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Abstract
Since their inception, the usage pattern of web browsers has
changed substiantially. Instead of sequentially navigating static
web sites, modern web browsers often manage a large number of
simultanious tabs displaying dynamic web content, each of which
might be running a substantial amount of client-side JavaScript
code. This environment introduced a new degree of parallelism
that was not fully embraced by the underlying JavaScript virtual
machine architecture. We propose a novel abstraction for multiple
disjoint JavaScript heaps, which we call compartments. We use the
notion of document origin to cluster objects into separate compart-
ments. Objects within a compartment can reference each other di-
rectly. Objects across compartments can only reference each other
through wrappers. Our approach reduces garbage collection pause
times by permitting collection of sub-heaps (compartments), and
we can use cross-compartment wrappers to enforce cross origin
object access policy.

Categories and Subject Descriptors D.2.11 [Software Engi-
neering]: Software Architectures - Domain-specific architectures;
D.3.4 [Programming Languages ]: Processors - Memory manage-
ment (Garbage Collection)

General Terms Design, Performance, Experimentation

Keywords Web-Browser Architecture, Isolation, Memory Man-
agement, Garbage Collection

1. Introduction
Increasing bandwidth, faster computers, and a JavaScript perfor-
mance boost over the last few years have enabled web develop-
ers to build highly complex web-applications. Browser-based of-
fice applications or games can now replace typical desktop appli-
cations. This rapid change in the usage pattern of a browser poses
a big challenge for browser implementors. The functionality of a
modern browser is moving towards the responsibilities usually pro-
vided by an operating system. Browser that were once good enough
have now become a performance bottleneck. Memory management
and garbage collection (GC) is now a severe pottleneck within the
browser and especially within the JavaScript virtual machine (VM).

[Copyright notice will appear here once ’preprint’ option is removed.]

Previously, browsing speed was dominated by rendering and net-
work delay rather than GC pause times. Major improvements in
rendering and increases in bandwidth solved these old browser is-
sues.

Further, architectural changes like enabling multiple tabs were
added to the existing browser code, but the underlying JavaScript
execution environment was not redesigned. The implementation of
the memory management subsystem does not reflect the high-level
configuration of the browser. For example, high level separations
such as browser tabs are not reflected in the low-level design of
the VM. As a result, web pages loaded in separate tabs encounter
many types of interference that affect their memory management,
security and performance.

Some web browsers such as Google Chrome or Microsoft Inter-
net Explorer overcome the general separation problem by creating
a new process for each new tab or origin. This is good for secu-
rity since process boundaries act like a “hardware fences” between
browsing instances and the memory management can be handled
completely separately for every tab. Chrome also copies instances
of the JavaScript VM for every process. Since the created browsing
instances are not lightweight, they limit the number of processes to
20.

The problem with this solution is twofold: Certain features
like browser extensions for common browsers already use a cross-
origin communication mechanisms. In order to be backward com-
patible, Chrome has to collect some origins in one process without
any communication restrictions. Furthermore, creating new pro-
cesses for new origins is not an option for mobile devices. One
of the design constraints is that the new approach has to work on
the desktop as well as on the mobile version of a browser.

In order to define the problem we look at the previous imple-
mentation of the JavaScript heap in Firefox. The JavaScript heap
when opening some tabs in the browser is shown in Figure 1. In
this example we open some tabs and load popular web pages. The
objects are not separated on the heap and it is very likely that all the
objects from different origins interleave on the heap. A Facebook
object could be right next to a CNN object for example. We also
load the V8 benchmark page in order to run the JavaScript bench-
marks. Interleaving objects created by benchmark pages with other
objects show the drawbacks of the previous implementation:

• Bad locality: Objects that are often accessed at the same time
are not grouped together.

• No partial GC possible: During a GC event, every single object
has to be accessed.

Our research proposes a new layer of abstraction for the
JavaScript heap. We split the JavaScript heap into sub-heaps which
we call compartments. JavaScript objects that are allocated from a
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Figure 1. The previous implementation allows object of different
origins to be allocated in the same memory region.

certain origin are now placed into the compartment that is associ-
ated with the origin. This new abstraction level allows us to:

• Separate memory,
• Improve cache behavior, and
• Perform partial GC and therefore reduce GC pause time.

We implement our research in the open source web browser
Firefox [13]. Firefox has about 400 million daily users with market
share between 25% and 30% according to [21].

Having many open tabs is not unusual any more. User reports
that are collected at Mozilla show that some power users have 200+
open tabs. Running benchmarks in such an environment used to
show drastic performance impacts. For example, the V8 benchmark
score drops from 4511 to 3017 when only 50 tabs are open in
Firefox because the GC pause time increases dramatically. We
reduce the GC pause time by 80% for such an environment. With
our new approach, even users with 200+ open tabs get the same
performance as users with just one single open tab.

Our research has major improvements for performance and se-
curity. We explain some security aspects of our approach but the
main focus of this paper is performance.

2. Compartments
In this section we introduce compartments representing sub-heaps
in our JavaScript VM. The concept of separating data using heuris-
tic has a long history in computer science. Applying this concept
to a VM architecture for JavaScript that is embedded in a browser
still raises some challenging research questions.

