pdf.js/src/core/fonts.js
Calixte Denizet fd1110adb4 Add the possibility to rescale each glyph in a font
- a lot of xfa files are using Myriad pro or Arial fonts without embedding them and some containers have some dimensions based on those font metrics. So not having the exact same font leads to a wrong display.
  - since it's pretty hard to find a replacement font with the exact same metrics, this patch gives the possibility to read glyf table, rescale each glyph and then write a new table.
  - so once PR #12726 is merged we could rescale for example Helvetica to replace Myriad Pro.
2021-06-09 16:01:13 +02:00

3185 lines
98 KiB
JavaScript

/* Copyright 2012 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import {
assert,
bytesToString,
FONT_IDENTITY_MATRIX,
FontType,
FormatError,
info,
isNum,
shadow,
string32,
warn,
} from "../shared/util.js";
import { CFFCompiler, CFFParser } from "./cff_parser.js";
import {
FontFlags,
getFontType,
MacStandardGlyphOrdering,
normalizeFontName,
recoverGlyphName,
SEAC_ANALYSIS_ENABLED,
} from "./fonts_utils.js";
import { getDingbatsGlyphsUnicode, getGlyphsUnicode } from "./glyphlist.js";
import {
getEncoding,
MacRomanEncoding,
StandardEncoding,
SymbolSetEncoding,
ZapfDingbatsEncoding,
} from "./encodings.js";
import {
getGlyphMapForStandardFonts,
getNonStdFontMap,
getStdFontMap,
getSupplementalGlyphMapForArialBlack,
getSupplementalGlyphMapForCalibri,
} from "./standard_fonts.js";
import {
getUnicodeForGlyph,
getUnicodeRangeFor,
mapSpecialUnicodeValues,
} from "./unicode.js";
import { IdentityToUnicodeMap, ToUnicodeMap } from "./to_unicode_map.js";
import { CFFFont } from "./cff_font.js";
import { FontRendererFactory } from "./font_renderer.js";
import { GlyfTable } from "./glyf.js";
import { IdentityCMap } from "./cmap.js";
import { OpenTypeFileBuilder } from "./opentype_file_builder.js";
import { readUint32 } from "./core_utils.js";
import { Stream } from "./stream.js";
import { Type1Font } from "./type1_font.js";
// Unicode Private Use Areas:
const PRIVATE_USE_AREAS = [
[0xe000, 0xf8ff], // BMP (0)
[0x100000, 0x10fffd], // PUP (16)
];
// PDF Glyph Space Units are one Thousandth of a TextSpace Unit
// except for Type 3 fonts
const PDF_GLYPH_SPACE_UNITS = 1000;
const EXPORT_DATA_PROPERTIES = [
"ascent",
"bbox",
"black",
"bold",
"charProcOperatorList",
"composite",
"cssFontInfo",
"data",
"defaultVMetrics",
"defaultWidth",
"descent",
"fallbackName",
"fontMatrix",
"fontType",
"isMonospace",
"isSerifFont",
"isType3Font",
"italic",
"loadedName",
"mimetype",
"missingFile",
"name",
"remeasure",
"subtype",
"type",
"vertical",
];
const EXPORT_DATA_EXTRA_PROPERTIES = [
"cMap",
"defaultEncoding",
"differences",
"isSymbolicFont",
"seacMap",
"toFontChar",
"toUnicode",
"vmetrics",
"widths",
];
function adjustWidths(properties) {
if (!properties.fontMatrix) {
return;
}
if (properties.fontMatrix[0] === FONT_IDENTITY_MATRIX[0]) {
return;
}
// adjusting width to fontMatrix scale
const scale = 0.001 / properties.fontMatrix[0];
const glyphsWidths = properties.widths;
for (const glyph in glyphsWidths) {
glyphsWidths[glyph] *= scale;
}
properties.defaultWidth *= scale;
}
function adjustToUnicode(properties, builtInEncoding) {
if (properties.isInternalFont) {
return;
}
if (properties.hasIncludedToUnicodeMap) {
return; // The font dictionary has a `ToUnicode` entry.
}
if (builtInEncoding === properties.defaultEncoding) {
return; // No point in trying to adjust `toUnicode` if the encodings match.
}
if (properties.toUnicode instanceof IdentityToUnicodeMap) {
return;
}
const toUnicode = [],
glyphsUnicodeMap = getGlyphsUnicode();
for (const charCode in builtInEncoding) {
if (
properties.hasEncoding &&
properties.differences[charCode] !== undefined
) {
continue; // The font dictionary has an `Encoding`/`Differences` entry.
}
const glyphName = builtInEncoding[charCode];
const unicode = getUnicodeForGlyph(glyphName, glyphsUnicodeMap);
if (unicode !== -1) {
toUnicode[charCode] = String.fromCharCode(unicode);
}
}
properties.toUnicode.amend(toUnicode);
}
class Glyph {
constructor(
originalCharCode,
fontChar,
unicode,
accent,
width,
vmetric,
operatorListId,
isSpace,
isInFont
) {
this.originalCharCode = originalCharCode;
this.fontChar = fontChar;
this.unicode = unicode;
this.accent = accent;
this.width = width;
this.vmetric = vmetric;
this.operatorListId = operatorListId;
this.isSpace = isSpace;
this.isInFont = isInFont;
}
matchesForCache(
originalCharCode,
fontChar,
unicode,
accent,
width,
vmetric,
operatorListId,
isSpace,
isInFont
) {
return (
this.originalCharCode === originalCharCode &&
this.fontChar === fontChar &&
this.unicode === unicode &&
this.accent === accent &&
this.width === width &&
this.vmetric === vmetric &&
this.operatorListId === operatorListId &&
this.isSpace === isSpace &&
this.isInFont === isInFont
);
}
}
function int16(b0, b1) {
return (b0 << 8) + b1;
}
function writeSignedInt16(bytes, index, value) {
bytes[index + 1] = value;
bytes[index] = value >>> 8;
}
function signedInt16(b0, b1) {
const value = (b0 << 8) + b1;
return value & (1 << 15) ? value - 0x10000 : value;
}
function int32(b0, b1, b2, b3) {
return (b0 << 24) + (b1 << 16) + (b2 << 8) + b3;
}
function string16(value) {
return String.fromCharCode((value >> 8) & 0xff, value & 0xff);
}
function safeString16(value) {
// clamp value to the 16-bit int range
if (value > 0x7fff) {
value = 0x7fff;
} else if (value < -0x8000) {
value = -0x8000;
}
return String.fromCharCode((value >> 8) & 0xff, value & 0xff);
}
function isTrueTypeFile(file) {
const header = file.peekBytes(4);
return (
readUint32(header, 0) === 0x00010000 || bytesToString(header) === "true"
);
}
function isTrueTypeCollectionFile(file) {
const header = file.peekBytes(4);
return bytesToString(header) === "ttcf";
}
function isOpenTypeFile(file) {
const header = file.peekBytes(4);
return bytesToString(header) === "OTTO";
}
function isType1File(file) {
const header = file.peekBytes(2);
// All Type1 font programs must begin with the comment '%!' (0x25 + 0x21).
if (header[0] === 0x25 && header[1] === 0x21) {
return true;
}
// ... obviously some fonts violate that part of the specification,
// please refer to the comment in |Type1Font| below (pfb file header).
if (header[0] === 0x80 && header[1] === 0x01) {
return true;
}
return false;
}
/**
* Compared to other font formats, the header in CFF files is not constant
* but contains version numbers. To reduce the possibility of misclassifying
* font files as CFF, it's recommended to check for other font formats first.
*/
function isCFFFile(file) {
const header = file.peekBytes(4);
if (
/* major version, [1, 255] */ header[0] >= 1 &&
/* minor version, [0, 255]; header[1] */
/* header size, [0, 255]; header[2] */
/* offset(0) size, [1, 4] */ header[3] >= 1 &&
header[3] <= 4
) {
return true;
}
return false;
}
function getFontFileType(file, { type, subtype, composite }) {
let fileType, fileSubtype;
if (isTrueTypeFile(file) || isTrueTypeCollectionFile(file)) {
if (composite) {
fileType = "CIDFontType2";
} else {
fileType = "TrueType";
}
} else if (isOpenTypeFile(file)) {
if (composite) {
fileType = "CIDFontType2";
} else {
fileType = "OpenType";
}
} else if (isType1File(file)) {
if (composite) {
fileType = "CIDFontType0";
} else {
fileType = type === "MMType1" ? "MMType1" : "Type1";
}
} else if (isCFFFile(file)) {
if (composite) {
fileType = "CIDFontType0";
fileSubtype = "CIDFontType0C";
} else {
fileType = type === "MMType1" ? "MMType1" : "Type1";
fileSubtype = "Type1C";
}
} else {
warn("getFontFileType: Unable to detect correct font file Type/Subtype.");
fileType = type;
fileSubtype = subtype;
}
return [fileType, fileSubtype];
}
function buildToFontChar(encoding, glyphsUnicodeMap, differences) {
const toFontChar = [];
let unicode;
for (let i = 0, ii = encoding.length; i < ii; i++) {
unicode = getUnicodeForGlyph(encoding[i], glyphsUnicodeMap);
if (unicode !== -1) {
toFontChar[i] = unicode;
}
}
for (const charCode in differences) {
unicode = getUnicodeForGlyph(differences[charCode], glyphsUnicodeMap);
if (unicode !== -1) {
toFontChar[+charCode] = unicode;
}
}
return toFontChar;
}
/**
* Rebuilds the char code to glyph ID map by moving all char codes to the
* private use area. This is done to avoid issues with various problematic
* unicode areas where either a glyph won't be drawn or is deformed by a
* shaper.
* @returns {Object} Two properties:
* 'toFontChar' - maps original char codes(the value that will be read
* from commands such as show text) to the char codes that will be used in the
* font that we build
* 'charCodeToGlyphId' - maps the new font char codes to glyph ids
*/
function adjustMapping(charCodeToGlyphId, hasGlyph, newGlyphZeroId) {
const newMap = Object.create(null);
const toFontChar = [];
let privateUseAreaIndex = 0;
let nextAvailableFontCharCode = PRIVATE_USE_AREAS[privateUseAreaIndex][0];
let privateUseOffetEnd = PRIVATE_USE_AREAS[privateUseAreaIndex][1];
for (let originalCharCode in charCodeToGlyphId) {
originalCharCode |= 0;
let glyphId = charCodeToGlyphId[originalCharCode];
// For missing glyphs don't create the mappings so the glyph isn't
// drawn.
if (!hasGlyph(glyphId)) {
continue;
}
if (nextAvailableFontCharCode > privateUseOffetEnd) {
privateUseAreaIndex++;
if (privateUseAreaIndex >= PRIVATE_USE_AREAS.length) {
warn("Ran out of space in font private use area.");
break;
}
nextAvailableFontCharCode = PRIVATE_USE_AREAS[privateUseAreaIndex][0];
privateUseOffetEnd = PRIVATE_USE_AREAS[privateUseAreaIndex][1];
}
const fontCharCode = nextAvailableFontCharCode++;
if (glyphId === 0) {
glyphId = newGlyphZeroId;
}
newMap[fontCharCode] = glyphId;
toFontChar[originalCharCode] = fontCharCode;
}
return {
toFontChar,
charCodeToGlyphId: newMap,
nextAvailableFontCharCode,
};
}
function getRanges(glyphs, numGlyphs) {
// Array.sort() sorts by characters, not numerically, so convert to an
// array of characters.
const codes = [];
for (const charCode in glyphs) {
// Remove an invalid glyph ID mappings to make OTS happy.
if (glyphs[charCode] >= numGlyphs) {
continue;
}
codes.push({ fontCharCode: charCode | 0, glyphId: glyphs[charCode] });
}
// Some fonts have zero glyphs and are used only for text selection, but
// there needs to be at least one to build a valid cmap table.
