCache
|
|
) {
|
|
const dict = isStream(shading) ? shading.dict : shading;
|
|
const type = dict.get("ShadingType");
|
|
|
|
try {
|
|
switch (type) {
|
|
case ShadingType.AXIAL:
|
|
case ShadingType.RADIAL:
|
|
// Both radial and axial shadings are handled by RadialAxial shading.
|
|
return new Shadings.RadialAxial(
|
|
dict,
|
|
matrix,
|
|
xref,
|
|
res,
|
|
pdfFunctionFactory,
|
|
localColorSpaceCache
|
|
);
|
|
case ShadingType.FREE_FORM_MESH:
|
|
case ShadingType.LATTICE_FORM_MESH:
|
|
case ShadingType.COONS_PATCH_MESH:
|
|
case ShadingType.TENSOR_PATCH_MESH:
|
|
return new Shadings.Mesh(
|
|
shading,
|
|
matrix,
|
|
xref,
|
|
res,
|
|
pdfFunctionFactory,
|
|
localColorSpaceCache
|
|
);
|
|
default:
|
|
throw new FormatError("Unsupported ShadingType: " + type);
|
|
}
|
|
} catch (ex) {
|
|
if (ex instanceof MissingDataException) {
|
|
throw ex;
|
|
}
|
|
handler.send("UnsupportedFeature", {
|
|
featureId: UNSUPPORTED_FEATURES.shadingPattern,
|
|
});
|
|
warn(ex);
|
|
return new Shadings.Dummy();
|
|
}
|
|
};
|
|
return Pattern;
|
|
})();
|
|
|
|
const Shadings = {};
|
|
|
|
// A small number to offset the first/last color stops so we can insert ones to
|
|
// support extend. Number.MIN_VALUE is too small and breaks the extend.
|
|
Shadings.SMALL_NUMBER = 1e-6;
|
|
|
|
// Radial and axial shading have very similar implementations
|
|
// If needed, the implementations can be broken into two classes
|
|
Shadings.RadialAxial = (function RadialAxialClosure() {
|
|
function RadialAxial(
|
|
dict,
|
|
matrix,
|
|
xref,
|
|
resources,
|
|
pdfFunctionFactory,
|
|
localColorSpaceCache
|
|
) {
|
|
this.matrix = matrix;
|
|
this.coordsArr = dict.getArray("Coords");
|
|
this.shadingType = dict.get("ShadingType");
|
|
this.type = "Pattern";
|
|
const cs = ColorSpace.parse({
|
|
cs: dict.getRaw("ColorSpace") || dict.getRaw("CS"),
|
|
xref,
|
|
resources,
|
|
pdfFunctionFactory,
|
|
localColorSpaceCache,
|
|
});
|
|
this.cs = cs;
|
|
const bbox = dict.getArray("BBox");
|
|
if (Array.isArray(bbox) && bbox.length === 4) {
|
|
this.bbox = Util.normalizeRect(bbox);
|
|
} else {
|
|
this.bbox = null;
|
|
}
|
|
|
|
let t0 = 0.0,
|
|
t1 = 1.0;
|
|
if (dict.has("Domain")) {
|
|
const domainArr = dict.getArray("Domain");
|
|
t0 = domainArr[0];
|
|
t1 = domainArr[1];
|
|
}
|
|
|
|
let extendStart = false,
|
|
extendEnd = false;
|
|
if (dict.has("Extend")) {
|
|
const extendArr = dict.getArray("Extend");
|
|
extendStart = extendArr[0];
|
|
extendEnd = extendArr[1];
|
|
}
|
|
|
|
if (
|
|
this.shadingType === ShadingType.RADIAL &&
|
|
(!extendStart || !extendEnd)
|
|
) {
|
|
// Radial gradient only currently works if either circle is fully within
|
|
// the other circle.
|
|
const [x1, y1, r1, x2, y2, r2] = this.coordsArr;
|
|
const distance = Math.hypot(x1 - x2, y1 - y2);
|
|
if (r1 <= r2 + distance && r2 <= r1 + distance) {
|
|
warn("Unsupported radial gradient.");
|
|
}
|
|
}
|
|
|
|
this.extendStart = extendStart;
|
|
this.extendEnd = extendEnd;
|
|
|
|
const fnObj = dict.getRaw("Function");
|
|
const fn = pdfFunctionFactory.createFromArray(fnObj);
|
|
|
|
// 10 samples seems good enough for now, but probably won't work
|
|
// if there are sharp color changes. Ideally, we would implement
|
|
// the spec faithfully and add lossless optimizations.
|
|
const NUMBER_OF_SAMPLES = 10;
|
|
const step = (t1 - t0) / NUMBER_OF_SAMPLES;
|
|
|
|
const colorStops = (this.colorStops = []);
|
|
|
|
// Protect against bad domains.
