pdf.js/src/core/font_renderer.js
Jonas Jenwald 0a32ad3e42 Remove unnecessary closure in the src/core/font_renderer.js file
With modern JavaScript modules, where you explicitly list the properties that should be exported, it's no longer necessary to wrap *all* of the code within one file into a top-level closure.[1]

This patch reduces the size, of even the *built* `pdf.worker.js` file, since there's now a lot less unnecessary whitespace.

---
[1] For files which contain *different* functionality, some closures may however still make sense in order to separate the code.
It might be possible to remove some of those cases later, e.g. once private class fields becomes generally available/usable in browsers.
2021-05-05 22:35:52 +02:00

872 lines
25 KiB
JavaScript

/* Copyright 2012 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import {
bytesToString,
FONT_IDENTITY_MATRIX,
FormatError,
unreachable,
warn,
} from "../shared/util.js";
import { CFFParser } from "./cff_parser.js";
import { getGlyphsUnicode } from "./glyphlist.js";
import { StandardEncoding } from "./encodings.js";
import { Stream } from "./stream.js";
function getLong(data, offset) {
return (
(data[offset] << 24) |
(data[offset + 1] << 16) |
(data[offset + 2] << 8) |
data[offset + 3]
);
}
function getUshort(data, offset) {
return (data[offset] << 8) | data[offset + 1];
}
function getSubroutineBias(subrs) {
const numSubrs = subrs.length;
let bias = 32768;
if (numSubrs < 1240) {
bias = 107;
} else if (numSubrs < 33900) {
bias = 1131;
}
return bias;
}
function parseCmap(data, start, end) {
const offset =
getUshort(data, start + 2) === 1
? getLong(data, start + 8)
: getLong(data, start + 16);
const format = getUshort(data, start + offset);
let ranges, p, i;
if (format === 4) {
getUshort(data, start + offset + 2); // length
const segCount = getUshort(data, start + offset + 6) >> 1;
p = start + offset + 14;
ranges = [];
for (i = 0; i < segCount; i++, p += 2) {
ranges[i] = { end: getUshort(data, p) };
}
p += 2;
for (i = 0; i < segCount; i++, p += 2) {
ranges[i].start = getUshort(data, p);
}
for (i = 0; i < segCount; i++, p += 2) {
ranges[i].idDelta = getUshort(data, p);
}
for (i = 0; i < segCount; i++, p += 2) {
let idOffset = getUshort(data, p);
if (idOffset === 0) {
continue;
}
ranges[i].ids = [];
for (let j = 0, jj = ranges[i].end - ranges[i].start + 1; j < jj; j++) {
ranges[i].ids[j] = getUshort(data, p + idOffset);
idOffset += 2;
}
}
return ranges;
} else if (format === 12) {
getLong(data, start + offset + 4); // length
const groups = getLong(data, start + offset + 12);
p = start + offset + 16;
ranges = [];
for (i = 0; i < groups; i++) {
ranges.push({
start: getLong(data, p),
end: getLong(data, p + 4),
idDelta: getLong(data, p + 8) - getLong(data, p),
});
p += 12;
}
return ranges;
}
throw new FormatError(`unsupported cmap: ${format}`);
}
function parseCff(data, start, end, seacAnalysisEnabled) {
const properties = {};
const parser = new CFFParser(
new Stream(data, start, end - start),
properties,
seacAnalysisEnabled
);
const cff = parser.parse();
return {
glyphs: cff.charStrings.objects,
subrs:
cff.topDict.privateDict &&
cff.topDict.privateDict.subrsIndex &&
cff.topDict.privateDict.subrsIndex.objects,
gsubrs: cff.globalSubrIndex && cff.globalSubrIndex.objects,
isCFFCIDFont: cff.isCIDFont,
fdSelect: cff.fdSelect,
fdArray: cff.fdArray,
};
}
function parseGlyfTable(glyf, loca, isGlyphLocationsLong) {