if (codes.length === 0) {
codes.push({ fontCharCode: 0, glyphId: 0 });
}
codes.sort(function fontGetRangesSort(a, b) {
return a.fontCharCode - b.fontCharCode;
});
// Split the sorted codes into ranges.
const ranges = [];
const length = codes.length;
for (let n = 0; n < length; ) {
const start = codes[n].fontCharCode;
const codeIndices = [codes[n].glyphId];
++n;
let end = start;
while (n < length && end + 1 === codes[n].fontCharCode) {
codeIndices.push(codes[n].glyphId);
++end;
++n;
if (end === 0xffff) {
break;
}
}
ranges.push([start, end, codeIndices]);
}
return ranges;
}
function createCmapTable(glyphs, numGlyphs) {
const ranges = getRanges(glyphs, numGlyphs);
const numTables = ranges[ranges.length - 1][1] > 0xffff ? 2 : 1;
let cmap =
"\x00\x00" + // version
string16(numTables) + // numTables
"\x00\x03" + // platformID
"\x00\x01" + // encodingID
string32(4 + numTables * 8); // start of the table record
let i, ii, j, jj;
for (i = ranges.length - 1; i >= 0; --i) {
if (ranges[i][0] <= 0xffff) {
break;
}
}
const bmpLength = i + 1;
if (ranges[i][0] < 0xffff && ranges[i][1] === 0xffff) {
ranges[i][1] = 0xfffe;
}
const trailingRangesCount = ranges[i][1] < 0xffff ? 1 : 0;
const segCount = bmpLength + trailingRangesCount;
const searchParams = OpenTypeFileBuilder.getSearchParams(segCount, 2);
// Fill up the 4 parallel arrays describing the segments.
let startCount = "";
let endCount = "";
let idDeltas = "";
let idRangeOffsets = "";
let glyphsIds = "";
let bias = 0;
let range, start, end, codes;
for (i = 0, ii = bmpLength; i < ii; i++) {
range = ranges[i];
start = range[0];
end = range[1];
startCount += string16(start);
endCount += string16(end);
codes = range[2];
let contiguous = true;
for (j = 1, jj = codes.length; j < jj; ++j) {
if (codes[j] !== codes[j - 1] + 1) {
contiguous = false;
break;
}
}
if (!contiguous) {
const offset = (segCount - i) * 2 + bias * 2;
bias += end - start + 1;
idDeltas += string16(0);
idRangeOffsets += string16(offset);
for (j = 0, jj = codes.length; j < jj; ++j) {
glyphsIds += string16(codes[j]);
}
} else {
const startCode = codes[0];
idDeltas += string16((startCode - start) & 0xffff);
idRangeOffsets += string16(0);
}
}
if (trailingRangesCount > 0) {
endCount += "\xFF\xFF";
startCount += "\xFF\xFF";
idDeltas += "\x00\x01";
idRangeOffsets += "\x00\x00";
}
const format314 =
"\x00\x00" + // language
string16(2 * segCount) +
string16(searchParams.range) +
string16(searchParams.entry) +
string16(searchParams.rangeShift) +
endCount +
"\x00\x00" +
startCount +
idDeltas +
idRangeOffsets +
glyphsIds;
let format31012 = "";
let header31012 = "";
if (numTables > 1) {
cmap +=
"\x00\x03" + // platformID
"\x00\x0A" + // encodingID
string32(4 + numTables * 8 + 4 + format314.length); // start of the table record
format31012 = "";
for (i = 0, ii = ranges.length; i < ii; i++) {
range = ranges[i];
start = range[0];
codes = range[2];
let code = codes[0];
for (j = 1, jj = codes.length; j < jj; ++j) {
if (codes[j] !== codes[j - 1] + 1) {
end = range[0] + j - 1;
format31012 +=
string32(start) + // startCharCode
string32(end) + // endCharCode
string32(code); // startGlyphID
start = end + 1;
code = codes[j];
}
}
format31012 +=
string32(start) + // startCharCode
string32(range[1]) + // endCharCode
string32(code); // startGlyphID
}
header31012 =
"\x00\x0C" + // format
"\x00\x00" + // reserved
string32(format31012.length + 16) + // length
"\x00\x00\x00\x00" + // language
string32(format31012.length / 12); // nGroups
}
return (
cmap +
"\x00\x04" + // format
string16(format314.length + 4) + // length
format314 +
header31012 +
format31012
);
}
function validateOS2Table(os2, file) {
file.pos = (file.start || 0) + os2.offset;
const version = file.getUint16();
// TODO verify all OS/2 tables fields, but currently we validate only those
// that give us issues
file.skip(60); // skipping type, misc sizes, panose, unicode ranges
const selection = file.getUint16();
if (version < 4 && selection & 0x0300) {
return false;
}
const firstChar = file.getUint16();
const lastChar = file.getUint16();
if (firstChar > lastChar) {
return false;
}
file.skip(6); // skipping sTypoAscender/Descender/LineGap
const usWinAscent = file.getUint16();
if (usWinAscent === 0) {
// makes font unreadable by windows
return false;
}
// OS/2 appears to be valid, resetting some fields
os2.data[8] = os2.data[9] = 0; // IE rejects fonts if fsType != 0
return true;
}
function createOS2Table(properties, charstrings, override) {
override = override || {
unitsPerEm: 0,
yMax: 0,
yMin: 0,
ascent: 0,
descent: 0,
};
let ulUnicodeRange1 = 0;
let ulUnicodeRange2 = 0;
let ulUnicodeRange3 = 0;
let ulUnicodeRange4 = 0;
let firstCharIndex = null;
let lastCharIndex = 0;
if (charstrings) {
for (let code in charstrings) {
code |= 0;
if (firstCharIndex > code || !firstCharIndex) {
firstCharIndex = code;
}
if (lastCharIndex < code) {
lastCharIndex = code;
}
const position = getUnicodeRangeFor(code);
if (position < 32) {
ulUnicodeRange1 |= 1 << position;
} else if (position < 64) {
ulUnicodeRange2 |= 1 << (position - 32);
} else if (position < 96) {
ulUnicodeRange3 |= 1 << (position - 64);
} else if (position < 123) {
ulUnicodeRange4 |= 1 << (position - 96);
} else {
throw new FormatError(
"Unicode ranges Bits > 123 are reserved for internal usage"
);
}
}
if (lastCharIndex > 0xffff) {
// OS2 only supports a 16 bit int. The spec says if supplementary
// characters are used the field should just be set to 0xFFFF.
lastCharIndex = 0xffff;
}
} else {
// TODO
firstCharIndex = 0;
lastCharIndex = 255;
}
const bbox = properties.bbox || [0, 0, 0, 0];
const unitsPerEm =
override.unitsPerEm ||
1 / (properties.fontMatrix || FONT_IDENTITY_MATRIX)[0];
// if the font units differ to the PDF glyph space units
// then scale up the values
const scale = properties.ascentScaled
? 1.0
: unitsPerEm / PDF_GLYPH_SPACE_UNITS;
const typoAscent =
override.ascent || Math.round(scale * (properties.ascent || bbox[3]));
let typoDescent =
override.descent || Math.round(scale * (properties.descent || bbox[1]));
if (typoDescent > 0 && properties.descent > 0 && bbox[1] < 0) {
typoDescent = -typoDescent; // fixing incorrect descent
}
const winAscent = override.yMax || typoAscent;
const winDescent = -override.yMin || -typoDescent;
return (
"\x00\x03" + // version
"\x02\x24" + // xAvgCharWidth
"\x01\xF4" + // usWeightClass
"\x00\x05" + // usWidthClass
"\x00\x00" + // fstype (0 to let the font loads via font-face on IE)
"\x02\x8A" + // ySubscriptXSize
"\x02\xBB" + // ySubscriptYSize
"\x00\x00" + // ySubscriptXOffset
"\x00\x8C" + // ySubscriptYOffset
"\x02\x8A" + // ySuperScriptXSize
"\x02\xBB" + // ySuperScriptYSize
"\x00\x00" + // ySuperScriptXOffset
"\x01\xDF" + // ySuperScriptYOffset
"\x00\x31" + // yStrikeOutSize
"\x01\x02" + // yStrikeOutPosition
"\x00\x00" + // sFamilyClass
"\x00\x00\x06" +
String.fromCharCode(properties.fixedPitch ? 0x09 : 0x00) +
"\x00\x00\x00\x00\x00\x00" + // Panose
string32(ulUnicodeRange1) + // ulUnicodeRange1 (Bits 0-31)
string32(ulUnicodeRange2) + // ulUnicodeRange2 (Bits 32-63)
string32(ulUnicodeRange3) + // ulUnicodeRange3 (Bits 64-95)
string32(ulUnicodeRange4) + // ulUnicodeRange4 (Bits 96-127)
"\x2A\x32\x31\x2A" + // achVendID
string16(properties.italicAngle ? 1 : 0) + // fsSelection
string16(firstCharIndex || properties.firstChar) + // usFirstCharIndex
string16(lastCharIndex || properties.lastChar) + // usLastCharIndex
string16(typoAscent) + // sTypoAscender
string16(typoDescent) + // sTypoDescender
"\x00\x64" + // sTypoLineGap (7%-10% of the unitsPerEM value)
string16(winAscent) + // usWinAscent
string16(winDescent) + // usWinDescent
"\x00\x00\x00\x00" + // ulCodePageRange1 (Bits 0-31)
"\x00\x00\x00\x00" + // ulCodePageRange2 (Bits 32-63)
string16(properties.xHeight) + // sxHeight
string16(properties.capHeight) + // sCapHeight
string16(0) + // usDefaultChar
string16(firstCharIndex || properties.firstChar) + // usBreakChar
"\x00\x03"
); // usMaxContext
}
function createPostTable(properties) {
const angle = Math.floor(properties.italicAngle * 2 ** 16);
return (
"\x00\x03\x00\x00" + // Version number
string32(angle) + // italicAngle
"\x00\x00" + // underlinePosition
"\x00\x00" + // underlineThickness
string32(properties.fixedPitch) + // isFixedPitch
"\x00\x00\x00\x00" + // minMemType42
"\x00\x00\x00\x00" + // maxMemType42
"\x00\x00\x00\x00" + // minMemType1
"\x00\x00\x00\x00"
); // maxMemType1
}
function createPostscriptName(name) {
// See https://docs.microsoft.com/en-us/typography/opentype/spec/recom#name.
return name.replace(/[^\x21-\x7E]|[[\](){}<>/%]/g, "").slice(0, 63);
}
function createNameTable(name, proto) {
if (!proto) {
proto = [[], []]; // no strings and unicode strings
}
const strings = [
proto[0][0] || "Original licence", // 0.Copyright
proto[0][1] || name, // 1.Font family
proto[0][2] || "Unknown", // 2.Font subfamily (font weight)
proto[0][3] || "uniqueID", // 3.Unique ID
proto[0][4] || name, // 4.Full font name
proto[0][5] || "Version 0.11", // 5.Version
proto[0][6] || createPostscriptName(name), // 6.Postscript name
proto[0][7] || "Unknown", // 7.Trademark
proto[0][8] || "Unknown", // 8.Manufacturer
proto[0][9] || "Unknown", // 9.Designer
];
// Mac want 1-byte per character strings while Windows want
// 2-bytes per character, so duplicate the names table
const stringsUnicode = [];
let i, ii, j, jj, str;
for (i = 0, ii = strings.length; i < ii; i++) {
str = proto[1][i] || strings[i];
const strBufUnicode = [];
for (j = 0, jj = str.length; j < jj; j++) {
strBufUnicode.push(string16(str.charCodeAt(j)));
}
stringsUnicode.push(strBufUnicode.join(""));
}
const names = [strings, stringsUnicode];
const platforms = ["\x00\x01", "\x00\x03"];
const encodings = ["\x00\x00", "\x00\x01"];
const languages = ["\x00\x00", "\x04\x09"];
const namesRecordCount = strings.length * platforms.length;
let nameTable =
"\x00\x00" + // format
string16(namesRecordCount) + // Number of names Record
string16(namesRecordCount * 12 + 6); // Storage
// Build the name records field
let strOffset = 0;
for (i = 0, ii = platforms.length; i < ii; i++) {
const strs = names[i];
for (j = 0, jj = strs.length; j < jj; j++) {
str = strs[j];
const nameRecord =
platforms[i] + // platform ID
encodings[i] + // encoding ID
languages[i] + // language ID
string16(j) + // name ID
string16(str.length) +
string16(strOffset);
nameTable += nameRecord;
strOffset += str.length;
}
}
nameTable += strings.join("") + stringsUnicode.join("");
return nameTable;
}
/**
* 'Font' is the class the outside world should use, it encapsulate all the font
* decoding logics whatever type it is (assuming the font type is supported).