|
|
if (t0 >= t1 || step <= 0) {
|
|
// Acrobat doesn't seem to handle these cases so we'll ignore for
|
|
// now.
|
|
info("Bad shading domain.");
|
|
return;
|
|
}
|
|
|
|
const color = new Float32Array(cs.numComps),
|
|
ratio = new Float32Array(1);
|
|
let rgbColor;
|
|
for (let i = 0; i <= NUMBER_OF_SAMPLES; i++) {
|
|
ratio[0] = t0 + i * step;
|
|
fn(ratio, 0, color, 0);
|
|
rgbColor = cs.getRgb(color, 0);
|
|
const cssColor = Util.makeHexColor(rgbColor[0], rgbColor[1], rgbColor[2]);
|
|
colorStops.push([i / NUMBER_OF_SAMPLES, cssColor]);
|
|
}
|
|
|
|
let background = "transparent";
|
|
if (dict.has("Background")) {
|
|
rgbColor = cs.getRgb(dict.get("Background"), 0);
|
|
background = Util.makeHexColor(rgbColor[0], rgbColor[1], rgbColor[2]);
|
|
}
|
|
|
|
if (!extendStart) {
|
|
// Insert a color stop at the front and offset the first real color stop
|
|
// so it doesn't conflict with the one we insert.
|
|
colorStops.unshift([0, background]);
|
|
colorStops[1][0] += Shadings.SMALL_NUMBER;
|
|
}
|
|
if (!extendEnd) {
|
|
// Same idea as above in extendStart but for the end.
|
|
colorStops[colorStops.length - 1][0] -= Shadings.SMALL_NUMBER;
|
|
colorStops.push([1, background]);
|
|
}
|
|
|
|
this.colorStops = colorStops;
|
|
}
|
|
|
|
RadialAxial.prototype = {
|
|
getIR: function RadialAxial_getIR() {
|
|
const coordsArr = this.coordsArr;
|
|
const shadingType = this.shadingType;
|
|
let type, p0, p1, r0, r1;
|
|
if (shadingType === ShadingType.AXIAL) {
|
|
p0 = [coordsArr[0], coordsArr[1]];
|
|
p1 = [coordsArr[2], coordsArr[3]];
|
|
r0 = null;
|
|
r1 = null;
|
|
type = "axial";
|
|
} else if (shadingType === ShadingType.RADIAL) {
|
|
p0 = [coordsArr[0], coordsArr[1]];
|
|
p1 = [coordsArr[3], coordsArr[4]];
|
|
r0 = coordsArr[2];
|
|
r1 = coordsArr[5];
|
|
type = "radial";
|
|
} else {
|
|
unreachable(`getPattern type unknown: ${shadingType}`);
|
|
}
|
|
|
|
const matrix = this.matrix;
|
|
if (matrix) {
|
|
p0 = Util.applyTransform(p0, matrix);
|
|
p1 = Util.applyTransform(p1, matrix);
|
|
if (shadingType === ShadingType.RADIAL) {
|
|
const scale = Util.singularValueDecompose2dScale(matrix);
|
|
r0 *= scale[0];
|
|
r1 *= scale[1];
|
|
}
|
|
}
|
|
|
|
return ["RadialAxial", type, this.bbox, this.colorStops, p0, p1, r0, r1];
|
|
},
|
|
};
|
|
|
|
return RadialAxial;
|
|
})();
|
|
|
|
// All mesh shading. For now, they will be presented as set of the triangles
|
|
// to be drawn on the canvas and rgb color for each vertex.