The JavaScript programming language is widely used for web
programming. It allows web developers to extend web sites with
client-side executable code. JavaScript copies many names and
naming conventions from Java, but the two languages are otherwise
not closely related and have very different semantics. A lot of
research was done in the area of memory management for Java but
the results are often not applicable to JavaScript. First, there are
fundamental differences between the two languages like dynamic
typing and the dynamic behavior of JavaScript programs. Second,
JavaScript programs written in web pages tend to have a very short
execution time in comparison to Java applications. As with many
dynamic languages, JavaScript objects are essentially associative
arrays that lack static typing; object properties can be added and
removed at runtime. JavaScript also provides a prototype-based
inheritance mechanism to create complex object hierarchies.

For Firefox 4 we changed the way JavaScript objects are
managed. Our JavaScript engine SpiderMonkey (sometimes also
called TraceMonkey [2] and JägerMonkey, which are Spider-
Monkey’s trace-compilation and baseline just-in-time compilers)
now supports multiple JavaScript heaps, which we also call com-
partments. All objects that belong to a certain origin (such as
http://mail.google.com/ or http://www.bank.com/) are placed into a
separate compartment as shown in Figure 2. The same-origin pol-
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Figure 2. The new approach separates objects depending on their
origin. New origins allocate a new compartment and just objects or
the corresponding origin are placed in an arena.

JSRuntime    *runtime
JSPrincipal    *principal
ArenaList        arenaList[#Types]
FreeList          freeList[#Types]
WrapperMap  CompartmentWrappers

JSCompartment

bool wrapObject(JSObject)

ComartmentVector    compartments
JSCompartment        atomsCompartment

JSRuntime *1

Figure 3. The runtime holds all compartments. The compartments
themselves hold their corresponding principal, a list of arenas
where all objects and strings are allocated, all wrappers and pro-
vide functions to wrap objects and strings

icy (SOP) [19] is the central security policy in today’s browsers.
The policy defines that two documents from different origins can-
not access each other’s HTML documents using the DOM.

Our new compartment abstraction has a couple very important
implications.

1. All objects created by a page from the same origin reside within
the same compartment and hence are located in the same mem-
ory region. This improves cache utilization by reducing false
sharing of cache lines. False sharing occurs when we are trying
to operate on an object and we have to read an entire cache line
of data into the CPU cache. In the old model JavaScript objects
could be co-located with arbitrary other JavaScript objects from
other origins. Such cross origin objects are used together very
infrequently, which reduces the number of cache hits we get. In
the new model most objects referenced by a website are tightly
packed next to each other in memory, with no cross origin ob-
jects in between.

2. JavaScript objects (including JavaScript functions, which are
objects as well) are only allowed to reference objects in the
same compartment which means only same origin objects can
reach each other. This invariant is very useful for security pur-
poses. The JavaScript engine enforces this requirement at a very
low level. It means that a google.com object can never acci-
dentally leak into an untrusted website such as evil.com. Only
a special object type can cross compartment boundaries. We
call these objects wrappers. We track the creation of these cross
compartment wrappers, and thus the JavaScript engine knows
at all times what objects from a compartment are kept alive by
outside references (through cross compartment wrappers). This
allows us to garbage collect individual compartments, in addi-
tion to a global collection. We simply assume all objects refer-
enced from outside the compartment to be live, and then walk
the object graph inside the compartment. Objects that are found
to be disconnected from the graph are discarded. With this new
per-compartment GC we shortcut having to walk unrelated heap
areas of a window (or tab) that triggered a GC.
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Figure 4. The basic data structures consists of 1MB chunks that
are divided into 4KB arenas. Every arena has an arena header that
stores basic information about the arena. The arena header also
holds a reference to the corresponding compartment.

Our design is based on an allocation model introduced by Han-
son [4]. A simplified example of our memory layout is shown in
Figure 4. We allocate 1MB chunks from the operating system and
split them up into 4KB arenas. Every arena has a header with basic
information about the arena. It also holds a reference to the com-
partment the arena belongs to. With simple bit arithmetic (zeroing
the last bits of each object address) we can get the address of the
corresponding arena header. The arena header itself has a reference
to the compartment it belongs to. So it is very easy and fast to get
the corresponding compartment for each object. Each arena holds
a certain type like strings or objects. This implies that all objects
within an arena have the same size. A freelist keeps track of all free
objects within the arena. The compartment holds a reference to the
first arena header for a certain size class and this arena header holds
the reference to the next arena with the same size class for the same
compartment. This forms a linked list of arenas which all belong to
the same compartment and hold the same types.

The compartments live in our runtime. Compartments are cre-
ated for new origins and are destroyed whenever all objects con-
tained within become unreachable. Each compartment maintains a
list of arenas for each type of object that is allocated within. It also
holds a freelist array with references to the next available allocation
slots in an arena, or null if there are no slots available and a new
arena has to be allocated. The wrapperMap of the compartment
holds all wrapper objects that intercept cross-compartment com-
munications. A detailed information about the wrappers is given
in Section 3.

An interesting implication of the design of Firefox is that some
of its code is written in JavaScript as well. This means that in
the previous implementation, the internal code that is also called
chrome code shares the same heap as all the external client side
scripts. The new design treats this internal code as just another
origin and all the objects are allocated in the chrome compartment.

2.1 Allocation
Allocating an arena from a chunk means now that no other com-
partment can allocate objects in there. In the previous model,
threads were allocating multiple arenas from the arena list and
kept them in the local thread storage. The allocation path had to be
locked because other threads were also allocating arenas from the
same list. With the new model we can get rid of almost all the lock-
ing. Once arenas are allocated they stay with the same compartment
until they are empty and released.

