pdf.js/src/core/pattern.js
Jonas Jenwald 2f3805efbc Switch to using ESLint, instead of JSHint, for linting
*Please note that most of the necessary code adjustments were made in PR 7890.*

ESLint has a number of advantageous properties, compared to JSHint. Among those are:
 - The ability to find subtle bugs, thanks to more rules (e.g. PR 7881).
 - Much more customizable in general, and many rules allow fine-tuned behaviour rather than the just the on/off rules in JSHint.
 - Many more rules that can help developers avoid bugs, and a lot of rules that can be used to enforce a consistent coding style. The latter should be particularily useful for new contributors (and reduce the amount of stylistic review comments necessary).
 - The ability to easily specify exactly what rules to use/not to use, as opposed to JSHint which has a default set. *Note:* in future JSHint version some of the rules we depend on will be removed, according to warnings in http://jshint.com/docs/options/, so we wouldn't be able to update without losing lint coverage.
 - More easily disable one, or more, rules temporarily. In JSHint this requires using a numeric code, which isn't very user friendly, whereas in ESLint the rule name is simply used instead.

By default there's no rules enabled in ESLint, but there are some default rule sets available. However, to prevent linting failures if we update ESLint in the future, it seemed easier to just explicitly specify what rules we want.
Obviously this makes the ESLint config file somewhat bigger than the old JSHint config file, but given how rarely that one has been updated over the years I don't think that matters too much.

I've tried, to the best of my ability, to ensure that we enable the same rules for ESLint that we had for JSHint. Furthermore, I've also enabled a number of rules that seemed to make sense, both to catch possible errors *and* various style guide violations.

Despite the ESLint README claiming that it's slower that JSHint, https://github.com/eslint/eslint#how-does-eslint-performance-compare-to-jshint, locally this patch actually reduces the runtime for `gulp` lint (by approximately 20-25%).

A couple of stylistic rules that would have been nice to enable, but where our code currently differs to much to make it feasible:
 - `comma-dangle`, controls trailing commas in Objects and Arrays (among others).
 - `object-curly-spacing`, controls spacing inside of Objects.
 - `spaced-comment`, used to enforce spaces after `//` and `/*. (This is made difficult by the fact that there's still some usage of the old preprocessor left.)

Rules that I indend to look into possibly enabling in follow-ups, if it seems to make sense: `no-else-return`, `no-lonely-if`, `brace-style` with the `allowSingleLine` parameter removed.

Useful links:
 - http://eslint.org/docs/user-guide/configuring
 - http://eslint.org/docs/rules/
2016-12-16 21:06:36 +01:00

836 lines
29 KiB
JavaScript

/* Copyright 2012 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* eslint-disable no-multi-spaces */
'use strict';
(function (root, factory) {
if (typeof define === 'function' && define.amd) {
define('pdfjs/core/pattern', ['exports', 'pdfjs/shared/util',
'pdfjs/core/primitives', 'pdfjs/core/function',
'pdfjs/core/colorspace'], factory);
} else if (typeof exports !== 'undefined') {
factory(exports, require('../shared/util.js'), require('./primitives.js'),
require('./function.js'), require('./colorspace.js'));
} else {
factory((root.pdfjsCorePattern = {}), root.pdfjsSharedUtil,
root.pdfjsCorePrimitives, root.pdfjsCoreFunction,
root.pdfjsCoreColorSpace);
}
}(this, function (exports, sharedUtil, corePrimitives, coreFunction,
coreColorSpace) {
var UNSUPPORTED_FEATURES = sharedUtil.UNSUPPORTED_FEATURES;
var MissingDataException = sharedUtil.MissingDataException;
var Util = sharedUtil.Util;
var assert = sharedUtil.assert;
var error = sharedUtil.error;
var info = sharedUtil.info;
var warn = sharedUtil.warn;
var isStream = corePrimitives.isStream;
var PDFFunction = coreFunction.PDFFunction;
var ColorSpace = coreColorSpace.ColorSpace;
var ShadingType = {
FUNCTION_BASED: 1,
AXIAL: 2,
RADIAL: 3,
FREE_FORM_MESH: 4,
LATTICE_FORM_MESH: 5,
COONS_PATCH_MESH: 6,
TENSOR_PATCH_MESH: 7
};
var Pattern = (function PatternClosure() {
// Constructor should define this.getPattern
function Pattern() {
error('should not call Pattern constructor');
}
Pattern.prototype = {
// Input: current Canvas context
// Output: the appropriate fillStyle or strokeStyle
getPattern: function Pattern_getPattern(ctx) {
error('Should not call Pattern.getStyle: ' + ctx);
}
};
Pattern.parseShading = function Pattern_parseShading(shading, matrix, xref,
res, handler) {
var dict = isStream(shading) ? shading.dict : shading;
var type = dict.get('ShadingType');
try {
switch (type) {
case ShadingType.AXIAL:
case ShadingType.RADIAL:
// Both radial and axial shadings are handled by RadialAxial shading.