|
|
Shadings.Mesh = (function MeshClosure() {
|
|
function MeshStreamReader(stream, context) {
|
|
this.stream = stream;
|
|
this.context = context;
|
|
this.buffer = 0;
|
|
this.bufferLength = 0;
|
|
|
|
const numComps = context.numComps;
|
|
this.tmpCompsBuf = new Float32Array(numComps);
|
|
const csNumComps = context.colorSpace.numComps;
|
|
this.tmpCsCompsBuf = context.colorFn
|
|
? new Float32Array(csNumComps)
|
|
: this.tmpCompsBuf;
|
|
}
|
|
MeshStreamReader.prototype = {
|
|
get hasData() {
|
|
if (this.stream.end) {
|
|
return this.stream.pos < this.stream.end;
|
|
}
|
|
if (this.bufferLength > 0) {
|
|
return true;
|
|
}
|
|
const nextByte = this.stream.getByte();
|
|
if (nextByte < 0) {
|
|
return false;
|
|
}
|
|
this.buffer = nextByte;
|
|
this.bufferLength = 8;
|
|
return true;
|
|
},
|
|
readBits: function MeshStreamReader_readBits(n) {
|
|
let buffer = this.buffer;
|
|
let bufferLength = this.bufferLength;
|
|
if (n === 32) {
|
|
if (bufferLength === 0) {
|
|
return (
|
|
((this.stream.getByte() << 24) |
|
|
(this.stream.getByte() << 16) |
|
|
(this.stream.getByte() << 8) |
|
|
this.stream.getByte()) >>>
|
|
0
|
|
);
|
|
}
|
|
buffer =
|
|
(buffer << 24) |
|
|
(this.stream.getByte() << 16) |
|
|
(this.stream.getByte() << 8) |
|
|
this.stream.getByte();
|
|
const nextByte = this.stream.getByte();
|
|
this.buffer = nextByte & ((1 << bufferLength) - 1);
|
|
return (
|
|
((buffer << (8 - bufferLength)) |
|
|
((nextByte & 0xff) >> bufferLength)) >>>
|
|
0
|
|
);
|
|
}
|
|
if (n === 8 && bufferLength === 0) {
|
|
return this.stream.getByte();
|
|
}
|
|
while (bufferLength < n) {
|
|
buffer = (buffer << 8) | this.stream.getByte();
|
|
bufferLength += 8;
|
|
}
|
|
bufferLength -= n;
|
|
this.bufferLength = bufferLength;
|
|
this.buffer = buffer & ((1 << bufferLength) - 1);
|
|
return buffer >> bufferLength;
|
|
},
|
|
align: function MeshStreamReader_align() {
|
|
this.buffer = 0;
|
|
this.bufferLength = 0;
|
|
},
|
|
readFlag: function MeshStreamReader_readFlag() {
|
|
return this.readBits(this.context.bitsPerFlag);
|
|
},
|
|
readCoordinate: function MeshStreamReader_readCoordinate() {
|
|
const bitsPerCoordinate = this.context.bitsPerCoordinate;
|
|
const xi = this.readBits(bitsPerCoordinate);
|
|
const yi = this.readBits(bitsPerCoordinate);
|
|
const decode = this.context.decode;
|
|
const scale =
|
|
bitsPerCoordinate < 32
|
|
? 1 / ((1 << bitsPerCoordinate) - 1)
|
|
: 2.3283064365386963e-10; // 2 ^ -32
|
|
return [
|
|
xi * scale * (decode[1] - decode[0]) + decode[0],
|
|
yi * scale * (decode[3] - decode[2]) + decode[2],
|
|
];
|
|
},
|
|
readComponents: function MeshStreamReader_readComponents() {
|
|
const numComps = this.context.numComps;
|
|
const bitsPerComponent = this.context.bitsPerComponent;
|
|
const scale =
|
|
bitsPerComponent < 32
|
|
? 1 / ((1 << bitsPerComponent) - 1)
|
|
: 2.3283064365386963e-10; // 2 ^ -32
|
|
const decode = this.context.decode;
|
|
const components = this.tmpCompsBuf;
|
|
for (let i = 0, j = 4; i < numComps; i++, j += 2) {
|
|
const ci = this.readBits(bitsPerComponent);
|
|
components[i] = ci * scale * (decode[j + 1] - decode[j]) + decode[j];
|
|
}
|
|
const color = this.tmpCsCompsBuf;
|
|
if (this.context.colorFn) {
|
|
this.context.colorFn(components, 0, color, 0);
|
|
}
|
|
return this.context.colorSpace.getRgb(color, 0);
|
|
},
|
|
};
|
|
|
|
function decodeType4Shading(mesh, reader) {
|
|
const coords = mesh.coords;
|
|
const colors = mesh.colors;
|
|
const operators = [];
|
|
const ps = []; // not maintaining cs since that will match ps
|
|