let itemSize, itemDecode;
if (isGlyphLocationsLong) {
itemSize = 4;
itemDecode = function fontItemDecodeLong(data, offset) {
return (
(data[offset] << 24) |
(data[offset + 1] << 16) |
(data[offset + 2] << 8) |
data[offset + 3]
);
};
} else {
itemSize = 2;
itemDecode = function fontItemDecode(data, offset) {
return (data[offset] << 9) | (data[offset + 1] << 1);
};
}
const glyphs = [];
let startOffset = itemDecode(loca, 0);
for (let j = itemSize; j < loca.length; j += itemSize) {
const endOffset = itemDecode(loca, j);
glyphs.push(glyf.subarray(startOffset, endOffset));
startOffset = endOffset;
}
return glyphs;
}
function lookupCmap(ranges, unicode) {
const code = unicode.codePointAt(0);
let gid = 0,
l = 0,
r = ranges.length - 1;
while (l < r) {
const c = (l + r + 1) >> 1;
if (code < ranges[c].start) {
r = c - 1;
} else {
l = c;
}
}
if (ranges[l].start <= code && code <= ranges[l].end) {
gid =
(ranges[l].idDelta +
(ranges[l].ids ? ranges[l].ids[code - ranges[l].start] : code)) &
0xffff;
}
return {
charCode: code,
glyphId: gid,
};
}
function compileGlyf(code, cmds, font) {
function moveTo(x, y) {
cmds.push({ cmd: "moveTo", args: [x, y] });
}
function lineTo(x, y) {
cmds.push({ cmd: "lineTo", args: [x, y] });
}
function quadraticCurveTo(xa, ya, x, y) {
cmds.push({ cmd: "quadraticCurveTo", args: [xa, ya, x, y] });
}
let i = 0;
const numberOfContours = ((code[i] << 24) | (code[i + 1] << 16)) >> 16;
let flags;
let x = 0,
y = 0;
i += 10;
if (numberOfContours < 0) {
// composite glyph
do {
flags = (code[i] << 8) | code[i + 1];
const glyphIndex = (code[i + 2] << 8) | code[i + 3];
i += 4;
let arg1, arg2;
if (flags & 0x01) {
arg1 = ((code[i] << 24) | (code[i + 1] << 16)) >> 16;
arg2 = ((code[i + 2] << 24) | (code[i + 3] << 16)) >> 16;
i += 4;
} else {
arg1 = code[i++];
arg2 = code[i++];
}
if (flags & 0x02) {
x = arg1;
y = arg2;
} else {
x = 0;
y = 0; // TODO "they are points" ?
}
let scaleX = 1,
scaleY = 1,
scale01 = 0,
scale10 = 0;
if (flags & 0x08) {
scaleX = scaleY = ((code[i] << 24) | (code[i + 1] << 16)) / 1073741824;
i += 2;
} else if (flags & 0x40) {
scaleX = ((code[i] << 24) | (code[i + 1] << 16)) / 1073741824;
scaleY = ((code[i + 2] << 24) | (code[i + 3] << 16)) / 1073741824;
i += 4;
} else if (flags & 0x80) {
scaleX = ((code[i] << 24) | (code[i + 1] << 16)) / 1073741824;
scale01 = ((code[i + 2] << 24) | (code[i + 3] << 16)) / 1073741824;
scale10 = ((code[i + 4] << 24) | (code[i + 5] << 16)) / 1073741824;
scaleY = ((code[i + 6] << 24) | (code[i + 7] << 16)) / 1073741824;
i += 8;
}
const subglyph = font.glyphs[glyphIndex];
if (subglyph) {
cmds.push({ cmd: "save" });
cmds.push({
cmd: "transform",
args: [scaleX, scale01, scale10, scaleY, x, y],
});
compileGlyf(subglyph, cmds, font);
cmds.push({ cmd: "restore" });
}
} while (flags & 0x20);
} else {
// simple glyph
const endPtsOfContours = [];
let j, jj;
for (j = 0; j < numberOfContours; j++) {
endPtsOfContours.push((code[i] << 8) | code[i + 1]);
i += 2;
}
const instructionLength = (code[i] << 8) | code[i + 1];
i += 2 + instructionLength; // skipping the instructions
const numberOfPoints = endPtsOfContours[endPtsOfContours.length - 1] + 1;
const points = [];
while (points.length < numberOfPoints) {
flags = code[i++];
let repeat = 1;
if (flags & 0x08) {
repeat += code[i++];
}
while (repeat-- > 0) {
points.push({ flags });
}
}
for (j = 0; j < numberOfPoints; j++) {
switch (points[j].flags & 0x12) {
case 0x00:
x += ((code[i] << 24) | (code[i + 1] << 16)) >> 16;
i += 2;
break;
case 0x02:
x -= code[i++];
break;
case 0x12:
x += code[i++];
break;
}
points[j].x = x;
}
for (j = 0; j < numberOfPoints; j++) {
switch (points[j].flags & 0x24) {
case 0x00:
y += ((code[i] << 24) | (code[i + 1] << 16)) >> 16;
i += 2;
break;
case 0x04:
y -= code[i++];
break;
case 0x24:
y += code[i++];
break;
}
points[j].y = y;
}
let startPoint = 0;
for (i = 0; i < numberOfContours; i++) {
const endPoint = endPtsOfContours[i];
// contours might have implicit points, which is located in the middle
// between two neighboring off-curve points
const contour = points.slice(startPoint, endPoint + 1);
if (contour[0].flags & 1) {
contour.push(contour[0]); // using start point at the contour end
} else if (contour[contour.length - 1].flags & 1) {
// first is off-curve point, trying to use one from the end
contour.unshift(contour[contour.length - 1]);
} else {
// start and end are off-curve points, creating implicit one
const p = {
flags: 1,
x: (contour[0].x + contour[contour.length - 1].x) / 2,
y: (contour[0].y + contour[contour.length - 1].y) / 2,
};
contour.unshift(p);
contour.push(p);
}
moveTo(contour[0].x, contour[0].y);
for (j = 1, jj = contour.length; j < jj; j++) {
if (contour[j].flags & 1) {
lineTo(contour[j].x, contour[j].y);
} else if (contour[j + 1].flags & 1) {
quadraticCurveTo(
contour[j].x,
contour[j].y,
contour[j + 1].x,
contour[j + 1].y
);
j++;
} else {
quadraticCurveTo(
contour[j].x,
contour[j].y,
(contour[j].x + contour[j + 1].x) / 2,
(contour[j].y + contour[j + 1].y) / 2
);
}
}
startPoint = endPoint + 1;
}
}
}
function compileCharString(charStringCode, cmds, font, glyphId) {
function moveTo(x, y) {
cmds.push({ cmd: "moveTo", args: [x, y] });
}
function lineTo(x, y) {
cmds.push({ cmd: "lineTo", args: [x, y] });
}
function bezierCurveTo(x1, y1, x2, y2, x, y) {
cmds.push({ cmd: "bezierCurveTo", args: [x1, y1, x2, y2, x, y] });
}
const stack = [];
let x = 0,
y = 0;
let stems = 0;
function parse(code) {
let i = 0;
while (i < code.length) {
let stackClean = false;
let v = code[i++];
let xa, xb, ya, yb, y1, y2, y3, n, subrCode;
switch (v) {
case 1: // hstem
stems += stack.length >> 1;
stackClean = true;
break;
case 3: // vstem
stems += stack.length >> 1;
stackClean = true;
break;
case 4: // vmoveto
y += stack.pop();
moveTo(x, y);
stackClean = true;
break;
case 5: // rlineto
while (stack.length > 0) {
x += stack.shift();
y += stack.shift();
lineTo(x, y);
}
break;
case 6: // hlineto
while (stack.length > 0) {
x += stack.shift();
lineTo(x, y);
if (stack.length === 0) {
break;
}
y += stack.shift();
lineTo(x, y);
}
break;
case 7: // vlineto
while (stack.length > 0) {
y += stack.shift();
lineTo(x, y);
if (stack.length === 0) {
break;
}
x += stack.shift();
lineTo(x, y);
}
break;
case 8: // rrcurveto
while (stack.length > 0) {
xa = x + stack.shift();
ya = y + stack.shift();
xb = xa + stack.shift();
yb = ya + stack.shift();
x = xb + stack.shift();
y = yb + stack.shift();
bezierCurveTo(xa, ya, xb, yb, x, y);
}
break;
case 10: // callsubr
n = stack.pop();
subrCode = null;
if (font.isCFFCIDFont) {
const fdIndex = font.fdSelect.getFDIndex(glyphId);
if (fdIndex >= 0 && fdIndex < font.fdArray.length) {
const fontDict = font.fdArray[fdIndex];
let subrs;
if (fontDict.privateDict && fontDict.privateDict.subrsIndex) {
subrs = fontDict.privateDict.subrsIndex.objects;
}
if (subrs) {
// Add subroutine bias.