return new Shadings.RadialAxial(dict, matrix, xref, res);
case ShadingType.FREE_FORM_MESH:
case ShadingType.LATTICE_FORM_MESH:
case ShadingType.COONS_PATCH_MESH:
case ShadingType.TENSOR_PATCH_MESH:
return new Shadings.Mesh(shading, matrix, xref, res);
default:
throw new Error('Unsupported ShadingType: ' + type);
}
} catch (ex) {
if (ex instanceof MissingDataException) {
throw ex;
}
handler.send('UnsupportedFeature',
{featureId: UNSUPPORTED_FEATURES.shadingPattern});
warn(ex);
return new Shadings.Dummy();
}
};
return Pattern;
})();
var Shadings = {};
// A small number to offset the first/last color stops so we can insert ones to
// support extend. Number.MIN_VALUE is too small and breaks the extend.
Shadings.SMALL_NUMBER = 1e-6;
// Radial and axial shading have very similar implementations
// If needed, the implementations can be broken into two classes
Shadings.RadialAxial = (function RadialAxialClosure() {
function RadialAxial(dict, matrix, xref, res) {
this.matrix = matrix;
this.coordsArr = dict.getArray('Coords');
this.shadingType = dict.get('ShadingType');
this.type = 'Pattern';
var cs = dict.get('ColorSpace', 'CS');
cs = ColorSpace.parse(cs, xref, res);
this.cs = cs;
var t0 = 0.0, t1 = 1.0;
if (dict.has('Domain')) {
var domainArr = dict.getArray('Domain');
t0 = domainArr[0];
t1 = domainArr[1];
}
var extendStart = false, extendEnd = false;
if (dict.has('Extend')) {
var extendArr = dict.getArray('Extend');
extendStart = extendArr[0];
extendEnd = extendArr[1];
}
if (this.shadingType === ShadingType.RADIAL &&
(!extendStart || !extendEnd)) {
// Radial gradient only currently works if either circle is fully within
// the other circle.
var x1 = this.coordsArr[0];
var y1 = this.coordsArr[1];
var r1 = this.coordsArr[2];
var x2 = this.coordsArr[3];
var y2 = this.coordsArr[4];
var r2 = this.coordsArr[5];
var distance = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
if (r1 <= r2 + distance &&
r2 <= r1 + distance) {
warn('Unsupported radial gradient.');
}
}
this.extendStart = extendStart;
this.extendEnd = extendEnd;
var fnObj = dict.get('Function');
var fn = PDFFunction.parseArray(xref, fnObj);
// 10 samples seems good enough for now, but probably won't work
// if there are sharp color changes. Ideally, we would implement
// the spec faithfully and add lossless optimizations.
var diff = t1 - t0;
var step = diff / 10;
var colorStops = this.colorStops = [];
// Protect against bad domains so we don't end up in an infinte loop below.
if (t0 >= t1 || step <= 0) {
// Acrobat doesn't seem to handle these cases so we'll ignore for
// now.