Another popular optimization technique for JavaScript VMs
is to create strings that are unique and immutable. We call them

atoms. They are shared between the different scripts and no other
string can have the same content as the actual atomized string. The
main advantage comes from string comparison where the actual
content comparison can be avoided. This “sharing of strings” might
become a problem since we want to have as little cross-origin ref-
erences as possible. Our solution for this issue is a separate com-
partment for all the immutable strings. Atomized strings also do
not depend on any other strings. This implies that there are no ref-
erences from the atoms compartment to other compartments. Al-
locating atomized strings is the only place where we need locking
because different threads can allocate atoms at the same time. The
function that creates atomized strings locks the allocation path and
makes sure that only one thread is currently allocating from the
atoms compartment.

3. Wrappers
As mentioned before, we want to minimize the cross-compartment
references. But if they become necessary, we do not allow direct
communication between these two objects from separate compart-
ments. We delegate the communication technique to a wrapper ob-
ject that is explained in this section. In JavaScript we distinguish
between strings and objects. Strings and objects are both heap allo-
cated but strings cannot have cyclic dependencies.

References between objects have to follow several rules now.
As shown in Figure 5, an object o1 can only reference o2 if:

1. o1 and o2 reside in the same compartment and therefore have
the same origin.

2. o2 is allocated from the atoms compartment meaning o2 is an
immutable string.

3. o1 and o2 are in a different compartment and the VM explicitly
allows this communication by adding a wrapper object repre-
senting o2 to the wrapper map in the compartment of o1.

o1 → o2 ⇒

0@ c(o1) == c(o2)
c(o2) == AtomsCompartment

(o1, o2) ∈ WrapperMap

1A
Figure 5. An object cannot point to an arbitrary object in the JS
heap any more.
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Figure 6. An overview of possible references between compart-
ments.The red arrows represent the old way of communicating be-
tween two objects. In the new approach we add a wrapper objects
between 2 objects that reside in different compartments.

Figure 6 shows all possible cross compartment communication
mechanisms. The red slashed line represents the connection be-
tween two objects if they are in separate compartments. In the new
model, each cross compartment reference is intercepted by a wrap-
per object that is stored in the wrapper map in each compartment.
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References to an atom and therefore into the atoms compartment
do not need a wrapper object.

Wrappers are not a new concept in Firefox, or browsers in gen-
eral. In the past they were used to regulate how windows (or tabs)
pass objects to each other. When a window or iframe tried to ref-
erence an object that belongs to a different window, we handed it a
wrapper object instead. That wrapper object dynamically checks at
access time whether the accessor window (also called the subject)
is permitted to access the target object. If one Google Mail win-
dow is trying to access another Google Mail window, the access is
permitted, because these two windows (or iframes) are same origin
and hence it’s safe to permit this access. If an untrusted website
obtains a reference to a Google Mail DOM element, we hand it
the same wrapper, and if it ever tries to access the Google Mail
DOM Element the wrapper will, at access time, deny the property
access because the untrusted website evil.com is cross origin with
google.com.

A disadvantage of the Firefox 3.6 wrapper approach (which is
similar to the way other browsers utilize wrappers) was the fact that
these wrappers had to be injected manually at the right places in the
C++ code of the browser implementation, and each wrapper had to
do a dynamic security check at access time. With compartments we
can do a lot better:

1. Since all objects belonging to the same origin are within the
same compartment, and no object from a different origin is
in that compartment, we can let all objects within a compart-
ment reference other objects in the same compartment without
a wrapper in between. Keep in mind that this does not just apply
to windows but also to iframes. A single Google Mail session
often uses dozens of iframes that all heavily exchange objects
with each other. In the past we had to inject wrappers in be-
tween that kept performing dynamic security checks. This is
no longer necessary, and there is an observable speedup when
using iframe heavy web applications such as Google Mail.

2. Since all cross origin objects are in a different compartment,
any cross origin access that needs to perform a security check
can only happen through a cross compartment wrapper. Such
a cross compartment wrapper always lives in a source com-
partment, and accesses a single destination object. When we
create a cross compartment wrapper, we consult with the wrap-
per factory to see what kind of security policy should be ap-
plied. When evil.com obtains a reference to a google.com ob-
ject, for example, we have to create a wrapper to that object in
the evil.com compartment. When that wrapper is created, the
wrapper factory applies a stringent cross origin security policy,
which makes it impossible for evil.com to glean information
from the google.com window. In contrast to our old wrappers,
this security policy is static. Since only evil.com objects ever
see this wrapper, and it only points to one single DOM element
in the destination compartment, the policy does not have to be
re-checked at access time. Instead, every time evil.com attempts
to read information from the DOM element, the access is denied
without even comparing the two origins.

3.1 Brain Transplants
A particularly interesting oddity of the JavaScript DOM represen-
tation is the existence of two objects for each DOM window (or
tab or iframe), the inner window and the outer window. This split
was implemented by web browsers a few years ago to securely deal
with windows being navigated to a new URL. When such a navi-
gation occurs, the inner window object inside the outer window is
replaced with a new object, whereas the actual reference to window
(which is the outer window) remains unchanged. If such a naviga-
tion takes the window to a new origin, we allocate the inner window

in the appropriate new compartment. This of course creates now the
problem that the outer window can possibly no longer directly point
to the new inner window, because it is in a different compartment.

We solve this problem through brain transplants. Whenever
an outer window navigates, we copy it into the new destination
compartment. The object in the old compartment is transformed
into a cross compartment wrapper that points to the newly created
object in the destination compartment.