n += getSubroutineBias(subrs);
subrCode = subrs[n];
}
} else {
warn("Invalid fd index for glyph index.");
}
} else {
subrCode = font.subrs[n + font.subrsBias];
}
if (subrCode) {
parse(subrCode);
}
break;
case 11: // return
return;
case 12:
v = code[i++];
switch (v) {
case 34: // flex
xa = x + stack.shift();
xb = xa + stack.shift();
y1 = y + stack.shift();
x = xb + stack.shift();
bezierCurveTo(xa, y, xb, y1, x, y1);
xa = x + stack.shift();
xb = xa + stack.shift();
x = xb + stack.shift();
bezierCurveTo(xa, y1, xb, y, x, y);
break;
case 35: // flex
xa = x + stack.shift();
ya = y + stack.shift();
xb = xa + stack.shift();
yb = ya + stack.shift();
x = xb + stack.shift();
y = yb + stack.shift();
bezierCurveTo(xa, ya, xb, yb, x, y);
xa = x + stack.shift();
ya = y + stack.shift();
xb = xa + stack.shift();
yb = ya + stack.shift();
x = xb + stack.shift();
y = yb + stack.shift();
bezierCurveTo(xa, ya, xb, yb, x, y);
stack.pop(); // fd
break;
case 36: // hflex1
xa = x + stack.shift();
y1 = y + stack.shift();
xb = xa + stack.shift();
y2 = y1 + stack.shift();
x = xb + stack.shift();
bezierCurveTo(xa, y1, xb, y2, x, y2);
xa = x + stack.shift();
xb = xa + stack.shift();
y3 = y2 + stack.shift();
x = xb + stack.shift();
bezierCurveTo(xa, y2, xb, y3, x, y);
break;
case 37: // flex1
const x0 = x,
y0 = y;
xa = x + stack.shift();
ya = y + stack.shift();
xb = xa + stack.shift();
yb = ya + stack.shift();
x = xb + stack.shift();
y = yb + stack.shift();
bezierCurveTo(xa, ya, xb, yb, x, y);
xa = x + stack.shift();
ya = y + stack.shift();
xb = xa + stack.shift();
yb = ya + stack.shift();
x = xb;
y = yb;
if (Math.abs(x - x0) > Math.abs(y - y0)) {
x += stack.shift();
} else {
y += stack.shift();
}
bezierCurveTo(xa, ya, xb, yb, x, y);
break;
default:
throw new FormatError(`unknown operator: 12 ${v}`);
}
break;
case 14: // endchar
if (stack.length >= 4) {
const achar = stack.pop();
const bchar = stack.pop();
y = stack.pop();
x = stack.pop();
cmds.push({ cmd: "save" });
cmds.push({ cmd: "translate", args: [x, y] });
let cmap = lookupCmap(
font.cmap,
String.fromCharCode(font.glyphNameMap[StandardEncoding[achar]])
);
compileCharString(
font.glyphs[cmap.glyphId],
cmds,
font,
cmap.glyphId
);
cmds.push({ cmd: "restore" });
cmap = lookupCmap(
font.cmap,
String.fromCharCode(font.glyphNameMap[StandardEncoding[bchar]])
);
compileCharString(
font.glyphs[cmap.glyphId],
cmds,
font,
cmap.glyphId
);
}
return;
case 18: // hstemhm
stems += stack.length >> 1;
stackClean = true;
break;
case 19: // hintmask
stems += stack.length >> 1;
i += (stems + 7) >> 3;
stackClean = true;
break;
case 20: // cntrmask
stems += stack.length >> 1;
i += (stems + 7) >> 3;
stackClean = true;
break;
case 21: // rmoveto
y += stack.pop();
x += stack.pop();
moveTo(x, y);
stackClean = true;
break;
case 22: // hmoveto
x += stack.pop();
moveTo(x, y);
stackClean = true;
break;
case 23: // vstemhm
stems += stack.length >> 1;
stackClean = true;
break;
case 24: // rcurveline
while (stack.length > 2) {
xa = x + stack.shift();
ya = y + stack.shift();
xb = xa + stack.shift();
yb = ya + stack.shift();
x = xb + stack.shift();
y = yb + stack.shift();
bezierCurveTo(xa, ya, xb, yb, x, y);
}
x += stack.shift();
y += stack.shift();
lineTo(x, y);
break;
case 25: // rlinecurve
while (stack.length > 6) {
x += stack.shift();