info('Bad shading domain.');
return;
}
var color = new Float32Array(cs.numComps), ratio = new Float32Array(1);
var rgbColor;
for (var i = t0; i <= t1; i += step) {
ratio[0] = i;
fn(ratio, 0, color, 0);
rgbColor = cs.getRgb(color, 0);
var cssColor = Util.makeCssRgb(rgbColor[0], rgbColor[1], rgbColor[2]);
colorStops.push([(i - t0) / diff, cssColor]);
}
var background = 'transparent';
if (dict.has('Background')) {
rgbColor = cs.getRgb(dict.get('Background'), 0);
background = Util.makeCssRgb(rgbColor[0], rgbColor[1], rgbColor[2]);
}
if (!extendStart) {
// Insert a color stop at the front and offset the first real color stop
// so it doesn't conflict with the one we insert.
colorStops.unshift([0, background]);
colorStops[1][0] += Shadings.SMALL_NUMBER;
}
if (!extendEnd) {
// Same idea as above in extendStart but for the end.
colorStops[colorStops.length - 1][0] -= Shadings.SMALL_NUMBER;
colorStops.push([1, background]);
}
this.colorStops = colorStops;
}
RadialAxial.prototype = {
getIR: function RadialAxial_getIR() {
var coordsArr = this.coordsArr;
var shadingType = this.shadingType;
var type, p0, p1, r0, r1;
if (shadingType === ShadingType.AXIAL) {
p0 = [coordsArr[0], coordsArr[1]];
p1 = [coordsArr[2], coordsArr[3]];
r0 = null;
r1 = null;
type = 'axial';
} else if (shadingType === ShadingType.RADIAL) {
p0 = [coordsArr[0], coordsArr[1]];
p1 = [coordsArr[3], coordsArr[4]];
r0 = coordsArr[2];
r1 = coordsArr[5];
type = 'radial';
} else {
error('getPattern type unknown: ' + shadingType);
}
var matrix = this.matrix;
if (matrix) {
p0 = Util.applyTransform(p0, matrix);
p1 = Util.applyTransform(p1, matrix);
if (shadingType === ShadingType.RADIAL) {
var scale = Util.singularValueDecompose2dScale(matrix);
r0 *= scale[0];
r1 *= scale[1];
}
}
return ['RadialAxial', type, this.colorStops, p0, p1, r0, r1];
}
};
return RadialAxial;
})();
// All mesh shading. For now, they will be presented as set of the triangles
// to be drawn on the canvas and rgb color for each vertex.
Shadings.Mesh = (function MeshClosure() {
function MeshStreamReader(stream, context) {
this.stream = stream;
this.context = context;
this.buffer = 0;
this.bufferLength = 0;
var numComps = context.numComps;
this.tmpCompsBuf = new Float32Array(numComps);
var csNumComps = context.colorSpace.numComps;
this.tmpCsCompsBuf = context.colorFn ? new Float32Array(csNumComps) :
this.tmpCompsBuf;
}
MeshStreamReader.prototype = {
get hasData() {
if (this.stream.end) {
return this.stream.pos < this.stream.end;
}
if (this.bufferLength > 0) {
return true;
}
var nextByte = this.stream.getByte();
if (nextByte < 0) {
return false;
}
this.buffer = nextByte;
this.bufferLength = 8;
return true;
},
readBits: function MeshStreamReader_readBits(n) {
var buffer = this.buffer;
var bufferLength = this.bufferLength;
if (n === 32) {
if (bufferLength === 0) {
return ((this.stream.getByte() << 24) |
(this.stream.getByte() << 16) | (this.stream.getByte() << 8) |
this.stream.getByte()) >>> 0;
}
buffer = (buffer << 24) | (this.stream.getByte() << 16) |
(this.stream.getByte() << 8) | this.stream.getByte();
var nextByte = this.stream.getByte();
this.buffer = nextByte & ((1 << bufferLength) - 1);
return ((buffer << (8 - bufferLength)) |
((nextByte & 0xFF) >> bufferLength)) >>> 0;
}