*/
class Font {
constructor(name, file, properties) {
this.name = name;
this.mimetype = null;
this.disableFontFace = false;
this.loadedName = properties.loadedName;
this.isType3Font = properties.isType3Font;
this.missingFile = false;
this.cssFontInfo = properties.cssFontInfo;
this._charsCache = Object.create(null);
this._glyphCache = Object.create(null);
this.isSerifFont = !!(properties.flags & FontFlags.Serif);
this.isSymbolicFont = !!(properties.flags & FontFlags.Symbolic);
this.isMonospace = !!(properties.flags & FontFlags.FixedPitch);
let type = properties.type;
let subtype = properties.subtype;
this.type = type;
this.subtype = subtype;
let fallbackName = "sans-serif";
if (this.isMonospace) {
fallbackName = "monospace";
} else if (this.isSerifFont) {
fallbackName = "serif";
}
this.fallbackName = fallbackName;
this.differences = properties.differences;
this.widths = properties.widths;
this.defaultWidth = properties.defaultWidth;
this.composite = properties.composite;
this.cMap = properties.cMap;
this.capHeight = properties.capHeight / PDF_GLYPH_SPACE_UNITS;
this.ascent = properties.ascent / PDF_GLYPH_SPACE_UNITS;
this.descent = properties.descent / PDF_GLYPH_SPACE_UNITS;
this.fontMatrix = properties.fontMatrix;
this.bbox = properties.bbox;
this.defaultEncoding = properties.defaultEncoding;
this.toUnicode = properties.toUnicode;
this.fallbackToUnicode = properties.fallbackToUnicode || new ToUnicodeMap();
this.toFontChar = [];
if (properties.type === "Type3") {
for (let charCode = 0; charCode < 256; charCode++) {
this.toFontChar[charCode] =
this.differences[charCode] || properties.defaultEncoding[charCode];
}
this.fontType = FontType.TYPE3;
return;
}
this.cidEncoding = properties.cidEncoding;
this.vertical = !!properties.vertical;
if (this.vertical) {
this.vmetrics = properties.vmetrics;
this.defaultVMetrics = properties.defaultVMetrics;
}
if (!file || file.isEmpty) {
if (file) {
// Some bad PDF generators will include empty font files,
// attempting to recover by assuming that no file exists.
warn('Font file is empty in "' + name + '" (' + this.loadedName + ")");
}
this.fallbackToSystemFont(properties);
return;
}
// Parse the font file to determine the correct type/subtype, rather than
// relying on the (often incorrect) data in the font dictionary; (see e.g.
// issue6782.pdf, issue7598.pdf, and issue9949.pdf).
[type, subtype] = getFontFileType(file, properties);
if (type !== this.type || subtype !== this.subtype) {
info(
"Inconsistent font file Type/SubType, expected: " +
`${this.type}/${this.subtype} but found: ${type}/${subtype}.`
);
}
let data;
try {
switch (type) {
case "MMType1":
info("MMType1 font (" + name + "), falling back to Type1.");
/* falls through */
case "Type1":
case "CIDFontType0":
this.mimetype = "font/opentype";
const cff =
subtype === "Type1C" || subtype === "CIDFontType0C"
? new CFFFont(file, properties)
: new Type1Font(name, file, properties);
adjustWidths(properties);
// Wrap the CFF data inside an OTF font file
data = this.convert(name, cff, properties);
break;
case "OpenType":
case "TrueType":
case "CIDFontType2":
this.mimetype = "font/opentype";
// Repair the TrueType file. It is can be damaged in the point of
// view of the sanitizer
data = this.checkAndRepair(name, file, properties);
if (this.isOpenType) {
adjustWidths(properties);
type = "OpenType";
}
break;
default:
throw new FormatError(`Font ${type} is not supported`);
}
} catch (e) {
warn(e);
this.fallbackToSystemFont(properties);
return;
}
this.data = data;
this.fontType = getFontType(type, subtype, properties.isStandardFont);
// Transfer some properties again that could change during font conversion
this.fontMatrix = properties.fontMatrix;
this.widths = properties.widths;
this.defaultWidth = properties.defaultWidth;
this.toUnicode = properties.toUnicode;
this.seacMap = properties.seacMap;
}
get renderer() {
const renderer = FontRendererFactory.create(this, SEAC_ANALYSIS_ENABLED);
return shadow(this, "renderer", renderer);
}
exportData(extraProperties = false) {
const exportDataProperties = extraProperties
? [...EXPORT_DATA_PROPERTIES, ...EXPORT_DATA_EXTRA_PROPERTIES]
: EXPORT_DATA_PROPERTIES;
const data = Object.create(null);
let property, value;
for (property of exportDataProperties) {
value = this[property];
// Ignore properties that haven't been explicitly set.
if (value !== undefined) {
data[property] = value;
}
}
return data;
}
fallbackToSystemFont(properties) {
this.missingFile = true;
// The file data is not specified. Trying to fix the font name
// to be used with the canvas.font.
const name = this.name;
const type = this.type;
const subtype = this.subtype;
let fontName = normalizeFontName(name);
const stdFontMap = getStdFontMap(),
nonStdFontMap = getNonStdFontMap();
const isStandardFont = !!stdFontMap[fontName];
const isMappedToStandardFont = !!(
nonStdFontMap[fontName] && stdFontMap[nonStdFontMap[fontName]]
);
fontName = stdFontMap[fontName] || nonStdFontMap[fontName] || fontName;
this.bold = fontName.search(/bold/gi) !== -1;
this.italic =
fontName.search(/oblique/gi) !== -1 || fontName.search(/italic/gi) !== -1;
// Use 'name' instead of 'fontName' here because the original
// name ArialBlack for example will be replaced by Helvetica.
this.black = name.search(/Black/g) !== -1;
// Use 'name' instead of 'fontName' here because the original
// name ArialNarrow for example will be replaced by Helvetica.
const isNarrow = name.search(/Narrow/g) !== -1;
// if at least one width is present, remeasure all chars when exists
this.remeasure =
(!isStandardFont || isNarrow) && Object.keys(this.widths).length > 0;
if (
(isStandardFont || isMappedToStandardFont) &&
type === "CIDFontType2" &&
this.cidEncoding.startsWith("Identity-")
) {
const GlyphMapForStandardFonts = getGlyphMapForStandardFonts(),
cidToGidMap = properties.cidToGidMap;
// Standard fonts might be embedded as CID font without glyph mapping.
// Building one based on GlyphMapForStandardFonts.
const map = [];
for (const charCode in GlyphMapForStandardFonts) {
map[+charCode] = GlyphMapForStandardFonts[charCode];
}
if (/Arial-?Black/i.test(name)) {
const SupplementalGlyphMapForArialBlack =
getSupplementalGlyphMapForArialBlack();
for (const charCode in SupplementalGlyphMapForArialBlack) {
map[+charCode] = SupplementalGlyphMapForArialBlack[charCode];
}
} else if (/Calibri/i.test(name)) {
const SupplementalGlyphMapForCalibri =
getSupplementalGlyphMapForCalibri();
for (const charCode in SupplementalGlyphMapForCalibri) {
map[+charCode] = SupplementalGlyphMapForCalibri[charCode];
}
}
// Always update the glyph mapping with the `cidToGidMap` when it exists
// (fixes issue12418_reduced.pdf).
if (cidToGidMap) {
for (const charCode in map) {
const cid = map[charCode];
if (cidToGidMap[cid] !== undefined) {
map[+charCode] = cidToGidMap[cid];
}
}
}
const isIdentityUnicode = this.toUnicode instanceof IdentityToUnicodeMap;
if (!isIdentityUnicode) {
this.toUnicode.forEach(function (charCode, unicodeCharCode) {
map[+charCode] = unicodeCharCode;
});
}
this.toFontChar = map;
this.toUnicode = new ToUnicodeMap(map);
} else if (/Symbol/i.test(fontName)) {
this.toFontChar = buildToFontChar(
SymbolSetEncoding,
getGlyphsUnicode(),
this.differences
);
} else if (/Dingbats/i.test(fontName)) {
if (/Wingdings/i.test(name)) {
warn("Non-embedded Wingdings font, falling back to ZapfDingbats.");
}
this.toFontChar = buildToFontChar(
ZapfDingbatsEncoding,
getDingbatsGlyphsUnicode(),
this.differences
);
} else if (isStandardFont) {
this.toFontChar = buildToFontChar(
this.defaultEncoding,
getGlyphsUnicode(),
this.differences
);
} else {
const glyphsUnicodeMap = getGlyphsUnicode();
const map = [];
this.toUnicode.forEach((charCode, unicodeCharCode) => {
if (!this.composite) {
const glyphName =
this.differences[charCode] || this.defaultEncoding[charCode];
const unicode = getUnicodeForGlyph(glyphName, glyphsUnicodeMap);
if (unicode !== -1) {
unicodeCharCode = unicode;
}
}
map[+charCode] = unicodeCharCode;
});
// Attempt to improve the glyph mapping for (some) composite fonts that
// appear to lack meaningful ToUnicode data.
if (this.composite && this.toUnicode instanceof IdentityToUnicodeMap) {
if (/Verdana/i.test(name)) {
// Fixes issue11242_reduced.pdf
const GlyphMapForStandardFonts = getGlyphMapForStandardFonts();
for (const charCode in GlyphMapForStandardFonts) {
map[+charCode] = GlyphMapForStandardFonts[charCode];
}
}
}
this.toFontChar = map;
}
this.loadedName = fontName.split("-")[0];
this.fontType = getFontType(type, subtype, properties.isStandardFont);
}
checkAndRepair(name, font, properties) {
const VALID_TABLES = [
"OS/2",
"cmap",
"head",
"hhea",
"hmtx",
"maxp",
"name",
"post",
"loca",
"glyf",
"fpgm",
"prep",
"cvt ",
"CFF ",
];
function readTables(file, numTables) {
const tables = Object.create(null);
tables["OS/2"] = null;
tables.cmap = null;
tables.head = null;
tables.hhea = null;
tables.hmtx = null;
tables.maxp = null;
tables.name = null;
tables.post = null;
for (let i = 0; i < numTables; i++) {
const table = readTableEntry(file);
if (!VALID_TABLES.includes(table.tag)) {
continue; // skipping table if it's not a required or optional table
}
if (table.length === 0) {
continue; // skipping empty tables
}
tables[table.tag] = table;
}
return tables;
}
function readTableEntry(file) {
const tag = file.getString(4);
const checksum = file.getInt32() >>> 0;
const offset = file.getInt32() >>> 0;
const length = file.getInt32() >>> 0;
// Read the table associated data
const previousPosition = file.pos;
file.pos = file.start ? file.start : 0;
file.skip(offset);
const data = file.getBytes(length);
file.pos = previousPosition;
if (tag === "head") {
// clearing checksum adjustment
data[8] = data[9] = data[10] = data[11] = 0;
data[17] |= 0x20; // Set font optimized for cleartype flag.