4. Partial GC
Having all JavaScript objects in the browser congregate in a single
heap is suboptimal for a number of reasons. If a user has multiple
windows (or tabs) open, and one of these windows (or tabs) created
a lot of objects, it is likely that many of these objects are no
longer reachable (garbage). When the browser detects such a state,
it initiates a GC. Unfortunately though, since objects from different
windows (or tabs) are intermixed on the heap, the browser has to
walk the entire heap. If a number of idle windows are open, this
can be quite wasteful, since those windows havent really created
any garbage, so whenever a window with heavy activity triggers a
GC, much of the GC time is spent walking unrelated parts of the
global object graph.

In Firefox this problem is even more pronounced than in other
browsers, because our UI code (also called chrome code, not to be
confused with Google Chrome) is implemented in JavaScript, and
there are a lot of chrome (UI) objects alive at any given moment.
These UI objects tend to stick around and every time a web content
window causes a GC, Firefox spends a lot of time figuring out
whether chrome objects are still alive instead of being able to focus
on the active web content window.

The new approach allows us to perform partial-GC on sin-
gle compartments. A single compartment GC or per-compartment
GC is triggered whenever the allocation of a single compartment
reaches some watermark that is set after a GC depending on the
working set size. As a simple example, assume that a single com-
partment GC is triggered when 10MB of JavaScript objects are al-
located. If we reach this level, we also check the overall alloca-
tion of all compartments. If the overall allocation exceeds 150%
of the triggering compartment allocation (or 15MB in this exam-
ple) we perform a global GC. There exist other GC triggers in the
browser but they are not relevant to the per-compartment GC ap-
proach and beyond the scope of this paper. We also can not get rid
of the global GC because the new approach introduces the possi-
bility of cyclic data structures between compartments. Two objects
in separate compartments that point to each other would never get
collected with only per-compartment GCs since the wrapperMaps
keep them alive.

4.1 Marking
In order to find all reachable objects for a global GC we traverse the
object graphs beginning with following roots: First, we perform a
conservative stack scan and mark all objects that are reachable from
the native C stack. Then we mark all explicit roots that are stored
in a roots hashtable followed by marking all global objects.

Marking reachable objects for a single-compartment GC fol-
lows the same scheme as the marking for the global GC with one
additional step. As mentioned before we assume all objects in other
compartments to be alive. Since there are no direct pointers be-
tween compartments, marking all wrapper references from other
compartments is sufficient to capture all reachable objects. The
marking function checks every reference if the corresponding ob-
ject is in the currently in the GC involved compartments. Getting
the compartment identity is done with simple pointer arithmetic and
is very cheap as described in Figure 4.
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4.2 Sweeping
The sweeping phase for a global GC consists of traversing each
arena and checking for unreachable (unmarked) objects. The ad-
vantage for a single compartment GC is that we do not have to
traverse all arenas. It is sufficient to traverse only arenas that are al-
located from the compartment involved in the single compartment
GC since all other objects are considered alive as mentioned before.
The sweeping process touches each object and checks the mark bit.
If the mark bit is not set, a finalizer is called for the object and the
location is put on the freelist of the arena.

5. Granularity
Finding the right granularity for compartmentalizing web-content
is the key for success. On the one hand we have the old approach
with a single JavaScript heap and all objects regardless of their
origin are intermixed on the heap. The other side of the spectrum
is not that easy to define. “Web programs are easy to understand
intuitively but difficult to define precisely.” [17].

A web application like GMail consists of many sub-structures.
Typical components are parent-pages containing images, script-
libraries, embedded frames, popup pages for chatting and mes-
sages. Placing each of these items into separate compartments
would result in many compartments just for a single page like
GMail. In order to argue that one compartment per origin is the
right choice, we can compare it with an implementation where we
separate objects based on iframes. The HTML <iframe> tag de-
fines an inline frame that contains another document and is sup-
ported by all major browser vendors. There is no general way of
telling how many iframes a web page has but in order to compare
our approach with a solution where each iframe gets its own com-
partment we compare typical web pages in Table 1. We compare
our approach with an implementation that creates a new compart-
ment for each iframe in Table 2. We can see that the finer gran-
ularity would work for some pages like Ebay and Digg, but for
other pages the number of compartments increases dramatically.
Techcrunch for example would have 154 compartments instead of
11. For GMail, the number of wrappers would increase from 183
to 5654.

Alias URL
280s 280slides.com

AMAZ amazon.com
BING bing.com
BLOG blogger.com
DIGG digg.com
EBAY ebay.com
FBOK facebook.com
FLKR flickr.com
GDOC docs.google.com
GMAP maps.google.com
GMIL gmail.com
GOGL google.com
HULU hulu.com
ISHK imageshack.us
TECH techcrunch.com
V8BE V8.googlecode.com/svn/data/benchmarks/v6
YTUB youtube.com

Table 1. Selected JavaScript-enabled web sites.

Alias Origin Wrappers IFrame Wrappers
280s 1 26 2 85

AMAZ 4 280 16 563
BING 1 80 3 105
DIGG 3 114 3 115
EBAY 1 48 1 50
FBOK 1 249 6 445
FLIKR 3 185 23 1094
GDOC 6 552 7 277
GMAP 1 88 2 82
GMIL 2 183 9 5654
GOGL 1 60 2 209
HULU 1 103 10 245
ISHK 6 776 41 1396
TECH 11 2324 154 3094
V8BE 1 35 1 35
YTUB 2 183 7 204

Table 2. Compartments and corresponding cross compartment
pointers if we create new compartments per origins or iframes.