y += stack.shift();
lineTo(x, y);
}
xa = x + stack.shift();
ya = y + stack.shift();
xb = xa + stack.shift();
yb = ya + stack.shift();
x = xb + stack.shift();
y = yb + stack.shift();
bezierCurveTo(xa, ya, xb, yb, x, y);
break;
case 26: // vvcurveto
if (stack.length % 2) {
x += stack.shift();
}
while (stack.length > 0) {
xa = x;
ya = y + stack.shift();
xb = xa + stack.shift();
yb = ya + stack.shift();
x = xb;
y = yb + stack.shift();
bezierCurveTo(xa, ya, xb, yb, x, y);
}
break;
case 27: // hhcurveto
if (stack.length % 2) {
y += stack.shift();
}
while (stack.length > 0) {
xa = x + stack.shift();
ya = y;
xb = xa + stack.shift();
yb = ya + stack.shift();
x = xb + stack.shift();
y = yb;
bezierCurveTo(xa, ya, xb, yb, x, y);
}
break;
case 28:
stack.push(((code[i] << 24) | (code[i + 1] << 16)) >> 16);
i += 2;
break;
case 29: // callgsubr
n = stack.pop() + font.gsubrsBias;
subrCode = font.gsubrs[n];
if (subrCode) {
parse(subrCode);
}
break;
case 30: // vhcurveto
while (stack.length > 0) {
xa = x;
ya = y + stack.shift();
xb = xa + stack.shift();
yb = ya + stack.shift();
x = xb + stack.shift();
y = yb + (stack.length === 1 ? stack.shift() : 0);
bezierCurveTo(xa, ya, xb, yb, x, y);
if (stack.length === 0) {
break;
}
xa = x + stack.shift();
ya = y;
xb = xa + stack.shift();
yb = ya + stack.shift();
y = yb + stack.shift();
x = xb + (stack.length === 1 ? stack.shift() : 0);
bezierCurveTo(xa, ya, xb, yb, x, y);
}
break;
case 31: // hvcurveto
while (stack.length > 0) {
xa = x + stack.shift();
ya = y;
xb = xa + stack.shift();
yb = ya + stack.shift();
y = yb + stack.shift();
x = xb + (stack.length === 1 ? stack.shift() : 0);
bezierCurveTo(xa, ya, xb, yb, x, y);
if (stack.length === 0) {
break;
}
xa = x;
ya = y + stack.shift();
xb = xa + stack.shift();
yb = ya + stack.shift();
x = xb + stack.shift();
y = yb + (stack.length === 1 ? stack.shift() : 0);
bezierCurveTo(xa, ya, xb, yb, x, y);
}
break;
default:
if (v < 32) {
throw new FormatError(`unknown operator: ${v}`);
}
if (v < 247) {
stack.push(v - 139);
} else if (v < 251) {
stack.push((v - 247) * 256 + code[i++] + 108);
} else if (v < 255) {
stack.push(-(v - 251) * 256 - code[i++] - 108);
} else {
stack.push(
((code[i] << 24) |
(code[i + 1] << 16) |
(code[i + 2] << 8) |
code[i + 3]) /
65536
);
i += 4;
}
break;
}
if (stackClean) {
stack.length = 0;
}
}
}
parse(charStringCode);
}
const NOOP = [];
class CompiledFont {
constructor(fontMatrix) {
if (this.constructor === CompiledFont) {
unreachable("Cannot initialize CompiledFont.");
}
this.fontMatrix = fontMatrix;
this.compiledGlyphs = Object.create(null);
this.compiledCharCodeToGlyphId = Object.create(null);
}
getPathJs(unicode) {
const cmap = lookupCmap(this.cmap, unicode);
let fn = this.compiledGlyphs[cmap.glyphId];
if (!fn) {
fn = this.compileGlyph(this.glyphs[cmap.glyphId], cmap.glyphId);
this.compiledGlyphs[cmap.glyphId] = fn;
}
if (this.compiledCharCodeToGlyphId[cmap.charCode] === undefined) {
this.compiledCharCodeToGlyphId[cmap.charCode] = cmap.glyphId;
}
return fn;
}
compileGlyph(code, glyphId) {
if (!code || code.length === 0 || code[0] === 14) {
return NOOP;
}
let fontMatrix = this.fontMatrix;
if (this.isCFFCIDFont) {
// Top DICT's FontMatrix can be ignored because CFFCompiler always
// removes it and copies to FDArray DICTs.