}
return {
tag,
checksum,
length,
offset,
data,
};
}
function readOpenTypeHeader(ttf) {
return {
version: ttf.getString(4),
numTables: ttf.getUint16(),
searchRange: ttf.getUint16(),
entrySelector: ttf.getUint16(),
rangeShift: ttf.getUint16(),
};
}
function readTrueTypeCollectionHeader(ttc) {
const ttcTag = ttc.getString(4);
assert(ttcTag === "ttcf", "Must be a TrueType Collection font.");
const majorVersion = ttc.getUint16();
const minorVersion = ttc.getUint16();
const numFonts = ttc.getInt32() >>> 0;
const offsetTable = [];
for (let i = 0; i < numFonts; i++) {
offsetTable.push(ttc.getInt32() >>> 0);
}
const header = {
ttcTag,
majorVersion,
minorVersion,
numFonts,
offsetTable,
};
switch (majorVersion) {
case 1:
return header;
case 2:
header.dsigTag = ttc.getInt32() >>> 0;
header.dsigLength = ttc.getInt32() >>> 0;
header.dsigOffset = ttc.getInt32() >>> 0;
return header;
}
throw new FormatError(
`Invalid TrueType Collection majorVersion: ${majorVersion}.`
);
}
function readTrueTypeCollectionData(ttc, fontName) {
const { numFonts, offsetTable } = readTrueTypeCollectionHeader(ttc);
const fontNameParts = fontName.split("+");
let fallbackData;
for (let i = 0; i < numFonts; i++) {
ttc.pos = (ttc.start || 0) + offsetTable[i];
const potentialHeader = readOpenTypeHeader(ttc);
const potentialTables = readTables(ttc, potentialHeader.numTables);
if (!potentialTables.name) {
throw new FormatError(
'TrueType Collection font must contain a "name" table.'
);
}
const nameTable = readNameTable(potentialTables.name);
for (let j = 0, jj = nameTable.length; j < jj; j++) {
for (let k = 0, kk = nameTable[j].length; k < kk; k++) {
const nameEntry =
nameTable[j][k] && nameTable[j][k].replace(/\s/g, "");
if (!nameEntry) {
continue;
}
if (nameEntry === fontName) {
return {
header: potentialHeader,
tables: potentialTables,
};
}
if (fontNameParts.length < 2) {
continue;
}
for (const part of fontNameParts) {
if (nameEntry === part) {
fallbackData = {
name: part,
header: potentialHeader,
tables: potentialTables,
};
}
}
}
}
}
if (fallbackData) {
warn(
`TrueType Collection does not contain "${fontName}" font, ` +
`falling back to "${fallbackData.name}" font instead.`
);
return {
header: fallbackData.header,
tables: fallbackData.tables,
};
}
throw new FormatError(
`TrueType Collection does not contain "${fontName}" font.`
);
}
/**
* Read the appropriate subtable from the cmap according to 9.6.6.4 from
* PDF spec
*/
function readCmapTable(cmap, file, isSymbolicFont, hasEncoding) {
if (!cmap) {
warn("No cmap table available.");
return {
platformId: -1,
encodingId: -1,
mappings: [],
hasShortCmap: false,
};
}
let segment;
let start = (file.start ? file.start : 0) + cmap.offset;
file.pos = start;
file.skip(2); // version
const numTables = file.getUint16();
let potentialTable;
let canBreak = false;
// There's an order of preference in terms of which cmap subtable to
// use:
// - non-symbolic fonts the preference is a 3,1 table then a 1,0 table
// - symbolic fonts the preference is a 3,0 table then a 1,0 table
// The following takes advantage of the fact that the tables are sorted
// to work.
for (let i = 0; i < numTables; i++) {
const platformId = file.getUint16();
const encodingId = file.getUint16();
const offset = file.getInt32() >>> 0;
let useTable = false;
// Sometimes there are multiple of the same type of table. Default
// to choosing the first table and skip the rest.
if (
potentialTable &&
potentialTable.platformId === platformId &&
potentialTable.encodingId === encodingId
) {
continue;
}
if (
platformId === 0 &&
(encodingId === /* Unicode Default */ 0 ||
encodingId === /* Unicode 1.1 */ 1 ||
encodingId === /* Unicode BMP */ 3)
) {
useTable = true;
// Continue the loop since there still may be a higher priority
// table.
} else if (platformId === 1 && encodingId === 0) {
useTable = true;
// Continue the loop since there still may be a higher priority
// table.
} else if (
platformId === 3 &&
encodingId === 1 &&
(hasEncoding || !potentialTable)
) {
useTable = true;
if (!isSymbolicFont) {
canBreak = true;
}
} else if (isSymbolicFont && platformId === 3 && encodingId === 0) {
useTable = true;
canBreak = true;
}
if (useTable) {
potentialTable = {
platformId,
encodingId,
offset,
};
}
if (canBreak) {
break;
}
}
if (potentialTable) {
file.pos = start + potentialTable.offset;
}
if (!potentialTable || file.peekByte() === -1) {
warn("Could not find a preferred cmap table.");
return {
platformId: -1,
encodingId: -1,
mappings: [],
hasShortCmap: false,
};
}
const format = file.getUint16();
file.skip(2 + 2); // length + language
let hasShortCmap = false;
const mappings = [];
let j, glyphId;
// TODO(mack): refactor this cmap subtable reading logic out
if (format === 0) {
for (j = 0; j < 256; j++) {
const index = file.getByte();
if (!index) {
continue;
}
mappings.push({
charCode: j,
glyphId: index,
});
}
hasShortCmap = true;
} else if (format === 4) {
// re-creating the table in format 4 since the encoding
// might be changed
const segCount = file.getUint16() >> 1;
file.skip(6); // skipping range fields
const segments = [];
let segIndex;
for (segIndex = 0; segIndex < segCount; segIndex++) {
segments.push({ end: file.getUint16() });
}
file.skip(2);
for (segIndex = 0; segIndex < segCount; segIndex++) {
segments[segIndex].start = file.getUint16();
}
for (segIndex = 0; segIndex < segCount; segIndex++) {
segments[segIndex].delta = file.getUint16();
}
let offsetsCount = 0,
offsetIndex;
for (segIndex = 0; segIndex < segCount; segIndex++) {
segment = segments[segIndex];
const rangeOffset = file.getUint16();
if (!rangeOffset) {
segment.offsetIndex = -1;
continue;
}
offsetIndex = (rangeOffset >> 1) - (segCount - segIndex);
segment.offsetIndex = offsetIndex;
offsetsCount = Math.max(
offsetsCount,
offsetIndex + segment.end - segment.start + 1
);
}
const offsets = [];
for (j = 0; j < offsetsCount; j++) {
offsets.push(file.getUint16());
}
for (segIndex = 0; segIndex < segCount; segIndex++) {
segment = segments[segIndex];
start = segment.start;
const end = segment.end;
const delta = segment.delta;
offsetIndex = segment.offsetIndex;
for (j = start; j <= end; j++) {
if (j === 0xffff) {
continue;
}
glyphId = offsetIndex < 0 ? j : offsets[offsetIndex + j - start];
glyphId = (glyphId + delta) & 0xffff;
mappings.push({
charCode: j,
glyphId,
});
}
}
} else if (format === 6) {
// Format 6 is a 2-bytes dense mapping, which means the font data
// lives glue together even if they are pretty far in the unicode
// table. (This looks weird, so I can have missed something), this
// works on Linux but seems to fails on Mac so let's rewrite the
// cmap table to a 3-1-4 style
const firstCode = file.getUint16();
const entryCount = file.getUint16();
for (j = 0; j < entryCount; j++) {
glyphId = file.getUint16();
const charCode = firstCode + j;
mappings.push({
charCode,
glyphId,
});
}
} else {
warn("cmap table has unsupported format: " + format);
return {
platformId: -1,
encodingId: -1,
mappings: [],
hasShortCmap: false,
};
}
// removing duplicate entries
mappings.sort(function (a, b) {
return a.charCode - b.charCode;
});
for (let i = 1; i < mappings.length; i++) {
if (mappings[i - 1].charCode === mappings[i].charCode) {
mappings.splice(i, 1);
i--;
}
}
return {
platformId: potentialTable.platformId,
encodingId: potentialTable.encodingId,
mappings,
hasShortCmap,
};
}
function sanitizeMetrics(file, header, metrics, numGlyphs, dupFirstEntry) {
if (!header) {
if (metrics) {
metrics.data = null;
}
return;
}
file.pos = (file.start ? file.start : 0) + header.offset;
file.pos += 4; // version
file.pos += 2; // ascent
file.pos += 2; // descent
file.pos += 2; // linegap
file.pos += 2; // adv_width_max
file.pos += 2; // min_sb1
file.pos += 2; // min_sb2
file.pos += 2; // max_extent
file.pos += 2; // caret_slope_rise
file.pos += 2; // caret_slope_run
file.pos += 2; // caret_offset
file.pos += 8; // reserved
file.pos += 2; // format
let numOfMetrics = file.getUint16();
if (numOfMetrics > numGlyphs) {
info(
"The numOfMetrics (" +
numOfMetrics +
") should not be " +
"greater than the numGlyphs (" +
numGlyphs +
")"
);
// Reduce numOfMetrics if it is greater than numGlyphs
numOfMetrics = numGlyphs;
header.data[34] = (numOfMetrics & 0xff00) >> 8;
header.data[35] = numOfMetrics & 0x00ff;
}
const numOfSidebearings = numGlyphs - numOfMetrics;
const numMissing =
numOfSidebearings - ((metrics.length - numOfMetrics * 4) >> 1);
if (numMissing > 0) {
// For each missing glyph, we set both the width and lsb to 0 (zero).
// Since we need to add two properties for each glyph, this explains
// the use of |numMissing * 2| when initializing the typed array.
const entries = new Uint8Array(metrics.length + numMissing * 2);
entries.set(metrics.data);
if (dupFirstEntry) {
// Set the sidebearing value of the duplicated glyph.
entries[metrics.length] = metrics.data[2];
entries[metrics.length + 1] = metrics.data[3];
}
metrics.data = entries;
}
}
function sanitizeGlyph(
source,
sourceStart,
sourceEnd,
dest,
destStart,
hintsValid
) {
const glyphProfile = {
length: 0,
sizeOfInstructions: 0,
};
if (sourceEnd - sourceStart <= 12) {
// glyph with data less than 12 is invalid one
return glyphProfile;
}
const glyf = source.subarray(sourceStart, sourceEnd);
let contoursCount = signedInt16(glyf[0], glyf[1]);
if (contoursCount < 0) {
// OTS doesn't like contour count to be less than -1.