let verticesLeft = 0; // assuming we have all data to start a new triangle
|
|
while (reader.hasData) {
|
|
const f = reader.readFlag();
|
|
const coord = reader.readCoordinate();
|
|
const color = reader.readComponents();
|
|
if (verticesLeft === 0) {
|
|
// ignoring flags if we started a triangle
|
|
if (!(0 <= f && f <= 2)) {
|
|
throw new FormatError("Unknown type4 flag");
|
|
}
|
|
switch (f) {
|
|
case 0:
|
|
verticesLeft = 3;
|
|
break;
|
|
case 1:
|
|
ps.push(ps[ps.length - 2], ps[ps.length - 1]);
|
|
verticesLeft = 1;
|
|
break;
|
|
case 2:
|
|
ps.push(ps[ps.length - 3], ps[ps.length - 1]);
|
|
verticesLeft = 1;
|
|
break;
|
|
}
|
|
operators.push(f);
|
|
}
|
|
ps.push(coords.length);
|
|
coords.push(coord);
|
|
colors.push(color);
|
|
verticesLeft--;
|
|
|
|
reader.align();
|
|
}
|
|
mesh.figures.push({
|
|
type: "triangles",
|
|
coords: new Int32Array(ps),
|
|
colors: new Int32Array(ps),
|
|
});
|
|
}
|
|
|
|
function decodeType5Shading(mesh, reader, verticesPerRow) {
|
|
const coords = mesh.coords;
|
|
const colors = mesh.colors;
|
|
const ps = []; // not maintaining cs since that will match ps
|
|
while (reader.hasData) {
|
|
const coord = reader.readCoordinate();
|
|
const color = reader.readComponents();
|
|
ps.push(coords.length);
|
|
coords.push(coord);
|
|
colors.push(color);
|
|
}
|
|
mesh.figures.push({
|
|
type: "lattice",
|
|
coords: new Int32Array(ps),
|
|
colors: new Int32Array(ps),
|
|
verticesPerRow,
|
|
});
|
|
}
|
|
|
|
const MIN_SPLIT_PATCH_CHUNKS_AMOUNT = 3;
|
|
const MAX_SPLIT_PATCH_CHUNKS_AMOUNT = 20;
|
|
|
|
const TRIANGLE_DENSITY = 20; // count of triangles per entire mesh bounds
|
|
|
|
const getB = (function getBClosure() {
|
|
function buildB(count) {
|
|
const lut = [];
|
|
for (let i = 0; i <= count; i++) {
|
|
const t = i / count,
|
|
t_ = 1 - t;
|
|
lut.push(
|
|
new Float32Array([
|
|
t_ * t_ * t_,
|
|
3 * t * t_ * t_,
|
|
3 * t * t * t_,
|
|
t * t * t,
|
|
])
|
|
);
|
|
}
|
|
return lut;
|
|
}
|
|
const cache = [];
|
|
|
|
// eslint-disable-next-line no-shadow
|
|
return function getB(count) {
|
|
if (!cache[count]) {
|
|
cache[count] = buildB(count);
|
|
}
|
|
return cache[count];
|
|
};
|
|
})();
|
|
|
|
function buildFigureFromPatch(mesh, index) {
|
|
const figure = mesh.figures[index];
|
|
assert(figure.type === "patch", "Unexpected patch mesh figure");
|
|
|
|
const coords = mesh.coords,
|
|
colors = mesh.colors;
|
|
const pi = figure.coords;
|
|
const ci = figure.colors;
|
|
|
|
const figureMinX = Math.min(
|
|
coords[pi[0]][0],
|
|
coords[pi[3]][0],
|
|
coords[pi[12]][0],
|
|
coords[pi[15]][0]
|
|
);
|
|
const figureMinY = Math.min(
|
|
coords[pi[0]][1],
|
|
coords[pi[3]][1],
|
|
coords[pi[12]][1],
|
|
coords[pi[15]][1]
|
|
);
|
|
const figureMaxX = Math.max(
|
|
coords[pi[0]][0],
|
|
coords[pi[3]][0],
|
|
coords[pi[12]][0],
|
|
coords[pi[15]][0]
|
|
);
|
|
const figureMaxY = Math.max(
|
|
coords[pi[0]][1],
|
|
coords[pi[3]][1],
|
|
coords[pi[12]][1],
|
|
coords[pi[15]][1]
|
|
);
|
|
let splitXBy = Math.ceil(
|
|
((figureMaxX - figureMinX) * TRIANGLE_DENSITY) /
|
|
(mesh.bounds[2] - mesh.bounds[0])
|
|
);
|
|
splitXBy = Math.max(
|
|
MIN_SPLIT_PATCH_CHUNKS_AMOUNT,
|
|
Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitXBy)
|
|
);
|
|
let splitYBy = Math.ceil(
|
|
((figureMaxY - figureMinY) * TRIANGLE_DENSITY) /
|
|
(mesh.bounds[3] - mesh.bounds[1])
|
|
);
|
|
splitYBy = Math.max(
|
|
MIN_SPLIT_PATCH_CHUNKS_AMOUNT,
|
|
Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitYBy)
|
|
);
|
|
|
|
const verticesPerRow = splitXBy + 1;
|
|
const figureCoords = new Int32Array((splitYBy + 1) * verticesPerRow);
|
|