6. Processes
Another question is how compartments compare to per-tab pro-
cesses as they are used by Google Chrome and Internet Explorer.
Both processes and compartments shield JavaScript objects against
each other. The most important distinction is that processes offer
a stronger separation enforced by the processor hardware, while
compartments offer a pure software guarantee. However, on the up-
side compartments allow much more efficient cross compartment
communication that processes code.

With compartments, cross origin websites can still communi-
cate with each other with a small overhead (governed by certain
cross origin access policy), while with processes cross-process
JavaScript object access is either impossible or extremely expen-
sive. In future browsers we will likely see both forms of separation
being applied. Two web sites that never have to talk to each other
can live in separate processes, while cross origin websites that do
want to communicate can use compartments to enhance security
and performance.

The space overhead can be shown by simply opening an empty
tab and measuring the increased memory consumption. Opening
another tab in Chrome creates a new process with about 30MB.
Open another tab in Firefox is about 2.2MB and Safari about
10MB.

Another drawback that is introduced by the process level sepa-
ration comes from the object communication mechanism. Two ob-
jects that want to communicate with each other have to go through
an expensive inter process communication mechanism. A message
sent from an object A to another object B does not have any guar-
antee to be received from B if there is no synchronization in place.
The run-to-completion semantics defines that a state-machine has
to complete processing one event before it can start processing the
next.

Google Chrome supports 4 different process models: 1) mono-
lithic process, 2) process per browsing instance, 3) process per site
instance and 4) process per site. Models 1) and 2) do not provide
memory protection across multiple origins. Model 3), which is en-
abled by default, and model 4) still do not prevent origins that are
embedded with the iframe tag from accessing objects from the par-
ent page because they are all execute in one process.
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7. Evaluation
To evaluate our compartmental memory management approach,
we implemented it in the open source JavaScript VM SpiderMon-
key [15], which is used by Mozilla Firefox. As a result of this
choice we are able to provide benchmark numbers for in-browser
synthetic benchmarks as well as actual JavaScript web applications.

All experiments were performed on a Mac Pro with 2 x 2.66
GHz Dual-Core Intel Xeon processor and 4 GB RAM running Ma-
cOS 10.6 and beta version 10 of Firefox 4.0 that uses the compart-
ments mechanisms we have introduced in this paper as its default
configuration. It is very easy to rerun the benchmarks by just setting
the javascript.options.mem.gc per compartment option in
the about:config page of Firefox. This section uses baseline im-
plementation or just base where we only perform global GCs and
per-compartment implementation or comp where we also perform
per-compartment GCs.

7.1 Cost in Space
The first question to answer is whether the new approach im-
proves the memory footprint of the VM or even introduces some
space overhead. There are two scenarios that influence the space-
overhead in a positive and negative way. Since we do not intermix
objects of different origins within arenas any more, we always have
to allocate a new arena if all arenas are full for a certain compart-
ment. So we end up allocating arenas even if there are some empty
slots in arenas that belong to another compartments. On the other
hand, if there are reachable objects within an arena, we cannot re-
turn the arena to the OS.

With the new approach it is more likely that objects with the
same lifetime end up in the same compartment. Whenever we close
a tab, the corresponding compartments including all its arenas are
very likely to become garbage. Once there are no reachable objects
within the arenas, we can return them to the OS. There are no
reachable objects from other domains that remain in the arena.

Figure 7 shows the difference between the old model and the
new model. In this experiment, we open 50 tabs with popular web
pages and close one after another. The y-axis represents the number
of allocated 4KB arenas. As expected, the new approach has a
higher peak demand because allocated arenas belong to only one
origin. The difference for 50 tabs is for this example around 13%
or 15MB. During the closing process, the new model shows its
advantages. Since closing a tab releases all objects from a certain
origin, the corresponding arenas become empty. The results of
Figure 7 also show that our new approach is going towards a
generational GC model. We can clearly see that objects separation
based on their origin shows better results than just intermixing them
with other objects. This aspect is an interesting outcome that will
lead to further investigation.

One of the key factors for our partial GC approach is the vol-
ume of missed space that does not get freed because we assume
all objects are reachable within this space. We changed the way
our per-compartment GC works in order to get detailed informa-
tion about unreclaimed objects because of our partial GC approach.
Table 3 shows detailed numbers for the GC workloads. We open
50 tabs in the browser with popular websites and once all of them
are fully loaded we start the V8 benchmark suite. Whenever we
would trigger a per-compartment GC, we perform a full GC but
do not reclaim objects that are not part of the compartment that
triggered the GC. Base Reachable means all objects that are reach-
able in the JavaScript VM. Comp Reachable represents all objects
that are reachable within the compartment that triggered the per-
compartment GC. Comp Reachable is 0 if a global GC is per-
formed because there is no special compartment involved in the
GC. Finalized represent all objects that are finalized during the GC
event. Missed represents the number of unreachable objects that
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Figure 7. Opening 50 tabs and close them again with the baseline
and per-compartment approach. We can see a higher memory con-
sumption peak for the opening process with the new approach but
once we close tabs, we can also deallocate arenas faster.

are not reclaimed because another compartment performed per-
compartment GC. GC Type is either global GC or per-compartment
GC where a GC is performed for a single compartment. Relative
values are calculated as follows:

Reachable Rel. = Comp Reachable
Base Reachable

∗ 100%.

Missed Rel. = Missed
Finalized

∗ 100%.