if (n === 8 && bufferLength === 0) {
return this.stream.getByte();
}
while (bufferLength < n) {
buffer = (buffer << 8) | this.stream.getByte();
bufferLength += 8;
}
bufferLength -= n;
this.bufferLength = bufferLength;
this.buffer = buffer & ((1 << bufferLength) - 1);
return buffer >> bufferLength;
},
align: function MeshStreamReader_align() {
this.buffer = 0;
this.bufferLength = 0;
},
readFlag: function MeshStreamReader_readFlag() {
return this.readBits(this.context.bitsPerFlag);
},
readCoordinate: function MeshStreamReader_readCoordinate() {
var bitsPerCoordinate = this.context.bitsPerCoordinate;
var xi = this.readBits(bitsPerCoordinate);
var yi = this.readBits(bitsPerCoordinate);
var decode = this.context.decode;
var scale = bitsPerCoordinate < 32 ? 1 / ((1 << bitsPerCoordinate) - 1) :
2.3283064365386963e-10; // 2 ^ -32
return [
xi * scale * (decode[1] - decode[0]) + decode[0],
yi * scale * (decode[3] - decode[2]) + decode[2]
];
},
readComponents: function MeshStreamReader_readComponents() {
var numComps = this.context.numComps;
var bitsPerComponent = this.context.bitsPerComponent;
var scale = bitsPerComponent < 32 ? 1 / ((1 << bitsPerComponent) - 1) :
2.3283064365386963e-10; // 2 ^ -32
var decode = this.context.decode;
var components = this.tmpCompsBuf;
for (var i = 0, j = 4; i < numComps; i++, j += 2) {
var ci = this.readBits(bitsPerComponent);
components[i] = ci * scale * (decode[j + 1] - decode[j]) + decode[j];
}
var color = this.tmpCsCompsBuf;
if (this.context.colorFn) {
this.context.colorFn(components, 0, color, 0);
}
return this.context.colorSpace.getRgb(color, 0);
}
};
function decodeType4Shading(mesh, reader) {
var coords = mesh.coords;
var colors = mesh.colors;
var operators = [];
var ps = []; // not maintaining cs since that will match ps
var verticesLeft = 0; // assuming we have all data to start a new triangle
while (reader.hasData) {
var f = reader.readFlag();
var coord = reader.readCoordinate();
var color = reader.readComponents();
if (verticesLeft === 0) { // ignoring flags if we started a triangle
assert(0 <= f && f <= 2, 'Unknown type4 flag');
switch (f) {
case 0:
verticesLeft = 3;
break;
case 1:
ps.push(ps[ps.length - 2], ps[ps.length - 1]);
verticesLeft = 1;
break;
case 2:
ps.push(ps[ps.length - 3], ps[ps.length - 1]);
verticesLeft = 1;
break;
}
operators.push(f);
}
ps.push(coords.length);
coords.push(coord);
colors.push(color);
verticesLeft--;
reader.align();
}
mesh.figures.push({
type: 'triangles',
coords: new Int32Array(ps),
colors: new Int32Array(ps),
});
}
function decodeType5Shading(mesh, reader, verticesPerRow) {
var coords = mesh.coords;
var colors = mesh.colors;
var ps = []; // not maintaining cs since that will match ps
while (reader.hasData) {
var coord = reader.readCoordinate();
var color = reader.readComponents();
ps.push(coords.length);
coords.push(coord);
colors.push(color);
}
mesh.figures.push({
type: 'lattice',
coords: new Int32Array(ps),
colors: new Int32Array(ps),
verticesPerRow: verticesPerRow
});
}
var MIN_SPLIT_PATCH_CHUNKS_AMOUNT = 3;
var MAX_SPLIT_PATCH_CHUNKS_AMOUNT = 20;
var TRIANGLE_DENSITY = 20; // count of triangles per entire mesh bounds
var getB = (function getBClosure() {
function buildB(count) {
var lut = [];
for (var i = 0; i <= count; i++) {
var t = i / count, t_ = 1 - t;