const figureColors = new Int32Array((splitYBy + 1) * verticesPerRow);
|
|
let k = 0;
|
|
const cl = new Uint8Array(3),
|
|
cr = new Uint8Array(3);
|
|
const c0 = colors[ci[0]],
|
|
c1 = colors[ci[1]],
|
|
c2 = colors[ci[2]],
|
|
c3 = colors[ci[3]];
|
|
const bRow = getB(splitYBy),
|
|
bCol = getB(splitXBy);
|
|
for (let row = 0; row <= splitYBy; row++) {
|
|
cl[0] = ((c0[0] * (splitYBy - row) + c2[0] * row) / splitYBy) | 0;
|
|
cl[1] = ((c0[1] * (splitYBy - row) + c2[1] * row) / splitYBy) | 0;
|
|
cl[2] = ((c0[2] * (splitYBy - row) + c2[2] * row) / splitYBy) | 0;
|
|
|
|
cr[0] = ((c1[0] * (splitYBy - row) + c3[0] * row) / splitYBy) | 0;
|
|
cr[1] = ((c1[1] * (splitYBy - row) + c3[1] * row) / splitYBy) | 0;
|
|
cr[2] = ((c1[2] * (splitYBy - row) + c3[2] * row) / splitYBy) | 0;
|
|
|
|
for (let col = 0; col <= splitXBy; col++, k++) {
|
|
if (
|
|
(row === 0 || row === splitYBy) &&
|
|
(col === 0 || col === splitXBy)
|
|
) {
|
|
continue;
|
|
}
|
|
let x = 0,
|
|
y = 0;
|
|
let q = 0;
|
|
for (let i = 0; i <= 3; i++) {
|
|
for (let j = 0; j <= 3; j++, q++) {
|
|
const m = bRow[row][i] * bCol[col][j];
|
|
x += coords[pi[q]][0] * m;
|
|
y += coords[pi[q]][1] * m;
|
|
}
|
|
}
|
|
figureCoords[k] = coords.length;
|
|
coords.push([x, y]);
|
|
figureColors[k] = colors.length;
|
|
const newColor = new Uint8Array(3);
|
|
newColor[0] = ((cl[0] * (splitXBy - col) + cr[0] * col) / splitXBy) | 0;
|
|
newColor[1] = ((cl[1] * (splitXBy - col) + cr[1] * col) / splitXBy) | 0;
|
|
newColor[2] = ((cl[2] * (splitXBy - col) + cr[2] * col) / splitXBy) | 0;
|
|
colors.push(newColor);
|
|
}
|
|
}
|
|
figureCoords[0] = pi[0];
|
|
figureColors[0] = ci[0];
|
|
figureCoords[splitXBy] = pi[3];
|
|
figureColors[splitXBy] = ci[1];
|
|
figureCoords[verticesPerRow * splitYBy] = pi[12];
|
|
figureColors[verticesPerRow * splitYBy] = ci[2];
|
|
figureCoords[verticesPerRow * splitYBy + splitXBy] = pi[15];
|
|
figureColors[verticesPerRow * splitYBy + splitXBy] = ci[3];
|
|
|
|
mesh.figures[index] = {
|
|
type: "lattice",
|
|
coords: figureCoords,
|
|
colors: figureColors,
|
|
verticesPerRow,
|
|
};
|
|
}
|
|
|
|
function decodeType6Shading(mesh, reader) {
|
|
// A special case of Type 7. The p11, p12, p21, p22 automatically filled
|
|
const coords = mesh.coords;
|
|
const colors = mesh.colors;
|
|
const ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33
|
|
const cs = new Int32Array(4); // c00, c30, c03, c33
|
|
while (reader.hasData) {
|
|
const f = reader.readFlag();
|
|
if (!(0 <= f && f <= 3)) {
|
|
throw new FormatError("Unknown type6 flag");
|
|
}
|
|
const pi = coords.length;
|
|
for (let i = 0, ii = f !== 0 ? 8 : 12; i < ii; i++) {
|
|
coords.push(reader.readCoordinate());
|
|
}
|
|
const ci = colors.length;
|
|
for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) {
|
|
colors.push(reader.readComponents());
|
|
}
|
|
let tmp1, tmp2, tmp3, tmp4;
|
|
switch (f) {
|
|
// prettier-ignore
|
|
case 0:
|
|
ps[12] = pi + 3; ps[13] = pi + 4; ps[14] = pi + 5; ps[15] = pi + 6;
|
|
ps[ 8] = pi + 2; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 7;
|
|
ps[ 4] = pi + 1; /* calculated below */ ps[ 7] = pi + 8;
|
|
ps[ 0] = pi; ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9;
|
|
cs[2] = ci + 1; cs[3] = ci + 2;
|
|
cs[0] = ci; cs[1] = ci + 3;
|
|
break;
|
|
// prettier-ignore
|
|
case 1:
|
|
tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15];
|
|
ps[12] = tmp4; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
|
|
ps[ 8] = tmp3; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3;
|
|
ps[ 4] = tmp2; /* calculated below */ ps[ 7] = pi + 4;