Relative to Total = Missed
Missed+Finalized+Base Reachable

∗ 100%

The first three global GCs happen during loading of the 50
tabs. Once we start the V8 benchmark suite we only see per-
compartment GC until we shut down the browser. The shutdown
process performs the last three global GCs. The numbers show that
most of the time we only mark up to 7% of all reachable objects.
Only during the splay benchmark where a huge splay tree is created
and modified the actual reachable objects represent around 60%
of the whole browser heap. More interesting is the ratio between
finalized and missed objects. We can see that during the benchmark
we create around 3% garbage in other compartments that is not
reclaimed. During the splay benchmark we see a spike at 288%.
This happens during the creation of the splay tree where a per-
compartment GC is triggered but almost no objects are finalized
because the whole tree is alive. Relative to Total measures the ratio
between total heap space and missed to finalize. We can see that we
only miss to reclaim about 2% of the heap space because of all the
per-compartment GCs. We can also see that the 288% value during
the splay benchmark has no impact on the overall ratio. Note that
the number of GC events differs from the results in Table 4 because
our instrumentation increased the GC pause time and therefore also
influenced the benchmark scores.

7.2 V8 Benchmark
The V8 suite runs each benchmark for one second and computes
a score per benchmark and an overall score based on each individ-
ual score. Since the benchmark runs for one second, the amount of
memory that is used varies. An allocation-heavy benchmark allo-
cates more objects and therefore more memory in the same amount
of time if the allocation becomes faster and GC pause time is re-
duced. We also performed VM internal measurements in order to
discuss the GC events happening during running the V8 bench-
marks in more detail. We use the time stamp counter rdtsc [8] in
order to measure the duration of each GC event.
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Base Reachable Comp Reachable Reachable Rel. Finalized Missed Missed Rel. Relative to Total GC Type
239446 0 0.00% 412554 0 0.00% 0.00% Glob
407492 0 0.00% 727585 0 0.00% 0.00% Glob
837631 0 0.00% 926075 0 0.00% 0.00% Glob
837497 4330 0.52% 826047 123 0.01% 0.01% Comp
837259 4092 0.49% 826310 123 0.01% 0.01% Comp
837377 4141 0.49% 1299044 24745 1.90% 1.14% Comp
837347 4111 0.49% 870836 24745 2.84% 1.43% Comp
837345 4109 0.49% 870880 24745 2.84% 1.43% Comp
837344 4108 0.49% 870846 24745 2.84% 1.43% Comp
837352 4116 0.49% 847193 24745 2.92% 1.45% Comp
837348 4112 0.49% 870836 24745 2.84% 1.43% Comp
837891 4576 0.55% 766282 28833 3.76% 1.77% Comp
839837 6522 0.78% 762931 28833 3.78% 1.77% Comp
841563 8248 0.98% 761453 28833 3.79% 1.77% Comp
838833 5518 0.66% 764411 28833 3.77% 1.77% Comp
840674 7359 0.88% 762224 28833 3.78% 1.77% Comp
871243 37846 4.34% 836353 31299 3.74% 1.80% Comp
887190 53793 6.06% 821184 31299 3.81% 1.80% Comp
894486 61089 6.83% 813888 31299 3.85% 1.80% Comp
904673 71276 7.88% 803667 31299 3.89% 1.80% Comp
846209 12812 1.51% 862147 31299 3.63% 1.80% Comp
875113 41716 4.77% 833224 31299 3.76% 1.80% Comp
874065 40668 4.65% 755349 31299 4.14% 1.88% Comp
888829 55432 6.24% 819508 31299 3.82% 1.80% Comp
897413 64016 7.13% 810924 31299 3.86% 1.80% Comp
839779 6382 0.76% 868580 31299 3.60% 1.80% Comp
872909 39512 4.53% 835428 31299 3.75% 1.80% Comp
887213 53816 6.07% 821124 31299 3.81% 1.80% Comp
897191 63794 7.11% 811149 31299 3.86% 1.80% Comp
839420 6023 0.72% 868966 31299 3.60% 1.80% Comp
872702 39305 4.50% 835635 31299 3.75% 1.80% Comp
856356 22985 2.68% 938002 35474 3.78% 1.94% Comp
868587 35091 4.04% 1289506 37802 2.93% 1.72% Comp
1924649 1091153 56.69% 13118 37802 288.17% 1.91% Comp
2127944 1294473 60.83% 2016589 38177 1.89% 0.91% Comp
2127922 1294451 60.83% 3507997 38177 1.09% 0.67% Comp
2127961 1294490 60.83% 4648974 38177 0.82% 0.56% Comp
378561 0 0.00% 2129060 0 0.00% 0.00% Glob
43255 0 0.00% 335505 0 0.00% 0.00% Glob
31497 0 0.00% 11758 0 0.00% 0.00% Glob

Table 3. GC workloads for 50 open tabs and running the V8 Benchmark.

1 Base 1 Comp 50 Base 50 Comp
Richards 7929 7932 8211 8084
DeltaBlue 4198 5263 2142 4985

Crypto 8634 8598 8779 8596
RayTrace 3510 3527 1698 3464

EarleyBoyer 4357 4550 1514 3807
RegExp 1711 1692 1624 1651
Splay 5012 5134 3529 5041
Score 4505 4692 3017 4511

Table 4. Results of the V8 benchmark suite (higher is better). The
numbers represent running the benchmark suite in a single tab for
the baseline and per-compartment approach (Comp) and opening
50 typical web pages and running the benchmark suite for the
baseline and per-compartment GC approach.