lut.push(new Float32Array([t_ * t_ * t_, 3 * t * t_ * t_,
3 * t * t * t_, t * t * t]));
}
return lut;
}
var cache = [];
return function getB(count) {
if (!cache[count]) {
cache[count] = buildB(count);
}
return cache[count];
};
})();
function buildFigureFromPatch(mesh, index) {
var figure = mesh.figures[index];
assert(figure.type === 'patch', 'Unexpected patch mesh figure');
var coords = mesh.coords, colors = mesh.colors;
var pi = figure.coords;
var ci = figure.colors;
var figureMinX = Math.min(coords[pi[0]][0], coords[pi[3]][0],
coords[pi[12]][0], coords[pi[15]][0]);
var figureMinY = Math.min(coords[pi[0]][1], coords[pi[3]][1],
coords[pi[12]][1], coords[pi[15]][1]);
var figureMaxX = Math.max(coords[pi[0]][0], coords[pi[3]][0],
coords[pi[12]][0], coords[pi[15]][0]);
var figureMaxY = Math.max(coords[pi[0]][1], coords[pi[3]][1],
coords[pi[12]][1], coords[pi[15]][1]);
var splitXBy = Math.ceil((figureMaxX - figureMinX) * TRIANGLE_DENSITY /
(mesh.bounds[2] - mesh.bounds[0]));
splitXBy = Math.max(MIN_SPLIT_PATCH_CHUNKS_AMOUNT,
Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitXBy));
var splitYBy = Math.ceil((figureMaxY - figureMinY) * TRIANGLE_DENSITY /
(mesh.bounds[3] - mesh.bounds[1]));
splitYBy = Math.max(MIN_SPLIT_PATCH_CHUNKS_AMOUNT,
Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitYBy));
var verticesPerRow = splitXBy + 1;
var figureCoords = new Int32Array((splitYBy + 1) * verticesPerRow);
var figureColors = new Int32Array((splitYBy + 1) * verticesPerRow);
var k = 0;
var cl = new Uint8Array(3), cr = new Uint8Array(3);
var c0 = colors[ci[0]], c1 = colors[ci[1]],
c2 = colors[ci[2]], c3 = colors[ci[3]];
var bRow = getB(splitYBy), bCol = getB(splitXBy);
for (var row = 0; row <= splitYBy; row++) {
cl[0] = ((c0[0] * (splitYBy - row) + c2[0] * row) / splitYBy) | 0;
cl[1] = ((c0[1] * (splitYBy - row) + c2[1] * row) / splitYBy) | 0;
cl[2] = ((c0[2] * (splitYBy - row) + c2[2] * row) / splitYBy) | 0;
cr[0] = ((c1[0] * (splitYBy - row) + c3[0] * row) / splitYBy) | 0;
cr[1] = ((c1[1] * (splitYBy - row) + c3[1] * row) / splitYBy) | 0;
cr[2] = ((c1[2] * (splitYBy - row) + c3[2] * row) / splitYBy) | 0;
for (var col = 0; col <= splitXBy; col++, k++) {
if ((row === 0 || row === splitYBy) &&
(col === 0 || col === splitXBy)) {
continue;
}
var x = 0, y = 0;
var q = 0;
for (var i = 0; i <= 3; i++) {
for (var j = 0; j <= 3; j++, q++) {
var m = bRow[row][i] * bCol[col][j];
x += coords[pi[q]][0] * m;
y += coords[pi[q]][1] * m;
}
}
figureCoords[k] = coords.length;
coords.push([x, y]);
figureColors[k] = colors.length;
var newColor = new Uint8Array(3);
newColor[0] = ((cl[0] * (splitXBy - col) + cr[0] * col) / splitXBy) | 0;
newColor[1] = ((cl[1] * (splitXBy - col) + cr[1] * col) / splitXBy) | 0;
newColor[2] = ((cl[2] * (splitXBy - col) + cr[2] * col) / splitXBy) | 0;
colors.push(newColor);
}
}
figureCoords[0] = pi[0];
figureColors[0] = ci[0];
figureCoords[splitXBy] = pi[3];
figureColors[splitXBy] = ci[1];
figureCoords[verticesPerRow * splitYBy] = pi[12];
figureColors[verticesPerRow * splitYBy] = ci[2];
figureCoords[verticesPerRow * splitYBy + splitXBy] = pi[15];
figureColors[verticesPerRow * splitYBy + splitXBy] = ci[3];
mesh.figures[index] = {
type: 'lattice',
coords: figureCoords,
colors: figureColors,