|
|
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
|
|
tmp1 = cs[2]; tmp2 = cs[3];
|
|
cs[2] = tmp2; cs[3] = ci;
|
|
cs[0] = tmp1; cs[1] = ci + 1;
|
|
break;
|
|
// prettier-ignore
|
|
case 2:
|
|
tmp1 = ps[15];
|
|
tmp2 = ps[11];
|
|
ps[12] = ps[3]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
|
|
ps[ 8] = ps[7]; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3;
|
|
ps[ 4] = tmp2; /* calculated below */ ps[ 7] = pi + 4;
|
|
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
|
|
tmp1 = cs[3];
|
|
cs[2] = cs[1]; cs[3] = ci;
|
|
cs[0] = tmp1; cs[1] = ci + 1;
|
|
break;
|
|
// prettier-ignore
|
|
case 3:
|
|
ps[12] = ps[0]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
|
|
ps[ 8] = ps[1]; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3;
|
|
ps[ 4] = ps[2]; /* calculated below */ ps[ 7] = pi + 4;
|
|
ps[ 0] = ps[3]; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
|
|
cs[2] = cs[0]; cs[3] = ci;
|
|
cs[0] = cs[1]; cs[1] = ci + 1;
|
|
break;
|
|
}
|
|
// set p11, p12, p21, p22
|
|
ps[5] = coords.length;
|
|
coords.push([
|
|
(-4 * coords[ps[0]][0] -
|
|
coords[ps[15]][0] +
|
|
6 * (coords[ps[4]][0] + coords[ps[1]][0]) -
|
|
2 * (coords[ps[12]][0] + coords[ps[3]][0]) +
|
|
3 * (coords[ps[13]][0] + coords[ps[7]][0])) /
|
|
9,
|
|
(-4 * coords[ps[0]][1] -
|
|
coords[ps[15]][1] +
|
|
6 * (coords[ps[4]][1] + coords[ps[1]][1]) -
|
|
2 * (coords[ps[12]][1] + coords[ps[3]][1]) +
|
|
3 * (coords[ps[13]][1] + coords[ps[7]][1])) /
|
|
9,
|
|
]);
|
|
ps[6] = coords.length;
|
|
coords.push([
|
|
(-4 * coords[ps[3]][0] -
|
|
coords[ps[12]][0] +
|
|
6 * (coords[ps[2]][0] + coords[ps[7]][0]) -
|
|
2 * (coords[ps[0]][0] + coords[ps[15]][0]) +
|
|
3 * (coords[ps[4]][0] + coords[ps[14]][0])) /
|
|
9,
|
|
(-4 * coords[ps[3]][1] -
|
|
coords[ps[12]][1] +
|
|
6 * (coords[ps[2]][1] + coords[ps[7]][1]) -
|
|
2 * (coords[ps[0]][1] + coords[ps[15]][1]) +
|
|
3 * (coords[ps[4]][1] + coords[ps[14]][1])) /
|
|
9,
|
|
]);
|
|
ps[9] = coords.length;
|
|
coords.push([
|
|
(-4 * coords[ps[12]][0] -
|
|
coords[ps[3]][0] +
|
|
6 * (coords[ps[8]][0] + coords[ps[13]][0]) -
|
|
2 * (coords[ps[0]][0] + coords[ps[15]][0]) +
|
|
3 * (coords[ps[11]][0] + coords[ps[1]][0])) /
|
|
9,
|
|
(-4 * coords[ps[12]][1] -
|
|
coords[ps[3]][1] +
|
|
6 * (coords[ps[8]][1] + coords[ps[13]][1]) -
|
|
2 * (coords[ps[0]][1] + coords[ps[15]][1]) +
|
|
3 * (coords[ps[11]][1] + coords[ps[1]][1])) /
|
|
9,
|
|
]);
|
|
ps[10] = coords.length;
|
|
coords.push([
|
|
(-4 * coords[ps[15]][0] -
|
|
coords[ps[0]][0] +
|
|
6 * (coords[ps[11]][0] + coords[ps[14]][0]) -
|
|
2 * (coords[ps[12]][0] + coords[ps[3]][0]) +
|
|
3 * (coords[ps[2]][0] + coords[ps[8]][0])) /
|
|
9,
|
|
(-4 * coords[ps[15]][1] -
|
|
coords[ps[0]][1] +
|
|
6 * (coords[ps[11]][1] + coords[ps[14]][1]) -
|
|
2 * (coords[ps[12]][1] + coords[ps[3]][1]) +
|
|
3 * (coords[ps[2]][1] + coords[ps[8]][1])) /
|
|
9,
|
|
]);
|
|
mesh.figures.push({
|
|
type: "patch",
|
|
coords: new Int32Array(ps), // making copies of ps and cs
|
|
colors: new Int32Array(cs),
|
|
});
|
|
}
|
|
}
|
|
|
|
function decodeType7Shading(mesh, reader) {
|
|
const coords = mesh.coords;
|
|
const colors = mesh.colors;
|
|
const ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33
|
|
const cs = new Int32Array(4); // c00, c30, c03, c33
|
|
while (reader.hasData) {
|
|
const f = reader.readFlag();
|
|
if (!(0 <= f && f <= 3)) {
|
|
throw new FormatError("Unknown type7 flag");
|
|
}
|
|
const pi = coords.length;
|
|
for (let i = 0, ii = f !== 0 ? 12 : 16; i < ii; i++) {
|
|
coords.push(reader.readCoordinate());
|
|
}
|
|