contoursCount = -1;
writeSignedInt16(glyf, 0, contoursCount);
// complex glyph, writing as is
dest.set(glyf, destStart);
glyphProfile.length = glyf.length;
return glyphProfile;
}
let i,
j = 10,
flagsCount = 0;
for (i = 0; i < contoursCount; i++) {
const endPoint = (glyf[j] << 8) | glyf[j + 1];
flagsCount = endPoint + 1;
j += 2;
}
// skipping instructions
const instructionsStart = j;
const instructionsLength = (glyf[j] << 8) | glyf[j + 1];
glyphProfile.sizeOfInstructions = instructionsLength;
j += 2 + instructionsLength;
const instructionsEnd = j;
// validating flags
let coordinatesLength = 0;
for (i = 0; i < flagsCount; i++) {
const flag = glyf[j++];
if (flag & 0xc0) {
// reserved flags must be zero, cleaning up
glyf[j - 1] = flag & 0x3f;
}
let xLength = 2;
if (flag & 2) {
xLength = 1;
} else if (flag & 16) {
xLength = 0;
}
let yLength = 2;
if (flag & 4) {
yLength = 1;
} else if (flag & 32) {
yLength = 0;
}
const xyLength = xLength + yLength;
coordinatesLength += xyLength;
if (flag & 8) {
const repeat = glyf[j++];
i += repeat;
coordinatesLength += repeat * xyLength;
}
}
// glyph without coordinates will be rejected
if (coordinatesLength === 0) {
return glyphProfile;
}
let glyphDataLength = j + coordinatesLength;
if (glyphDataLength > glyf.length) {
// not enough data for coordinates
return glyphProfile;
}
if (!hintsValid && instructionsLength > 0) {
dest.set(glyf.subarray(0, instructionsStart), destStart);
dest.set([0, 0], destStart + instructionsStart);
dest.set(
glyf.subarray(instructionsEnd, glyphDataLength),
destStart + instructionsStart + 2
);
glyphDataLength -= instructionsLength;
if (glyf.length - glyphDataLength > 3) {
glyphDataLength = (glyphDataLength + 3) & ~3;
}
glyphProfile.length = glyphDataLength;
return glyphProfile;
}
if (glyf.length - glyphDataLength > 3) {
// truncating and aligning to 4 bytes the long glyph data
glyphDataLength = (glyphDataLength + 3) & ~3;
dest.set(glyf.subarray(0, glyphDataLength), destStart);
glyphProfile.length = glyphDataLength;
return glyphProfile;
}
// glyph data is fine
dest.set(glyf, destStart);
glyphProfile.length = glyf.length;
return glyphProfile;
}
function sanitizeHead(head, numGlyphs, locaLength) {
const data = head.data;
// Validate version:
// Should always be 0x00010000
const version = int32(data[0], data[1], data[2], data[3]);
if (version >> 16 !== 1) {
info("Attempting to fix invalid version in head table: " + version);
data[0] = 0;
data[1] = 1;
data[2] = 0;
data[3] = 0;
}
const indexToLocFormat = int16(data[50], data[51]);
if (indexToLocFormat < 0 || indexToLocFormat > 1) {
info(
"Attempting to fix invalid indexToLocFormat in head table: " +
indexToLocFormat
);
// The value of indexToLocFormat should be 0 if the loca table
// consists of short offsets, and should be 1 if the loca table
// consists of long offsets.
//
// The number of entries in the loca table should be numGlyphs + 1.
//
// Using this information, we can work backwards to deduce if the
// size of each offset in the loca table, and thus figure out the
// appropriate value for indexToLocFormat.
const numGlyphsPlusOne = numGlyphs + 1;
if (locaLength === numGlyphsPlusOne << 1) {
// 0x0000 indicates the loca table consists of short offsets
data[50] = 0;
data[51] = 0;
} else if (locaLength === numGlyphsPlusOne << 2) {
// 0x0001 indicates the loca table consists of long offsets
data[50] = 0;
data[51] = 1;
} else {
throw new FormatError(
"Could not fix indexToLocFormat: " + indexToLocFormat
);
}
}
}
function sanitizeGlyphLocations(
loca,
glyf,
numGlyphs,
isGlyphLocationsLong,
hintsValid,
dupFirstEntry,
maxSizeOfInstructions
) {
let itemSize, itemDecode, itemEncode;
if (isGlyphLocationsLong) {
itemSize = 4;
itemDecode = function fontItemDecodeLong(data, offset) {
return (
(data[offset] << 24) |
(data[offset + 1] << 16) |
(data[offset + 2] << 8) |
data[offset + 3]
);
};
itemEncode = function fontItemEncodeLong(data, offset, value) {
data[offset] = (value >>> 24) & 0xff;
data[offset + 1] = (value >> 16) & 0xff;
data[offset + 2] = (value >> 8) & 0xff;
data[offset + 3] = value & 0xff;
};
} else {
itemSize = 2;
itemDecode = function fontItemDecode(data, offset) {
return (data[offset] << 9) | (data[offset + 1] << 1);
};
itemEncode = function fontItemEncode(data, offset, value) {
data[offset] = (value >> 9) & 0xff;
data[offset + 1] = (value >> 1) & 0xff;
};
}
// The first glyph is duplicated.
const numGlyphsOut = dupFirstEntry ? numGlyphs + 1 : numGlyphs;
const locaDataSize = itemSize * (1 + numGlyphsOut);
// Resize loca table to account for duplicated glyph.
const locaData = new Uint8Array(locaDataSize);
locaData.set(loca.data.subarray(0, locaDataSize));
loca.data = locaData;
// removing the invalid glyphs
const oldGlyfData = glyf.data;
const oldGlyfDataLength = oldGlyfData.length;
const newGlyfData = new Uint8Array(oldGlyfDataLength);
// The spec says the offsets should be in ascending order, however
// this is not true for some fonts or they use the offset of 0 to mark a
// glyph as missing. OTS requires the offsets to be in order and not to
// be zero, so we must sort and rebuild the loca table and potentially
// re-arrange the glyf data.
let i, j;
const locaEntries = [];
// There are numGlyphs + 1 loca table entries.
for (i = 0, j = 0; i < numGlyphs + 1; i++, j += itemSize) {
let offset = itemDecode(locaData, j);
if (offset > oldGlyfDataLength) {
offset = oldGlyfDataLength;
}
locaEntries.push({
index: i,
offset,
endOffset: 0,
});
}
locaEntries.sort((a, b) => {
return a.offset - b.offset;
});
// Now the offsets are sorted, calculate the end offset of each glyph.
// The last loca entry's endOffset is not calculated since it's the end
// of the data and will be stored on the previous entry's endOffset.
for (i = 0; i < numGlyphs; i++) {
locaEntries[i].endOffset = locaEntries[i + 1].offset;
}
// Re-sort so glyphs aren't out of order.
locaEntries.sort((a, b) => {
return a.index - b.index;
});
const missingGlyphs = Object.create(null);
let writeOffset = 0;
itemEncode(locaData, 0, writeOffset);
for (i = 0, j = itemSize; i < numGlyphs; i++, j += itemSize) {
const glyphProfile = sanitizeGlyph(
oldGlyfData,
locaEntries[i].offset,
locaEntries[i].endOffset,
newGlyfData,
writeOffset,
hintsValid
);
const newLength = glyphProfile.length;
if (newLength === 0) {
missingGlyphs[i] = true;
}
if (glyphProfile.sizeOfInstructions > maxSizeOfInstructions) {
maxSizeOfInstructions = glyphProfile.sizeOfInstructions;
}
writeOffset += newLength;
itemEncode(locaData, j, writeOffset);
}
if (writeOffset === 0) {
// glyf table cannot be empty -- redoing the glyf and loca tables
// to have single glyph with one point
const simpleGlyph = new Uint8Array([
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 49, 0,
]);
for (i = 0, j = itemSize; i < numGlyphsOut; i++, j += itemSize) {
itemEncode(locaData, j, simpleGlyph.length);
}
glyf.data = simpleGlyph;
} else if (dupFirstEntry) {
// Browsers will not display a glyph at position 0. Typically glyph 0
// is notdef, but a number of fonts put a valid glyph there so it must
// be duplicated and appended.
const firstEntryLength = itemDecode(locaData, itemSize);
if (newGlyfData.length > firstEntryLength + writeOffset) {
glyf.data = newGlyfData.subarray(0, firstEntryLength + writeOffset);
} else {
glyf.data = new Uint8Array(firstEntryLength + writeOffset);
glyf.data.set(newGlyfData.subarray(0, writeOffset));
}
glyf.data.set(newGlyfData.subarray(0, firstEntryLength), writeOffset);
itemEncode(
loca.data,
locaData.length - itemSize,
writeOffset + firstEntryLength
);
} else {
glyf.data = newGlyfData.subarray(0, writeOffset);
}
return {
missingGlyphs,
maxSizeOfInstructions,
};
}
function readPostScriptTable(post, propertiesObj, maxpNumGlyphs) {
const start = (font.start ? font.start : 0) + post.offset;
font.pos = start;
const length = post.length,
end = start + length;
const version = font.getInt32();
// skip rest to the tables
font.skip(28);
let glyphNames;
let valid = true;
let i;
switch (version) {
case 0x00010000:
glyphNames = MacStandardGlyphOrdering;
break;
case 0x00020000:
const numGlyphs = font.getUint16();
if (numGlyphs !== maxpNumGlyphs) {
valid = false;
break;
}
const glyphNameIndexes = [];
for (i = 0; i < numGlyphs; ++i) {
const index = font.getUint16();
if (index >= 32768) {
valid = false;
break;
}
glyphNameIndexes.push(index);
}
if (!valid) {
break;
}
const customNames = [],
strBuf = [];
while (font.pos < end) {
const stringLength = font.getByte();
strBuf.length = stringLength;
for (i = 0; i < stringLength; ++i) {
strBuf[i] = String.fromCharCode(font.getByte());
}
customNames.push(strBuf.join(""));
}
glyphNames = [];
for (i = 0; i < numGlyphs; ++i) {
const j = glyphNameIndexes[i];
if (j < 258) {
glyphNames.push(MacStandardGlyphOrdering[j]);
continue;
}
glyphNames.push(customNames[j - 258]);
}
break;
case 0x00030000:
break;
default:
warn("Unknown/unsupported post table version " + version);
valid = false;
if (propertiesObj.defaultEncoding) {
glyphNames = propertiesObj.defaultEncoding;
}
break;
}
propertiesObj.glyphNames = glyphNames;
return valid;
}
function readNameTable(nameTable) {
const start = (font.start ? font.start : 0) + nameTable.offset;
font.pos = start;
const names = [[], []];
const length = nameTable.length,
end = start + length;
const format = font.getUint16();
const FORMAT_0_HEADER_LENGTH = 6;
if (format !== 0 || length < FORMAT_0_HEADER_LENGTH) {
// unsupported name table format or table "too" small
return names;
}
const numRecords = font.getUint16();
const stringsStart = font.getUint16();
const records = [];
const NAME_RECORD_LENGTH = 12;
let i, ii;
for (i = 0; i < numRecords && font.pos + NAME_RECORD_LENGTH <= end; i++) {
const r = {
platform: font.getUint16(),
encoding: font.getUint16(),
language: font.getUint16(),
name: font.getUint16(),
length: font.getUint16(),
offset: font.getUint16(),
};
// using only Macintosh and Windows platform/encoding names
if (
(r.platform === 1 && r.encoding === 0 && r.language === 0) ||
(r.platform === 3 && r.encoding === 1 && r.language === 0x409)
) {
records.push(r);
}
}
for (i = 0, ii = records.length; i < ii; i++) {
const record = records[i];
if (record.length <= 0) {
continue; // Nothing to process, ignoring.