verticesPerRow: verticesPerRow
};
}
function decodeType6Shading(mesh, reader) {
// A special case of Type 7. The p11, p12, p21, p22 automatically filled
var coords = mesh.coords;
var colors = mesh.colors;
var ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33
var cs = new Int32Array(4); // c00, c30, c03, c33
while (reader.hasData) {
var f = reader.readFlag();
assert(0 <= f && f <= 3, 'Unknown type6 flag');
var i, ii;
var pi = coords.length;
for (i = 0, ii = (f !== 0 ? 8 : 12); i < ii; i++) {
coords.push(reader.readCoordinate());
}
var ci = colors.length;
for (i = 0, ii = (f !== 0 ? 2 : 4); i < ii; i++) {
colors.push(reader.readComponents());
}
var tmp1, tmp2, tmp3, tmp4;
switch (f) {
case 0:
ps[12] = pi + 3; ps[13] = pi + 4; ps[14] = pi + 5; ps[15] = pi + 6;
ps[ 8] = pi + 2; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 7;
ps[ 4] = pi + 1; /* calculated below */ ps[ 7] = pi + 8;
ps[ 0] = pi; ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9;
cs[2] = ci + 1; cs[3] = ci + 2;
cs[0] = ci; cs[1] = ci + 3;
break;
case 1:
tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15];
ps[12] = tmp4; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = tmp3; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3;
ps[ 4] = tmp2; /* calculated below */ ps[ 7] = pi + 4;
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
tmp1 = cs[2]; tmp2 = cs[3];
cs[2] = tmp2; cs[3] = ci;
cs[0] = tmp1; cs[1] = ci + 1;
break;
case 2:
tmp1 = ps[15];
tmp2 = ps[11];
ps[12] = ps[3]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = ps[7]; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3;
ps[ 4] = tmp2; /* calculated below */ ps[ 7] = pi + 4;
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
tmp1 = cs[3];
cs[2] = cs[1]; cs[3] = ci;
cs[0] = tmp1; cs[1] = ci + 1;
break;
case 3:
ps[12] = ps[0]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = ps[1]; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3;
ps[ 4] = ps[2]; /* calculated below */ ps[ 7] = pi + 4;
ps[ 0] = ps[3]; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
cs[2] = cs[0]; cs[3] = ci;
cs[0] = cs[1]; cs[1] = ci + 1;
break;
}
// set p11, p12, p21, p22
ps[5] = coords.length;
coords.push([
(-4 * coords[ps[0]][0] - coords[ps[15]][0] +
6 * (coords[ps[4]][0] + coords[ps[1]][0]) -
2 * (coords[ps[12]][0] + coords[ps[3]][0]) +
3 * (coords[ps[13]][0] + coords[ps[7]][0])) / 9,
(-4 * coords[ps[0]][1] - coords[ps[15]][1] +
6 * (coords[ps[4]][1] + coords[ps[1]][1]) -
2 * (coords[ps[12]][1] + coords[ps[3]][1]) +
3 * (coords[ps[13]][1] + coords[ps[7]][1])) / 9
]);
ps[6] = coords.length;
coords.push([
(-4 * coords[ps[3]][0] - coords[ps[12]][0] +
6 * (coords[ps[2]][0] + coords[ps[7]][0]) -
2 * (coords[ps[0]][0] + coords[ps[15]][0]) +
3 * (coords[ps[4]][0] + coords[ps[14]][0])) / 9,
(-4 * coords[ps[3]][1] - coords[ps[12]][1] +
6 * (coords[ps[2]][1] + coords[ps[7]][1]) -
2 * (coords[ps[0]][1] + coords[ps[15]][1]) +
3 * (coords[ps[4]][1] + coords[ps[14]][1])) / 9
]);
ps[9] = coords.length;
coords.push([
(-4 * coords[ps[12]][0] - coords[ps[3]][0] +
6 * (coords[ps[8]][0] + coords[ps[13]][0]) -
2 * (coords[ps[0]][0] + coords[ps[15]][0]) +
3 * (coords[ps[11]][0] + coords[ps[1]][0])) / 9,
(-4 * coords[ps[12]][1] - coords[ps[3]][1] +
6 * (coords[ps[8]][1] + coords[ps[13]][1]) -