const ci = colors.length;
|
|
for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) {
|
|
colors.push(reader.readComponents());
|
|
}
|
|
let tmp1, tmp2, tmp3, tmp4;
|
|
switch (f) {
|
|
// prettier-ignore
|
|
case 0:
|
|
ps[12] = pi + 3; ps[13] = pi + 4; ps[14] = pi + 5; ps[15] = pi + 6;
|
|
ps[ 8] = pi + 2; ps[ 9] = pi + 13; ps[10] = pi + 14; ps[11] = pi + 7;
|
|
ps[ 4] = pi + 1; ps[ 5] = pi + 12; ps[ 6] = pi + 15; ps[ 7] = pi + 8;
|
|
ps[ 0] = pi; ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9;
|
|
cs[2] = ci + 1; cs[3] = ci + 2;
|
|
cs[0] = ci; cs[1] = ci + 3;
|
|
break;
|
|
// prettier-ignore
|
|
case 1:
|
|
tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15];
|
|
ps[12] = tmp4; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
|
|
ps[ 8] = tmp3; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3;
|
|
ps[ 4] = tmp2; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4;
|
|
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
|
|
tmp1 = cs[2]; tmp2 = cs[3];
|
|
cs[2] = tmp2; cs[3] = ci;
|
|
cs[0] = tmp1; cs[1] = ci + 1;
|
|
break;
|
|
// prettier-ignore
|
|
case 2:
|
|
tmp1 = ps[15];
|
|
tmp2 = ps[11];
|
|
ps[12] = ps[3]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
|
|
ps[ 8] = ps[7]; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3;
|
|
ps[ 4] = tmp2; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4;
|
|
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
|
|
tmp1 = cs[3];
|
|
cs[2] = cs[1]; cs[3] = ci;
|
|
cs[0] = tmp1; cs[1] = ci + 1;
|
|
break;
|
|
// prettier-ignore
|
|
case 3:
|
|
ps[12] = ps[0]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
|
|
ps[ 8] = ps[1]; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3;
|
|
ps[ 4] = ps[2]; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4;
|
|
ps[ 0] = ps[3]; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
|
|
cs[2] = cs[0]; cs[3] = ci;
|
|
cs[0] = cs[1]; cs[1] = ci + 1;
|
|
break;
|
|
}
|
|
mesh.figures.push({
|
|
type: "patch",
|
|
coords: new Int32Array(ps), // making copies of ps and cs
|
|
colors: new Int32Array(cs),
|
|
});
|
|
}
|
|
}
|
|
|
|
function updateBounds(mesh) {
|
|
let minX = mesh.coords[0][0],
|
|
minY = mesh.coords[0][1],
|
|
maxX = minX,
|
|
maxY = minY;
|
|
for (let i = 1, ii = mesh.coords.length; i < ii; i++) {
|
|
const x = mesh.coords[i][0],
|
|
y = mesh.coords[i][1];
|
|
minX = minX > x ? x : minX;
|
|
minY = minY > y ? y : minY;
|
|
maxX = maxX < x ? x : maxX;
|
|
maxY = maxY < y ? y : maxY;
|
|
}
|
|
mesh.bounds = [minX, minY, maxX, maxY];
|
|
}
|
|
|
|
function packData(mesh) {
|
|
let i, ii, j, jj;
|
|
|
|
const coords = mesh.coords;
|
|
const coordsPacked = new Float32Array(coords.length * 2);
|
|
for (i = 0, j = 0, ii = coords.length; i < ii; i++) {
|
|
const xy = coords[i];
|
|
coordsPacked[j++] = xy[0];
|
|
coordsPacked[j++] = xy[1];
|
|
}
|
|
mesh.coords = coordsPacked;
|
|
|
|
const colors = mesh.colors;
|
|
const colorsPacked = new Uint8Array(colors.length * 3);
|
|
for (i = 0, j = 0, ii = colors.length; i < ii; i++) {
|
|
const c = colors[i];
|
|
colorsPacked[j++] = c[0];
|
|
colorsPacked[j++] = c[1];
|
|
colorsPacked[j++] = c[2];
|
|
}
|
|
mesh.colors = colorsPacked;
|
|
|
|
const figures = mesh.figures;
|
|
for (i = 0, ii = figures.length; i < ii; i++) {
|
|
const figure = figures[i],
|
|
ps = figure.coords,
|
|
cs = figure.colors;
|
|
for (j = 0, jj = ps.length; j < jj; j++) {
|
|
ps[j] *= 2;
|
|
cs[j] *= 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
function Mesh(
|
|
stream,
|
|
matrix,
|
|
xref,
|
|
resources,
|
|
pdfFunctionFactory,
|
|
localColorSpaceCache
|
|
) {
|
|