Table 5 shows the results for running the V8 benchmarks for the
baseline and our new approach. We can see that the reduced work-
load due to the partial GC increased the number of performed GCs
from 63 to 75. The total time we spend in marking increases be-
cause we are performing more GCs but the average time we spend
in marking reduces around 12%. The increase in finalization time
comes from the fact that more objects have to be finalized. As ex-
plained in Section 4, we have to check the mark bit of every single
object during sweeping. Since we encounter less marked objects
and more unreachable objects, the time we spend in finalization in-
creases. Marking less objects and finalizing more objects indicates
a good separation technique.

Figure 8 through Figure 11 show the mark - sweep ratio for
each GC event for the V8 benchmarks. Figure 8 shows the mark-
ing and sweeping ratio for starting the browser, running the V8
benchmarks and closing the browser again with our baseline ap-
proach. Figure 9 shows the marking and sweeping ratio with our
new per-compartment GC model. We can see that even for a sin-
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Base Average Comp Average Relative
GC Events 63 - 75 - +16%
Marking 2891 46 3075 41 -12%
Sweeping 2693 43 3319 44 +3.4%

Total 6117 97 6583 88 -11%

Table 5. Basic internal measurements for the V8 benchmark. The
numbers represent 1E6 cycles measured with rdtsc.

gle tab we reduce the time spent in marking because we only per-
form the GC in the benchmark compartment and do not include
the browser internal chrome compartment. Table 4 shows that the
benchmark score increases from 4505 to 4692 for a single open tab.
The big spike at the end is caused by the allocation intensive splay
benchmark. The finalization spike at the very end is caused by the
shutdown of the browser.

The real strength of the new approach comes with many open
tabs. Figure 10 and Figure 11 show the mark-sweep ratio with 50
other open tabs. We start the browser, open 50 tabs, wait until they
are fully loaded and start the V8 benchmark in a new tab. We can
see that marking time dominates the GC pause time in Figure 10.
If we compare it to Figure 11 we can clearly see the improvements.
We perform global GCs at the beginning because we open many
web pages and the overall memory footprint increases. Once we
start the V8 benchmark we see that the per-compartment GC is
triggered because only the benchmark origin creates objects. There
is one spike in the middle of the benchmark where the browser
decides to perform a global GC. This is either caused by internal
timers of the browser or an overall increase of the memory foot-
print. Note that this doesn’t happen all the time as can be seen
in Table 3. We can see that the time is identical to the baseline
approach for this single spike. Table 4 shows that the benchmark
score increases from 3017 to 4511.

Running the benchmark with an additional 50 open tabs reaches
now the same performance as running the benchmark in a single tab
without our new model. The average number of cycles for each GC
event reduces from 885*10E6 to 294*10E6. If we only consider the
interval where the benchmark is running and exclude the start and
shutdown overhead we reduce the average numbers of cycles from
998E6 to 170E6 which is a reduction of 83%.
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Figure 8. Running the V8 Benchmark Suite with a single tab with
baseline approach. The y-axis shows a stacked representation of
cycles measured with rtdsc.
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Figure 9. Running the V8 Benchmark Suite with a single tab with
per-compartment GC.
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Figure 10. Opening 50 tabs with popular web pages and running
the V8 Benchmark Suite with baseline approach.
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Figure 11. Opening 50 tabs with popular web pages and running
the V8 Benchmark Suite with the new per-compartment GC.
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7.3 Kraken Benchmark Suite.
Table 6 shows the kraken benchmark [14] results. The benchmark
was running in a browser with websites loaded from Table 1 ex-
cept the V8 benchmark suite. We can see an overall performance
increase from 6.9% due to shorter GC pause times. The From
column represents the baseline and the To column represents the
per-compartment GC approach. The new approach also introduces
more stability for the individual benchmarks. As can be seen in Ta-
ble 6, the random noisy for the individual benchmarks is reduced.

Benchmark Base [ms] +/- [%] Comp [ms] +/- [%]
astar 1236.3 5.0 1182.7 5.8

beat-detection 457.0 12.9 418.5 3.4
dft 496.8 13.2 473.5 3.6
fft 343.2 13.5 348.6 3.7

oscillator 290.8 0.7 290.8 0.7
gaussian-blur 492.5 0.2 492.0 0.2

darkroom 221.7 0.5 221.0 0.2
desaturate 487.6 5.1 477.1 0.2

parse-financial 131.3 32.7 111.8 1.3
stringify-tb 96.2 51.2 71.8 2.3

aes 231.6 23.4 234.8 9.4
ccm 154.5 2.1 161.3 8.2

pbkdf2 313.4 23.8 237.6 7.4
sha256-it 198.2 39.0 95.9 2.7
TOTAL 5151.1 1.8 4817 1.7

Table 6. Kraken benchmarks

7.4 SunSpider Benchmarks
One of our claims was that we improve locality of reference with
our new approach. Since we do not allocate objects in already
used arenas from another compartment and rather allocate a new
arena, we place objects right next to other objects from the same
origin. Running the SunSpider benchmark suite is an indicator for
a better locality during the benchmark run because there is no
GC event during the benchmark. Also the locking that is removed
for arena allocation increases performance. The benchmark suite
executes all benchmarks 10 times with a forced GC in between that
does not impact the benchmark scores. SunSpider is a time based
benchmark suite where actual execution time is measured. Table 7
shows the results of the SunSpider benchmarks. We can see a 3%
improvement with the new allocation scheme.