}
const pos = start + stringsStart + record.offset;
if (pos + record.length > end) {
continue; // outside of name table, ignoring
}
font.pos = pos;
const nameIndex = record.name;
if (record.encoding) {
// unicode
let str = "";
for (let j = 0, jj = record.length; j < jj; j += 2) {
str += String.fromCharCode(font.getUint16());
}
names[1][nameIndex] = str;
} else {
names[0][nameIndex] = font.getString(record.length);
}
}
return names;
}
// prettier-ignore
const TTOpsStackDeltas = [
0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 0, 0, -2, -5,
-1, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1, 0, -1, -1, -1, -1,
1, -1, -999, 0, 1, 0, -1, -2, 0, -1, -2, -1, -1, 0, -1, -1,
0, 0, -999, -999, -1, -1, -1, -1, -2, -999, -2, -2, -999, 0, -2, -2,
0, 0, -2, 0, -2, 0, 0, 0, -2, -1, -1, 1, 1, 0, 0, -1,
-1, -1, -1, -1, -1, -1, 0, 0, -1, 0, -1, -1, 0, -999, -1, -1,
-1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-2, -999, -999, -999, -999, -999, -1, -1, -2, -2, 0, 0, 0, 0, -1, -1,
-999, -2, -2, 0, 0, -1, -2, -2, 0, 0, 0, -1, -1, -1, -2];
// 0xC0-DF == -1 and 0xE0-FF == -2
function sanitizeTTProgram(table, ttContext) {
let data = table.data;
let i = 0,
j,
n,
b,
funcId,
pc,
lastEndf = 0,
lastDeff = 0;
const stack = [];
const callstack = [];
const functionsCalled = [];
let tooComplexToFollowFunctions = ttContext.tooComplexToFollowFunctions;
let inFDEF = false,
ifLevel = 0,
inELSE = 0;
for (let ii = data.length; i < ii; ) {
const op = data[i++];
// The TrueType instruction set docs can be found at
// https://developer.apple.com/fonts/TTRefMan/RM05/Chap5.html
if (op === 0x40) {
// NPUSHB - pushes n bytes
n = data[i++];
if (inFDEF || inELSE) {
i += n;
} else {
for (j = 0; j < n; j++) {
stack.push(data[i++]);
}
}
} else if (op === 0x41) {
// NPUSHW - pushes n words
n = data[i++];
if (inFDEF || inELSE) {
i += n * 2;
} else {
for (j = 0; j < n; j++) {
b = data[i++];
stack.push((b << 8) | data[i++]);
}
}
} else if ((op & 0xf8) === 0xb0) {
// PUSHB - pushes bytes
n = op - 0xb0 + 1;
if (inFDEF || inELSE) {
i += n;
} else {
for (j = 0; j < n; j++) {
stack.push(data[i++]);
}
}
} else if ((op & 0xf8) === 0xb8) {
// PUSHW - pushes words
n = op - 0xb8 + 1;
if (inFDEF || inELSE) {
i += n * 2;
} else {
for (j = 0; j < n; j++) {
b = data[i++];
stack.push((b << 8) | data[i++]);
}
}
} else if (op === 0x2b && !tooComplexToFollowFunctions) {
// CALL
if (!inFDEF && !inELSE) {
// collecting information about which functions are used
funcId = stack[stack.length - 1];
if (isNaN(funcId)) {
info("TT: CALL empty stack (or invalid entry).");
} else {
ttContext.functionsUsed[funcId] = true;
if (funcId in ttContext.functionsStackDeltas) {
const newStackLength =
stack.length + ttContext.functionsStackDeltas[funcId];
if (newStackLength < 0) {
warn("TT: CALL invalid functions stack delta.");
ttContext.hintsValid = false;
return;
}
stack.length = newStackLength;
} else if (
funcId in ttContext.functionsDefined &&
!functionsCalled.includes(funcId)
) {
callstack.push({ data, i, stackTop: stack.length - 1 });
functionsCalled.push(funcId);
pc = ttContext.functionsDefined[funcId];
if (!pc) {
warn("TT: CALL non-existent function");
ttContext.hintsValid = false;
return;
}
data = pc.data;
i = pc.i;
}
}
}
} else if (op === 0x2c && !tooComplexToFollowFunctions) {
// FDEF
if (inFDEF || inELSE) {
warn("TT: nested FDEFs not allowed");
tooComplexToFollowFunctions = true;
}
inFDEF = true;
// collecting information about which functions are defined
lastDeff = i;
funcId = stack.pop();
ttContext.functionsDefined[funcId] = { data, i };
} else if (op === 0x2d) {
// ENDF - end of function
if (inFDEF) {
inFDEF = false;
lastEndf = i;
} else {
pc = callstack.pop();
if (!pc) {
warn("TT: ENDF bad stack");
ttContext.hintsValid = false;
return;
}
funcId = functionsCalled.pop();
data = pc.data;
i = pc.i;
ttContext.functionsStackDeltas[funcId] = stack.length - pc.stackTop;
}
} else if (op === 0x89) {
// IDEF - instruction definition
if (inFDEF || inELSE) {
warn("TT: nested IDEFs not allowed");
tooComplexToFollowFunctions = true;
}
inFDEF = true;
// recording it as a function to track ENDF
lastDeff = i;
} else if (op === 0x58) {
// IF
++ifLevel;
} else if (op === 0x1b) {
// ELSE
inELSE = ifLevel;
} else if (op === 0x59) {
// EIF
if (inELSE === ifLevel) {
inELSE = 0;
}
--ifLevel;
} else if (op === 0x1c) {
// JMPR
if (!inFDEF && !inELSE) {
const offset = stack[stack.length - 1];
// only jumping forward to prevent infinite loop
if (offset > 0) {
i += offset - 1;
}
}
}
// Adjusting stack not extactly, but just enough to get function id
if (!inFDEF && !inELSE) {
let stackDelta = 0;
if (op <= 0x8e) {
stackDelta = TTOpsStackDeltas[op];
} else if (op >= 0xc0 && op <= 0xdf) {
stackDelta = -1;
} else if (op >= 0xe0) {
stackDelta = -2;
}
if (op >= 0x71 && op <= 0x75) {
n = stack.pop();
if (!isNaN(n)) {
stackDelta = -n * 2;
}
}
while (stackDelta < 0 && stack.length > 0) {
stack.pop();
stackDelta++;
}
while (stackDelta > 0) {
stack.push(NaN); // pushing any number into stack
stackDelta--;
}
}
}
ttContext.tooComplexToFollowFunctions = tooComplexToFollowFunctions;
const content = [data];
if (i > data.length) {
content.push(new Uint8Array(i - data.length));
}
if (lastDeff > lastEndf) {
warn("TT: complementing a missing function tail");
// new function definition started, but not finished
// complete function by [CLEAR, ENDF]
content.push(new Uint8Array([0x22, 0x2d]));
}
foldTTTable(table, content);
}
function checkInvalidFunctions(ttContext, maxFunctionDefs) {
if (ttContext.tooComplexToFollowFunctions) {
return;
}
if (ttContext.functionsDefined.length > maxFunctionDefs) {
warn("TT: more functions defined than expected");
ttContext.hintsValid = false;
return;
}
for (let j = 0, jj = ttContext.functionsUsed.length; j < jj; j++) {
if (j > maxFunctionDefs) {
warn("TT: invalid function id: " + j);
ttContext.hintsValid = false;
return;
}
if (ttContext.functionsUsed[j] && !ttContext.functionsDefined[j]) {
warn("TT: undefined function: " + j);
ttContext.hintsValid = false;
return;
}
}
}
function foldTTTable(table, content) {
if (content.length > 1) {
// concatenating the content items
let newLength = 0;
let j, jj;
for (j = 0, jj = content.length; j < jj; j++) {
newLength += content[j].length;
}
newLength = (newLength + 3) & ~3;
const result = new Uint8Array(newLength);
let pos = 0;
for (j = 0, jj = content.length; j < jj; j++) {
result.set(content[j], pos);
pos += content[j].length;
}
table.data = result;
table.length = newLength;
}
}
function sanitizeTTPrograms(fpgm, prep, cvt, maxFunctionDefs) {
const ttContext = {
functionsDefined: [],
functionsUsed: [],
functionsStackDeltas: [],
tooComplexToFollowFunctions: false,
hintsValid: true,
};
if (fpgm) {
sanitizeTTProgram(fpgm, ttContext);
}
if (prep) {
sanitizeTTProgram(prep, ttContext);
}
if (fpgm) {
checkInvalidFunctions(ttContext, maxFunctionDefs);
}
if (cvt && cvt.length & 1) {
const cvtData = new Uint8Array(cvt.length + 1);
cvtData.set(cvt.data);
cvt.data = cvtData;
}
return ttContext.hintsValid;
}
// The following steps modify the original font data, making copy
font = new Stream(new Uint8Array(font.getBytes()));
let header, tables;
if (isTrueTypeCollectionFile(font)) {
const ttcData = readTrueTypeCollectionData(font, this.name);
header = ttcData.header;
tables = ttcData.tables;
} else {
header = readOpenTypeHeader(font);
tables = readTables(font, header.numTables);
}
let cff, cffFile;
const isTrueType = !tables["CFF "];
if (!isTrueType) {
const isComposite =
properties.composite &&
((properties.cidToGidMap || []).length > 0 ||
!(properties.cMap instanceof IdentityCMap));
// OpenType font (skip composite fonts with non-default glyph mapping).
if (
(header.version === "OTTO" && !isComposite) ||
!tables.head ||
!tables.hhea ||
!tables.maxp ||
!tables.post
) {
// No major tables: throwing everything at `CFFFont`.
cffFile = new Stream(tables["CFF "].data);
cff = new CFFFont(cffFile, properties);
adjustWidths(properties);
return this.convert(name, cff, properties);
}
delete tables.glyf;
delete tables.loca;
delete tables.fpgm;
delete tables.prep;
delete tables["cvt "];
this.isOpenType = true;
} else {
if (!tables.loca) {
throw new FormatError('Required "loca" table is not found');
}
if (!tables.glyf) {
warn('Required "glyf" table is not found -- trying to recover.');
// Note: We use `sanitizeGlyphLocations` to add dummy glyf data below.
tables.glyf = {
tag: "glyf",
data: new Uint8Array(0),
};
}
this.isOpenType = false;
}
if (!tables.maxp) {
throw new FormatError('Required "maxp" table is not found');
}
font.pos = (font.start || 0) + tables.maxp.offset;
const version = font.getInt32();
const numGlyphs = font.getUint16();
if (
properties.scaleFactors &&
properties.scaleFactors.length === numGlyphs &&
isTrueType
) {
const { scaleFactors } = properties;
const isGlyphLocationsLong = int16(
tables.head.data[50],
tables.head.data[51]
);
const glyphs = new GlyfTable({
glyfTable: tables.glyf.data,
isGlyphLocationsLong,
locaTable: tables.loca.data,
numGlyphs,
});
glyphs.scale(scaleFactors);
const { glyf, loca, isLocationLong } = glyphs.write();
tables.glyf.data = glyf;
tables.loca.data = loca;
if (isLocationLong !== !!isGlyphLocationsLong) {
tables.head.data[50] = 0;
tables.head.data[51] = isLocationLong ? 1 : 0;
}
const metrics = tables.hmtx.data;
for (let i = 0; i < numGlyphs; i++) {
const j = 4 * i;
const advanceWidth = Math.round(
scaleFactors[i] * int16(metrics[j], metrics[j + 1])
);
metrics[j] = (advanceWidth >> 8) & 0xff;
metrics[j + 1] = advanceWidth & 0xff;
const lsb = Math.round(
scaleFactors[i] * signedInt16(metrics[j + 2], metrics[j + 3])
);
writeSignedInt16(metrics, j + 2, lsb);
}
}
// Glyph 0 is duplicated and appended.
let numGlyphsOut = numGlyphs + 1;
let dupFirstEntry = true;
if (numGlyphsOut > 0xffff) {
dupFirstEntry = false;
numGlyphsOut = numGlyphs;
warn("Not enough space in glyfs to duplicate first glyph.");
}
let maxFunctionDefs = 0;
let maxSizeOfInstructions = 0;
if (version >= 0x00010000 && tables.maxp.length >= 22) {
// maxZones can be invalid
font.pos += 8;
const maxZones = font.getUint16();
if (maxZones > 2) {
// reset to 2 if font has invalid maxZones
tables.maxp.data[14] = 0;
tables.maxp.data[15] = 2;
}
font.pos += 4;
maxFunctionDefs = font.getUint16();
font.pos += 4;
maxSizeOfInstructions = font.getUint16();
}
tables.maxp.data[4] = numGlyphsOut >> 8;
tables.maxp.data[5] = numGlyphsOut & 255;
const hintsValid = sanitizeTTPrograms(
tables.fpgm,
tables.prep,
tables["cvt "],
maxFunctionDefs
);
if (!hintsValid) {
delete tables.fpgm;
delete tables.prep;
delete tables["cvt "];
}
// Ensure the hmtx table contains the advance width and
// sidebearings information for numGlyphs in the maxp table
sanitizeMetrics(
font,
tables.hhea,
tables.hmtx,
numGlyphsOut,
dupFirstEntry
);
if (!tables.head) {
throw new FormatError('Required "head" table is not found');
}
sanitizeHead(tables.head, numGlyphs, isTrueType ? tables.loca.length : 0);
let missingGlyphs = Object.create(null);
if (isTrueType) {
const isGlyphLocationsLong = int16(
tables.head.data[50],
tables.head.data[51]
);
const glyphsInfo = sanitizeGlyphLocations(
tables.loca,
tables.glyf,
numGlyphs,
isGlyphLocationsLong,
hintsValid,
dupFirstEntry,
maxSizeOfInstructions
);
missingGlyphs = glyphsInfo.missingGlyphs;
// Some fonts have incorrect maxSizeOfInstructions values, so we use
// the computed value instead.