if (!isStream(stream)) {
|
|
throw new FormatError("Mesh data is not a stream");
|
|
}
|
|
const dict = stream.dict;
|
|
this.matrix = matrix;
|
|
this.shadingType = dict.get("ShadingType");
|
|
this.type = "Pattern";
|
|
const bbox = dict.getArray("BBox");
|
|
if (Array.isArray(bbox) && bbox.length === 4) {
|
|
this.bbox = Util.normalizeRect(bbox);
|
|
} else {
|
|
this.bbox = null;
|
|
}
|
|
const cs = ColorSpace.parse({
|
|
cs: dict.getRaw("ColorSpace") || dict.getRaw("CS"),
|
|
xref,
|
|
resources,
|
|
pdfFunctionFactory,
|
|
localColorSpaceCache,
|
|
});
|
|
this.cs = cs;
|
|
this.background = dict.has("Background")
|
|
? cs.getRgb(dict.get("Background"), 0)
|
|
: null;
|
|
|
|
const fnObj = dict.getRaw("Function");
|
|
const fn = fnObj ? pdfFunctionFactory.createFromArray(fnObj) : null;
|
|
|
|
this.coords = [];
|
|
this.colors = [];
|
|
this.figures = [];
|
|
|
|
const decodeContext = {
|
|
bitsPerCoordinate: dict.get("BitsPerCoordinate"),
|
|
bitsPerComponent: dict.get("BitsPerComponent"),
|
|
bitsPerFlag: dict.get("BitsPerFlag"),
|
|
decode: dict.getArray("Decode"),
|
|
colorFn: fn,
|
|
colorSpace: cs,
|
|
numComps: fn ? 1 : cs.numComps,
|
|
};
|
|
const reader = new MeshStreamReader(stream, decodeContext);
|
|
|
|
let patchMesh = false;
|
|
switch (this.shadingType) {
|
|
case ShadingType.FREE_FORM_MESH:
|
|
decodeType4Shading(this, reader);
|
|
break;
|
|
case ShadingType.LATTICE_FORM_MESH:
|
|
const verticesPerRow = dict.get("VerticesPerRow") | 0;
|
|
if (verticesPerRow < 2) {
|
|
throw new FormatError("Invalid VerticesPerRow");
|
|
}
|
|
decodeType5Shading(this, reader, verticesPerRow);
|
|
break;
|
|
case ShadingType.COONS_PATCH_MESH:
|
|
decodeType6Shading(this, reader);
|
|
patchMesh = true;
|
|
break;
|
|
case ShadingType.TENSOR_PATCH_MESH:
|
|
decodeType7Shading(this, reader);
|
|
patchMesh = true;
|
|
break;
|
|
default:
|
|
unreachable("Unsupported mesh type.");
|
|
break;
|
|
}
|
|
|
|
if (patchMesh) {
|
|
// dirty bounds calculation for determining, how dense shall be triangles
|
|
updateBounds(this);
|
|
for (let i = 0, ii = this.figures.length; i < ii; i++) {
|
|
buildFigureFromPatch(this, i);
|
|
}
|
|
}
|
|
// calculate bounds
|
|
updateBounds(this);
|
|
|
|
packData(this);
|
|
}
|
|
|
|
Mesh.prototype = {
|
|
getIR: function Mesh_getIR() {
|
|
return [
|
|
"Mesh",
|
|
this.shadingType,
|
|
this.coords,
|
|
this.colors,
|
|
this.figures,
|
|
this.bounds,
|
|
this.matrix,
|
|
this.bbox,
|
|
this.background,
|
|
];
|
|
},
|
|
};
|
|
|
|
return Mesh;
|
|
})();
|
|
|
|
Shadings.Dummy = (function DummyClosure() {
|
|
function Dummy() {
|
|
this.type = "Pattern";
|
|
}
|
|
|
|
Dummy.prototype = {
|
|
getIR: function Dummy_getIR() {
|
|
return ["Dummy"];
|
|
},
|
|
};
|
|
return Dummy;
|
|
})();
|
|
|
|
function getTilingPatternIR(operatorList, dict, color) {
|
|
const matrix = dict.getArray("Matrix");
|
|
const bbox = Util.normalizeRect(dict.getArray("BBox"));
|
|
const xstep = dict.get("XStep");
|
|
const ystep = dict.get("YStep");
|
|
const paintType = dict.get("PaintType");
|
|
const tilingType = dict.get("TilingType");
|
|
|
|
// Ensure that the pattern has a non-zero width and height, to prevent errors
|
|
// in `pattern_helper.js` (fixes issue8330.pdf).
|
|
if (bbox[2] - bbox[0] === 0 || bbox[3] - bbox[1] === 0) {
|
|
throw new FormatError(`Invalid getTilingPatternIR /BBox array: [${bbox}].`);
|
|
}
|
|
|
|
return [
|
|
"TilingPattern",
|
|
color,
|
|
operatorList,
|
|
matrix,
|
|
bbox,
|
|
xstep,
|
|
ystep,
|
|
paintType,
|
|
tilingType,
|
|
];
|
|
}
|
|
|
|
export { getTilingPatternIR, Pattern };
|