7.5 Non Benchmarks
Reducing the GC pause time has also other advantages than in-
creasing benchmark scores. An everyday Firefox user cares more
about the performance for real workloads. Our new approach
greatly improves the performance of all allocation heavy web apps
such as JavaScript based animations and games. The GC pause time
during an animation is no longer related to the number of open tabs
and users do not have to close all other tabs in order to get the best
performance for JavaScript based games.

8. Related Work
Jones and Lins [9] describe basic GC algorithms that are also used
in our implementation. The current implementation of the memory
management system in SpiderMonkey is based on the research
from Hanson [4].

Optimizing allocation patterns to improve the locality of ref-
erence in the virtual memory [16] and cache [11] has been stud-
ied over many years. Basic implementation like the “first-fit” ap-
proach [10] or improvements like the “better-fit” approach [22] still

Benchmark Base [ms] Comp [ms] Relative [%]
cube: 16.1 15.7 2.48

morph: 16.1 15.8 1.86
raytrace: 36.5 36.2 0.82

binary-trees: 19.9 19.1 4.02
fannkuch: 13 12.9 0.77

nbody: 4 4 0.00
nsieve: 5 5 0.00

3bit-bits-in-byte: 0.5 0.5 0.00
bits-in-byte: 6.7 6.7 0.00
bitwise-and: 1.3 1.2 7.69
nsieve-bits: 4.3 4.2 2.33
recursive: 21.3 20.9 1.88

aes: 10.5 10.3 1.90
md5: 5.3 5.2 1.89
sha1: 2.6 2.6 0.00

format-tofte: 20.1 19.4 3.48
format-xparb: 13.4 12.8 4.48

cordic: 8.3 4.6 44.58
partial-sums: 7.9 7.8 1.27

spectral-norm: 3.2 3.2 0.00
dna: 11.8 11.9 -0.85

base64: 3.3 3.1 6.06
fasta: 12.4 12.7 -2.42

tagcloud: 22.4 21.4 4.46
unpack-code: 29.6 28.9 2.36
validate-input: 5.3 4.9 7.55

TOTAL 300.7 291.1 3.19

Table 7. SunSpider benchmark suite.

show bad reference locality characteristics. We use object separa-
tion based on their origin to get better reference locality. For exam-
ple our internal objects created from our chrome code do not share
pages with objects allocated from web sites any more.

Reis et al. [17] show the various process models supported by
Google Chrome. They compare different process isolation models
(monolithic process, process-per-browsing-instance, process-per-
site and process-per-site-instance) that are all supported by Google
Chrome. In contrast to our work, they attempt to create new pro-
cesses for new domains. A more detailed discussion about the dif-
ferences can be found in Section 6.

Microsoft [12] also uses OS processes to isolate tabs from
one another in Internet Explorer 8. This protection mechanism is
insufficient from a security standpoint since a user may browse
multiple mutually distrusting sites in a single tab via iframes.

In more recent work from Microsoft Research, Wang et al. [23]
present a secure web browser constructed as a multi-principal OS.
The browser is called Gazelle and its kernel is an operating system
that exclusively manages resource protection and sharing across
web site principals. The main drawback is the performance. The
page load time for a site like nytimes.com increases to around 6
seconds.

Hirzel et al. [6] do an interesting analysis on the connectivity
of heap objects. They show the importance of understanding the
connectivity of the heap objects and give hints on improving ex-
isting partition models. Their research is focused on Java but the
overall connectivity idea is also relevant for JavaScript. Hirzel [5]
also shows in his PhD thesis a connectivity based GC approach that
relies on object connectivity analysis. Similar to our approach they
try to place objects with the same lifetime and access frequency in
the same memory area.
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Seidl et al. [20] present a profile-driven object lifetime and
access frequency predictor. They reduce the number of page faults
by placing highly referenced objects next to each other on a small
set of pages. Short lived objects on the other hand, are placed on a
small set of different pages.

Cox et al. [1] use multiple VMs to completely isolate web appli-
cations. They present a solution to prevent cross origin communi-
cation with an overhead of up to 9 seconds to start a new browsing
instance.

Gries et al. [3] present the OP web browser which is based on a
browser- level information-flow tracking system. It enables them to
analyze browser-based attacks after they have happened and show
the possible root of the attack.

More recently, Inoue et al. [7] made a study of memory man-
agement for web-based applications on multicore processors. They
compare a traditional and a region-based memory allocator for PHP
applications and show speedups of up to 27%. They introduce a
freeAll function that can be called from an application once all of
the objects on the heap can be deallocated.

Richards et al. [18] present a study of currently used JavaScript
benchmarks. They compare the behavior of V8 and SunsSpider
benchmarks with popular web pages. One of the outcomes of this
research is that the overall lifetime of benchmark objects is not
comparable to actual web pages.

9. Conclusions
We demonstrated the advantages and an efficient implementation
of per-compartment GC. We add another layer of abstraction to the
JavaScript heap and separate JavaScript data based on their origin.
Partial GC on a single compartment reduces the workload for the
GC and therefor reduces the GC pause time. Our experiments show
that the GC pause time for running the V8 benchmarks with 50
other open tabs is reduced by up to 83%.

The foundation we laid with the compartments work will also
enable a number of future extensions. Since we now cleanly sep-
arate objects belonging to different tabs, future changes to our
JavaScript engine will permit us to not only perform JavaScript GC
for individual compartments, but we will also be able to do so in
the background on a different thread for tabs with inactive content.
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