const fdIndex = this.fdSelect.getFDIndex(glyphId);
if (fdIndex >= 0 && fdIndex < this.fdArray.length) {
const fontDict = this.fdArray[fdIndex];
fontMatrix = fontDict.getByName("FontMatrix") || FONT_IDENTITY_MATRIX;
} else {
warn("Invalid fd index for glyph index.");
}
}
const cmds = [];
cmds.push({ cmd: "save" });
cmds.push({ cmd: "transform", args: fontMatrix.slice() });
cmds.push({ cmd: "scale", args: ["size", "-size"] });
this.compileGlyphImpl(code, cmds, glyphId);
cmds.push({ cmd: "restore" });
return cmds;
}
compileGlyphImpl() {
unreachable("Children classes should implement this.");
}
hasBuiltPath(unicode) {
const cmap = lookupCmap(this.cmap, unicode);
return (
this.compiledGlyphs[cmap.glyphId] !== undefined &&
this.compiledCharCodeToGlyphId[cmap.charCode] !== undefined
);
}
}
class TrueTypeCompiled extends CompiledFont {
constructor(glyphs, cmap, fontMatrix) {
super(fontMatrix || [0.000488, 0, 0, 0.000488, 0, 0]);
this.glyphs = glyphs;
this.cmap = cmap;
}
compileGlyphImpl(code, cmds) {
compileGlyf(code, cmds, this);
}
}
class Type2Compiled extends CompiledFont {
constructor(cffInfo, cmap, fontMatrix, glyphNameMap) {
super(fontMatrix || [0.001, 0, 0, 0.001, 0, 0]);
this.glyphs = cffInfo.glyphs;
this.gsubrs = cffInfo.gsubrs || [];
this.subrs = cffInfo.subrs || [];
this.cmap = cmap;
this.glyphNameMap = glyphNameMap || getGlyphsUnicode();
this.gsubrsBias = getSubroutineBias(this.gsubrs);
this.subrsBias = getSubroutineBias(this.subrs);
this.isCFFCIDFont = cffInfo.isCFFCIDFont;
this.fdSelect = cffInfo.fdSelect;
this.fdArray = cffInfo.fdArray;
}
compileGlyphImpl(code, cmds, glyphId) {
compileCharString(code, cmds, this, glyphId);
}
}
class FontRendererFactory {
static create(font, seacAnalysisEnabled) {
const data = new Uint8Array(font.data);
let cmap, glyf, loca, cff, indexToLocFormat, unitsPerEm;
const numTables = getUshort(data, 4);
for (let i = 0, p = 12; i < numTables; i++, p += 16) {
const tag = bytesToString(data.subarray(p, p + 4));
const offset = getLong(data, p + 8);
const length = getLong(data, p + 12);
switch (tag) {
case "cmap":
cmap = parseCmap(data, offset, offset + length);
break;
case "glyf":
glyf = data.subarray(offset, offset + length);
break;
case "loca":
loca = data.subarray(offset, offset + length);
break;
case "head":
unitsPerEm = getUshort(data, offset + 18);
indexToLocFormat = getUshort(data, offset + 50);
break;
case "CFF ":
cff = parseCff(data, offset, offset + length, seacAnalysisEnabled);
break;
}
}
if (glyf) {
const fontMatrix = !unitsPerEm
? font.fontMatrix
: [1 / unitsPerEm, 0, 0, 1 / unitsPerEm, 0, 0];
return new TrueTypeCompiled(
parseGlyfTable(glyf, loca, indexToLocFormat),
cmap,
fontMatrix
);
}
return new Type2Compiled(cff, cmap, font.fontMatrix, font.glyphNameMap);
}
}
export { FontRendererFactory };