2 * (coords[ps[0]][1] + coords[ps[15]][1]) +
3 * (coords[ps[11]][1] + coords[ps[1]][1])) / 9
]);
ps[10] = coords.length;
coords.push([
(-4 * coords[ps[15]][0] - coords[ps[0]][0] +
6 * (coords[ps[11]][0] + coords[ps[14]][0]) -
2 * (coords[ps[12]][0] + coords[ps[3]][0]) +
3 * (coords[ps[2]][0] + coords[ps[8]][0])) / 9,
(-4 * coords[ps[15]][1] - coords[ps[0]][1] +
6 * (coords[ps[11]][1] + coords[ps[14]][1]) -
2 * (coords[ps[12]][1] + coords[ps[3]][1]) +
3 * (coords[ps[2]][1] + coords[ps[8]][1])) / 9
]);
mesh.figures.push({
type: 'patch',
coords: new Int32Array(ps), // making copies of ps and cs
colors: new Int32Array(cs)
});
}
}
function decodeType7Shading(mesh, reader) {
var coords = mesh.coords;
var colors = mesh.colors;
var ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33
var cs = new Int32Array(4); // c00, c30, c03, c33
while (reader.hasData) {
var f = reader.readFlag();
assert(0 <= f && f <= 3, 'Unknown type7 flag');
var i, ii;
var pi = coords.length;
for (i = 0, ii = (f !== 0 ? 12 : 16); i < ii; i++) {
coords.push(reader.readCoordinate());
}
var ci = colors.length;
for (i = 0, ii = (f !== 0 ? 2 : 4); i < ii; i++) {
colors.push(reader.readComponents());
}
var tmp1, tmp2, tmp3, tmp4;
switch (f) {
case 0:
ps[12] = pi + 3; ps[13] = pi + 4; ps[14] = pi + 5; ps[15] = pi + 6;
ps[ 8] = pi + 2; ps[ 9] = pi + 13; ps[10] = pi + 14; ps[11] = pi + 7;
ps[ 4] = pi + 1; ps[ 5] = pi + 12; ps[ 6] = pi + 15; ps[ 7] = pi + 8;
ps[ 0] = pi; ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9;
cs[2] = ci + 1; cs[3] = ci + 2;
cs[0] = ci; cs[1] = ci + 3;
break;
case 1:
tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15];
ps[12] = tmp4; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = tmp3; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3;
ps[ 4] = tmp2; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4;
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
tmp1 = cs[2]; tmp2 = cs[3];
cs[2] = tmp2; cs[3] = ci;
cs[0] = tmp1; cs[1] = ci + 1;
break;
case 2:
tmp1 = ps[15];
tmp2 = ps[11];
ps[12] = ps[3]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = ps[7]; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3;
ps[ 4] = tmp2; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4;
ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
tmp1 = cs[3];
cs[2] = cs[1]; cs[3] = ci;
cs[0] = tmp1; cs[1] = ci + 1;
break;
case 3:
ps[12] = ps[0]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2;
ps[ 8] = ps[1]; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3;
ps[ 4] = ps[2]; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4;
ps[ 0] = ps[3]; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5;
cs[2] = cs[0]; cs[3] = ci;
cs[0] = cs[1]; cs[1] = ci + 1;
break;
}
mesh.figures.push({
type: 'patch',
coords: new Int32Array(ps), // making copies of ps and cs
colors: new Int32Array(cs)
});
}
}
function updateBounds(mesh) {
var minX = mesh.coords[0][0], minY = mesh.coords[0][1],
maxX = minX, maxY = minY;
for (var i = 1, ii = mesh.coords.length; i < ii; i++) {
var x = mesh.coords[i][0], y = mesh.coords[i][1];
minX = minX > x ? x : minX;
minY = minY > y ? y : minY;
maxX = maxX < x ? x : maxX;
maxY = maxY < y ? y : maxY;
}
mesh.bounds = [minX, minY, maxX, maxY];
}
function packData(mesh) {
var i, ii, j, jj;