if (version >= 0x00010000 && tables.maxp.length >= 22) {
tables.maxp.data[26] = glyphsInfo.maxSizeOfInstructions >> 8;
tables.maxp.data[27] = glyphsInfo.maxSizeOfInstructions & 255;
}
}
if (!tables.hhea) {
throw new FormatError('Required "hhea" table is not found');
}
// Sanitizer reduces the glyph advanceWidth to the maxAdvanceWidth
// Sometimes it's 0. That needs to be fixed
if (tables.hhea.data[10] === 0 && tables.hhea.data[11] === 0) {
tables.hhea.data[10] = 0xff;
tables.hhea.data[11] = 0xff;
}
// Extract some more font properties from the OpenType head and
// hhea tables; yMin and descent value are always negative.
const metricsOverride = {
unitsPerEm: int16(tables.head.data[18], tables.head.data[19]),
yMax: int16(tables.head.data[42], tables.head.data[43]),
yMin: signedInt16(tables.head.data[38], tables.head.data[39]),
ascent: int16(tables.hhea.data[4], tables.hhea.data[5]),
descent: signedInt16(tables.hhea.data[6], tables.hhea.data[7]),
};
// PDF FontDescriptor metrics lie -- using data from actual font.
this.ascent = metricsOverride.ascent / metricsOverride.unitsPerEm;
this.descent = metricsOverride.descent / metricsOverride.unitsPerEm;
// The 'post' table has glyphs names.
if (tables.post) {
readPostScriptTable(tables.post, properties, numGlyphs);
}
// The original 'post' table is not needed, replace it.
tables.post = {
tag: "post",
data: createPostTable(properties),
};
const charCodeToGlyphId = [];
// Helper function to try to skip mapping of empty glyphs.
function hasGlyph(glyphId) {
return !missingGlyphs[glyphId];
}
if (properties.composite) {
const cidToGidMap = properties.cidToGidMap || [];
const isCidToGidMapEmpty = cidToGidMap.length === 0;
properties.cMap.forEach(function (charCode, cid) {
if (cid > 0xffff) {
throw new FormatError("Max size of CID is 65,535");
}
let glyphId = -1;
if (isCidToGidMapEmpty) {
glyphId = cid;
} else if (cidToGidMap[cid] !== undefined) {
glyphId = cidToGidMap[cid];
}
if (glyphId >= 0 && glyphId < numGlyphs && hasGlyph(glyphId)) {
charCodeToGlyphId[charCode] = glyphId;
}
});
} else {
// Most of the following logic in this code branch is based on the
// 9.6.6.4 of the PDF spec.
const cmapTable = readCmapTable(
tables.cmap,
font,
this.isSymbolicFont,
properties.hasEncoding
);
const cmapPlatformId = cmapTable.platformId;
const cmapEncodingId = cmapTable.encodingId;
const cmapMappings = cmapTable.mappings;
const cmapMappingsLength = cmapMappings.length;
let baseEncoding = [];
if (
properties.hasEncoding &&
(properties.baseEncodingName === "MacRomanEncoding" ||
properties.baseEncodingName === "WinAnsiEncoding")
) {
baseEncoding = getEncoding(properties.baseEncodingName);
}
// If the font has an encoding and is not symbolic then follow the
// rules in section 9.6.6.4 of the spec on how to map 3,1 and 1,0
// cmaps.
if (
properties.hasEncoding &&
!this.isSymbolicFont &&
((cmapPlatformId === 3 && cmapEncodingId === 1) ||
(cmapPlatformId === 1 && cmapEncodingId === 0))
) {
const glyphsUnicodeMap = getGlyphsUnicode();
for (let charCode = 0; charCode < 256; charCode++) {
let glyphName;
if (this.differences && charCode in this.differences) {
glyphName = this.differences[charCode];
} else if (
charCode in baseEncoding &&
baseEncoding[charCode] !== ""
) {
glyphName = baseEncoding[charCode];
} else {
glyphName = StandardEncoding[charCode];
}
if (!glyphName) {
continue;
}
// Ensure that non-standard glyph names are resolved to valid ones.
const standardGlyphName = recoverGlyphName(
glyphName,
glyphsUnicodeMap
);
let unicodeOrCharCode;
if (cmapPlatformId === 3 && cmapEncodingId === 1) {
unicodeOrCharCode = glyphsUnicodeMap[standardGlyphName];
} else if (cmapPlatformId === 1 && cmapEncodingId === 0) {
// TODO: the encoding needs to be updated with mac os table.
unicodeOrCharCode = MacRomanEncoding.indexOf(standardGlyphName);
}
for (let i = 0; i < cmapMappingsLength; ++i) {
if (cmapMappings[i].charCode !== unicodeOrCharCode) {
continue;
}
charCodeToGlyphId[charCode] = cmapMappings[i].glyphId;
break;
}
}
} else if (cmapPlatformId === 0) {
// Default Unicode semantics, use the charcodes as is.
for (let i = 0; i < cmapMappingsLength; ++i) {
charCodeToGlyphId[cmapMappings[i].charCode] = cmapMappings[i].glyphId;
}
} else {
// When there is only a (1, 0) cmap table, the char code is a single
// byte and it is used directly as the char code.
// When a (3, 0) cmap table is present, it is used instead but the
// spec has special rules for char codes in the range of 0xF000 to
// 0xF0FF and it says the (3, 0) table should map the values from
// the (1, 0) table by prepending 0xF0 to the char codes. To reverse
// this, the upper bits of the char code are cleared, but only for the
// special range since some PDFs have char codes outside of this range
// (e.g. 0x2013) which when masked would overwrite other values in the
// cmap.
for (let i = 0; i < cmapMappingsLength; ++i) {
let charCode = cmapMappings[i].charCode;
if (
cmapPlatformId === 3 &&
charCode >= 0xf000 &&
charCode <= 0xf0ff
) {
charCode &= 0xff;
}
charCodeToGlyphId[charCode] = cmapMappings[i].glyphId;
}
}
// Last, try to map any missing charcodes using the post table.
if (
properties.glyphNames &&
(baseEncoding.length || this.differences.length)
) {
for (let i = 0; i < 256; ++i) {
if (charCodeToGlyphId[i] !== undefined) {
continue;
}
const glyphName = this.differences[i] || baseEncoding[i];
if (!glyphName) {
continue;
}
const glyphId = properties.glyphNames.indexOf(glyphName);
if (glyphId > 0 && hasGlyph(glyphId)) {
charCodeToGlyphId[i] = glyphId;
}
}
}
}
if (charCodeToGlyphId.length === 0) {
// defines at least one glyph
charCodeToGlyphId[0] = 0;
}
// Typically glyph 0 is duplicated and the mapping must be updated, but if
// there isn't enough room to duplicate, the glyph id is left the same. In
// this case, glyph 0 may not work correctly, but that is better than
// having the whole font fail.
let glyphZeroId = numGlyphsOut - 1;
if (!dupFirstEntry) {
glyphZeroId = 0;
}
// When `cssFontInfo` is set, the font is used to render text in the HTML
// view (e.g. with Xfa) so nothing must be moved in the private use area.
if (!properties.cssFontInfo) {
// Converting glyphs and ids into font's cmap table
const newMapping = adjustMapping(
charCodeToGlyphId,
hasGlyph,
glyphZeroId
);
this.toFontChar = newMapping.toFontChar;
tables.cmap = {
tag: "cmap",
data: createCmapTable(newMapping.charCodeToGlyphId, numGlyphsOut),
};
if (!tables["OS/2"] || !validateOS2Table(tables["OS/2"], font)) {
tables["OS/2"] = {
tag: "OS/2",
data: createOS2Table(
properties,
newMapping.charCodeToGlyphId,
metricsOverride
),
};
}
}
if (!isTrueType) {
try {
// Trying to repair CFF file
cffFile = new Stream(tables["CFF "].data);
const parser = new CFFParser(
cffFile,
properties,
SEAC_ANALYSIS_ENABLED
);
cff = parser.parse();
cff.duplicateFirstGlyph();
const compiler = new CFFCompiler(cff);
tables["CFF "].data = compiler.compile();
} catch (e) {
warn("Failed to compile font " + properties.loadedName);
}
}
// Re-creating 'name' table
if (!tables.name) {
tables.name = {
tag: "name",
data: createNameTable(this.name),
};
} else {
// ... using existing 'name' table as prototype
const namePrototype = readNameTable(tables.name);
tables.name.data = createNameTable(name, namePrototype);
}
const builder = new OpenTypeFileBuilder(header.version);
for (const tableTag in tables) {
builder.addTable(tableTag, tables[tableTag].data);
}
return builder.toArray();
}
convert(fontName, font, properties) {
// TODO: Check the charstring widths to determine this.
properties.fixedPitch = false;
if (properties.builtInEncoding) {
// For Type1 fonts that do not include either `ToUnicode` or `Encoding`
// data, attempt to use the `builtInEncoding` to improve text selection.
adjustToUnicode(properties, properties.builtInEncoding);
}
// Type 1 fonts have a notdef inserted at the beginning, so glyph 0
// becomes glyph 1. In a CFF font glyph 0 is appended to the end of the
// char strings.
let glyphZeroId = 1;
if (font instanceof CFFFont) {
glyphZeroId = font.numGlyphs - 1;
}
const mapping = font.getGlyphMapping(properties);
let newMapping = null;
let newCharCodeToGlyphId = mapping;
// When `cssFontInfo` is set, the font is used to render text in the HTML
// view (e.g. with Xfa) so nothing must be moved in the private use area.
if (!properties.cssFontInfo) {
newMapping = adjustMapping(
mapping,
font.hasGlyphId.bind(font),
glyphZeroId
);
this.toFontChar = newMapping.toFontChar;
newCharCodeToGlyphId = newMapping.charCodeToGlyphId;
}
const numGlyphs = font.numGlyphs;
function getCharCodes(charCodeToGlyphId, glyphId) {
let charCodes = null;
for (const charCode in charCodeToGlyphId) {
if (glyphId === charCodeToGlyphId[charCode]) {
if (!charCodes) {
charCodes = [];
}
charCodes.push(charCode | 0);
}
}
return charCodes;
}
function createCharCode(charCodeToGlyphId, glyphId) {
for (const charCode in charCodeToGlyphId) {
if (glyphId === charCodeToGlyphId[charCode]) {
return charCode | 0;
}
}
newMapping.charCodeToGlyphId[newMapping.nextAvailableFontCharCode] =
glyphId;
return newMapping.nextAvailableFontCharCode++;
}
const seacs = font.seacs;
if (newMapping && SEAC_ANALYSIS_ENABLED && seacs && seacs.length) {
const matrix = properties.fontMatrix || FONT_IDENTITY_MATRIX;
const charset = font.getCharset();
const seacMap = Object.create(null);
for (let glyphId in seacs) {
glyphId |= 0;
const seac = seacs[glyphId];
const baseGlyphName = StandardEncoding[seac[2]];
const accentGlyphName = StandardEncoding[seac[3]];
const baseGlyphId = charset.indexOf(baseGlyphName);
const accentGlyphId = charset.indexOf(accentGlyphName);
if (baseGlyphId < 0 || accentGlyphId < 0) {
continue;
}
const accentOffset = {
x: seac[0] * matrix[0] + seac[1] * matrix[2] + matrix[4],
y: seac[0] * matrix[1] + seac[1] * matrix[3] + matrix[5],
};
const charCodes = getCharCodes(mapping, glyphId);
if (!charCodes) {
// There's no point in mapping it if the char code was never mapped
// to begin with.
continue;
}
for (let i = 0, ii = charCodes.length; i < ii; i++) {
const charCode = charCodes[i];
// Find a fontCharCode that maps to the base and accent glyphs.
// If one doesn't exists, create it.
const charCodeToGlyphId = newMapping.charCodeToGlyphId;
const baseFontCharCode = createCharCode(
charCodeToGlyphId,
baseGlyphId
);
const accentFontCharCode = createCharCode(
charCodeToGlyphId,
accentGlyphId
);
seacMap[charCode] = {
baseFontCharCode,
accentFontCharCode,
accentOffset,
};
}
}
properties.seacMap = seacMap;
}
const unitsPerEm = 1 / (properties.fontMatrix || FONT_IDENTITY_MATRIX)[0];
const builder = new OpenTypeFileBuilder("\x4F\x54\x54\x4F");
// PostScript Font Program
builder.addTable("CFF ", font.data);
// OS/2 and Windows Specific metrics
builder.addTable("OS/2", createOS2Table(properties, newCharCodeToGlyphId));
// Character to glyphs mapping
builder.addTable("cmap", createCmapTable(newCharCodeToGlyphId, numGlyphs));
// Font header
builder.addTable(
"head",
"\x00\x01\x00\x00" + // Version number
"\x00\x00\x10\x00" + // fontRevision
"\x00\x00\x00\x00" + // checksumAdjustement
"\x5F\x0F\x3C\xF5" + // magicNumber
"\x00\x00" + // Flags
safeString16(unitsPerEm) + // unitsPerEM
"\x00\x00\x00\x00\x9e\x0b\x7e\x27" + // creation date
"\x00\x00\x00\x00\x9e\x0b\x7e\x27" + // modifification date
"\x00\x00" + // xMin
safeString16(properties.descent) + // yMin
"\x0F\xFF" + // xMax
safeString16(properties.ascent) + // yMax
string16(properties.italicAngle ? 2 : 0) + // macStyle
"\x00\x11" + // lowestRecPPEM
"\x00\x00" + // fontDirectionHint
"\x00\x00" + // indexToLocFormat
"\x00\x00"
); // glyphDataFormat
// Horizontal header
builder.addTable(
"hhea",
"\x00\x01\x00\x00" + // Version number
safeString16(properties.ascent) + // Typographic Ascent
safeString16(properties.descent) + // Typographic Descent
"\x00\x00" + // Line Gap
"\xFF\xFF" + // advanceWidthMax
"\x00\x00" + // minLeftSidebearing
"\x00\x00" + // minRightSidebearing
"\x00\x00" + // xMaxExtent
safeString16(properties.capHeight) + // caretSlopeRise
safeString16(Math.tan(properties.italicAngle) * properties.xHeight) + // caretSlopeRun
"\x00\x00" + // caretOffset
"\x00\x00" + // -reserved-
"\x00\x00" + // -reserved-
"\x00\x00" + // -reserved-
"\x00\x00" + // -reserved-
"\x00\x00" + // metricDataFormat
string16(numGlyphs)
); // Number of HMetrics
// Horizontal metrics
builder.addTable(
"hmtx",
(function fontFieldsHmtx() {
const charstrings = font.charstrings;
const cffWidths = font.cff ? font.cff.widths : null;
let hmtx = "\x00\x00\x00\x00"; // Fake .notdef
for (let i = 1, ii = numGlyphs; i < ii; i++) {
let width = 0;
if (charstrings) {
const charstring = charstrings[i - 1];
width = "width" in charstring ? charstring.width : 0;
} else if (cffWidths) {
width = Math.ceil(cffWidths[i] || 0);
}
hmtx += string16(width) + string16(0);
}
return hmtx;
})()
);
// Maximum profile
builder.addTable(
"maxp",
"\x00\x00\x50\x00" + string16(numGlyphs) // Version number
); // Num of glyphs
// Naming tables
builder.addTable("name", createNameTable(fontName));
// PostScript information
builder.addTable("post", createPostTable(properties));
return builder.toArray();
}
get spaceWidth() {
// trying to estimate space character width
const possibleSpaceReplacements = ["space", "minus", "one", "i", "I"];
let width;
for (let i = 0, ii = possibleSpaceReplacements.length; i < ii; i++) {
const glyphName = possibleSpaceReplacements[i];
// if possible, getting width by glyph name
if (glyphName in this.widths) {
width = this.widths[glyphName];
break;
}
const glyphsUnicodeMap = getGlyphsUnicode();
const glyphUnicode = glyphsUnicodeMap[glyphName];
// finding the charcode via unicodeToCID map
let charcode = 0;
if (this.composite && this.cMap.contains(glyphUnicode)) {
charcode = this.cMap.lookup(glyphUnicode);
}
// ... via toUnicode map
if (!charcode && this.toUnicode) {
charcode = this.toUnicode.charCodeOf(glyphUnicode);
}
// setting it to unicode if negative or undefined
if (charcode <= 0) {
charcode = glyphUnicode;
}
// trying to get width via charcode
width = this.widths[charcode];
if (width) {
break; // the non-zero width found
}
}
width = width || this.defaultWidth;
return shadow(this, "spaceWidth", width);
}
/**
* @private
*/
_charToGlyph(charcode, isSpace = false) {
let fontCharCode, width, operatorListId;
let widthCode = charcode;
if (this.cMap && this.cMap.contains(charcode)) {
widthCode = this.cMap.lookup(charcode);
}
width = this.widths[widthCode];
width = isNum(width) ? width : this.defaultWidth;
const vmetric = this.vmetrics && this.vmetrics[widthCode];
let unicode =
this.toUnicode.get(charcode) ||
this.fallbackToUnicode.get(charcode) ||
charcode;
if (typeof unicode === "number") {
unicode = String.fromCharCode(unicode);
}
let isInFont = charcode in this.toFontChar;
// First try the toFontChar map, if it's not there then try falling
// back to the char code.
fontCharCode = this.toFontChar[charcode] || charcode;
if (this.missingFile) {
const glyphName =
this.differences[charcode] || this.defaultEncoding[charcode];
if (
(glyphName === ".notdef" || glyphName === "") &&
this.type === "Type1"
) {
// .notdef glyphs should be invisible in non-embedded Type1 fonts, so
// replace them with spaces.
fontCharCode = 0x20;
}
fontCharCode = mapSpecialUnicodeValues(fontCharCode);
}
if (this.isType3Font) {
// Font char code in this case is actually a glyph name.
operatorListId = fontCharCode;
}
let accent = null;
if (this.seacMap && this.seacMap[charcode]) {
isInFont = true;
const seac = this.seacMap[charcode];
fontCharCode = seac.baseFontCharCode;
accent = {
fontChar: String.fromCodePoint(seac.accentFontCharCode),
offset: seac.accentOffset,
};
}
let fontChar = "";
if (typeof fontCharCode === "number") {
if (fontCharCode <= 0x10ffff) {
fontChar = String.fromCodePoint(fontCharCode);
} else {
warn(`charToGlyph - invalid fontCharCode: ${fontCharCode}`);
}
}
let glyph = this._glyphCache[charcode];
if (
!glyph ||
!glyph.matchesForCache(
charcode,
fontChar,
unicode,
accent,
width,
vmetric,
operatorListId,
isSpace,
isInFont
)
) {
glyph = new Glyph(
charcode,
fontChar,
unicode,
accent,
width,
vmetric,
operatorListId,
isSpace,
isInFont
);
this._glyphCache[charcode] = glyph;
}
return glyph;
}
charsToGlyphs(chars) {
// If we translated this string before, just grab it from the cache.
let glyphs = this._charsCache[chars];
if (glyphs) {
return glyphs;
}
glyphs = [];
if (this.cMap) {
// Composite fonts have multi-byte strings, convert the string from
// single-byte to multi-byte.
const c = Object.create(null),
ii = chars.length;
let i = 0;
while (i < ii) {
this.cMap.readCharCode(chars, i, c);
const { charcode, length } = c;
i += length;
// Space is char with code 0x20 and length 1 in multiple-byte codes.
const glyph = this._charToGlyph(
charcode,
length === 1 && chars.charCodeAt(i - 1) === 0x20
);
glyphs.push(glyph);
}
} else {
for (let i = 0, ii = chars.length; i < ii; ++i) {
const charcode = chars.charCodeAt(i);
const glyph = this._charToGlyph(charcode, charcode === 0x20);
glyphs.push(glyph);
}
}
// Enter the translated string into the cache.
return (this._charsCache[chars] = glyphs);
}
/**
* Chars can have different sizes (depends on the encoding).
* @param {String} a string encoded with font encoding.
* @returns {Array<Array<number>>} the positions of each char in the string.
*/
getCharPositions(chars) {
// This function doesn't use a cache because
// it's called only when saving or printing.
const positions = [];
if (this.cMap) {
const c = Object.create(null);
let i = 0;
while (i < chars.length) {
this.cMap.readCharCode(chars, i, c);
const length = c.length;
positions.push([i, i + length]);
i += length;
}
} else {
for (let i = 0, ii = chars.length; i < ii; ++i) {
positions.push([i, i + 1]);
}
}
return positions;
}
get glyphCacheValues() {
return Object.values(this._glyphCache);
}
/**
* Encode a js string using font encoding.
* The resulting array contains an encoded string at even positions
* (can be empty) and a non-encoded one at odd positions.
* @param {String} a js string.
* @returns {Array<String>} an array of encoded strings or non-encoded ones.
*/
encodeString(str) {
const buffers = [];
const currentBuf = [];
// buffers will contain: encoded, non-encoded, encoded, ...
// currentBuf is pushed in buffers each time there is a change.
// So when buffers.length is odd then the last string is an encoded one
// and currentBuf contains non-encoded chars.
const hasCurrentBufErrors = () => buffers.length % 2 === 1;
for (let i = 0, ii = str.length; i < ii; i++) {
const unicode = str.codePointAt(i);
if (unicode > 0xd7ff && (unicode < 0xe000 || unicode > 0xfffd)) {
// unicode is represented by two uint16
i++;
}
if (this.toUnicode) {
const char = String.fromCodePoint(unicode);
const charCode = this.toUnicode.charCodeOf(char);
if (charCode !== -1) {
if (hasCurrentBufErrors()) {
buffers.push(currentBuf.join(""));
currentBuf.length = 0;
}
const charCodeLength = this.cMap
? this.cMap.getCharCodeLength(charCode)
: 1;
for (let j = charCodeLength - 1; j >= 0; j--) {
currentBuf.push(String.fromCharCode((charCode >> (8 * j)) & 0xff));
}
continue;
}
}
// unicode can't be encoded
if (!hasCurrentBufErrors()) {
buffers.push(currentBuf.join(""));
currentBuf.length = 0;
}
currentBuf.push(String.fromCodePoint(unicode));
}
buffers.push(currentBuf.join(""));
return buffers;
}
}
class ErrorFont {
constructor(error) {
this.error = error;
this.loadedName = "g_font_error";
this.missingFile = true;
}
charsToGlyphs() {
return [];
}
encodeString(chars) {
return [chars];
}
exportData(extraProperties = false) {
return { error: this.error };
}
}
export { ErrorFont, Font };