var coords = mesh.coords;
var coordsPacked = new Float32Array(coords.length * 2);
for (i = 0, j = 0, ii = coords.length; i < ii; i++) {
var xy = coords[i];
coordsPacked[j++] = xy[0];
coordsPacked[j++] = xy[1];
}
mesh.coords = coordsPacked;
var colors = mesh.colors;
var colorsPacked = new Uint8Array(colors.length * 3);
for (i = 0, j = 0, ii = colors.length; i < ii; i++) {
var c = colors[i];
colorsPacked[j++] = c[0];
colorsPacked[j++] = c[1];
colorsPacked[j++] = c[2];
}
mesh.colors = colorsPacked;
var figures = mesh.figures;
for (i = 0, ii = figures.length; i < ii; i++) {
var figure = figures[i], ps = figure.coords, cs = figure.colors;
for (j = 0, jj = ps.length; j < jj; j++) {
ps[j] *= 2;
cs[j] *= 3;
}
}
}
function Mesh(stream, matrix, xref, res) {
assert(isStream(stream), 'Mesh data is not a stream');
var dict = stream.dict;
this.matrix = matrix;
this.shadingType = dict.get('ShadingType');
this.type = 'Pattern';
this.bbox = dict.getArray('BBox');
var cs = dict.get('ColorSpace', 'CS');
cs = ColorSpace.parse(cs, xref, res);
this.cs = cs;
this.background = dict.has('Background') ?
cs.getRgb(dict.get('Background'), 0) : null;
var fnObj = dict.get('Function');
var fn = fnObj ? PDFFunction.parseArray(xref, fnObj) : null;
this.coords = [];
this.colors = [];
this.figures = [];
var decodeContext = {
bitsPerCoordinate: dict.get('BitsPerCoordinate'),
bitsPerComponent: dict.get('BitsPerComponent'),
bitsPerFlag: dict.get('BitsPerFlag'),
decode: dict.getArray('Decode'),
colorFn: fn,
colorSpace: cs,
numComps: fn ? 1 : cs.numComps
};
var reader = new MeshStreamReader(stream, decodeContext);
var patchMesh = false;
switch (this.shadingType) {
case ShadingType.FREE_FORM_MESH:
decodeType4Shading(this, reader);
break;
case ShadingType.LATTICE_FORM_MESH:
var verticesPerRow = dict.get('VerticesPerRow') | 0;
assert(verticesPerRow >= 2, 'Invalid VerticesPerRow');
decodeType5Shading(this, reader, verticesPerRow);
break;
case ShadingType.COONS_PATCH_MESH:
decodeType6Shading(this, reader);
patchMesh = true;
break;
case ShadingType.TENSOR_PATCH_MESH:
decodeType7Shading(this, reader);
patchMesh = true;
break;
default:
error('Unsupported mesh type.');
break;
}
if (patchMesh) {
// dirty bounds calculation for determining, how dense shall be triangles
updateBounds(this);
for (var i = 0, ii = this.figures.length; i < ii; i++) {
buildFigureFromPatch(this, i);
}
}
// calculate bounds
updateBounds(this);
packData(this);
}
Mesh.prototype = {
getIR: function Mesh_getIR() {
return ['Mesh', this.shadingType, this.coords, this.colors, this.figures,
this.bounds, this.matrix, this.bbox, this.background];
}
};
return Mesh;
})();
Shadings.Dummy = (function DummyClosure() {
function Dummy() {
this.type = 'Pattern';
}
Dummy.prototype = {
getIR: function Dummy_getIR() {
return ['Dummy'];
}
};
return Dummy;
})();
function getTilingPatternIR(operatorList, dict, args) {
var matrix = dict.getArray('Matrix');
var bbox = dict.getArray('BBox');
var xstep = dict.get('XStep');
var ystep = dict.get('YStep');
var paintType = dict.get('PaintType');
var tilingType = dict.get('TilingType');
return [
'TilingPattern', args, operatorList, matrix, bbox, xstep, ystep,
paintType, tilingType
];
}
exports.Pattern = Pattern;
exports.getTilingPatternIR = getTilingPatternIR;
}));