/* -*- Mode: Java; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set shiftwidth=2 tabstop=2 autoindent cindent expandtab: */ /* Copyright 2012 Mozilla Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* globals ColorSpace, PDFFunction, Util, error, warn, info, isArray, isStream, assert, isPDFFunction, UnsupportedManager, UNSUPPORTED_FEATURES */ 'use strict'; var PatternType = { FUNCTION_BASED: 1, AXIAL: 2, RADIAL: 3, FREE_FORM_MESH: 4, LATTICE_FORM_MESH: 5, COONS_PATCH_MESH: 6, TENSOR_PATCH_MESH: 7 }; var Pattern = (function PatternClosure() { // Constructor should define this.getPattern function Pattern() { error('should not call Pattern constructor'); } Pattern.prototype = { // Input: current Canvas context // Output: the appropriate fillStyle or strokeStyle getPattern: function Pattern_getPattern(ctx) { error('Should not call Pattern.getStyle: ' + ctx); } }; Pattern.parseShading = function Pattern_parseShading(shading, matrix, xref, res) { var dict = isStream(shading) ? shading.dict : shading; var type = dict.get('ShadingType'); switch (type) { case PatternType.AXIAL: case PatternType.RADIAL: // Both radial and axial shadings are handled by RadialAxial shading. return new Shadings.RadialAxial(dict, matrix, xref, res); case PatternType.FREE_FORM_MESH: case PatternType.LATTICE_FORM_MESH: case PatternType.COONS_PATCH_MESH: case PatternType.TENSOR_PATCH_MESH: return new Shadings.Mesh(shading, matrix, xref, res); default: UnsupportedManager.notify(UNSUPPORTED_FEATURES.shadingPattern); return new Shadings.Dummy(); } }; return Pattern; })(); var Shadings = {}; // A small number to offset the first/last color stops so we can insert ones to // support extend. Number.MIN_VALUE appears to be too small and breaks the // extend. 1e-7 works in FF but chrome seems to use an even smaller sized number // internally so we have to go bigger. Shadings.SMALL_NUMBER = 1e-2; // Radial and axial shading have very similar implementations // If needed, the implementations can be broken into two classes Shadings.RadialAxial = (function RadialAxialClosure() { function RadialAxial(dict, matrix, xref, res) { this.matrix = matrix; this.coordsArr = dict.get('Coords'); this.shadingType = dict.get('ShadingType'); this.type = 'Pattern'; var cs = dict.get('ColorSpace', 'CS'); cs = ColorSpace.parse(cs, xref, res); this.cs = cs; var t0 = 0.0, t1 = 1.0; if (dict.has('Domain')) { var domainArr = dict.get('Domain'); t0 = domainArr[0]; t1 = domainArr[1]; } var extendStart = false, extendEnd = false; if (dict.has('Extend')) { var extendArr = dict.get('Extend'); extendStart = extendArr[0]; extendEnd = extendArr[1]; } if (this.shadingType === PatternType.RADIAL && (!extendStart || !extendEnd)) { // Radial gradient only currently works if either circle is fully within // the other circle. var x1 = this.coordsArr[0]; var y1 = this.coordsArr[1]; var r1 = this.coordsArr[2]; var x2 = this.coordsArr[3]; var y2 = this.coordsArr[4]; var r2 = this.coordsArr[5]; var distance = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); if (r1 <= r2 + distance && r2 <= r1 + distance) { warn('Unsupported radial gradient.'); } } this.extendStart = extendStart; this.extendEnd = extendEnd; var fnObj = dict.get('Function'); var fn; if (isArray(fnObj)) { var fnArray = []; for (var j = 0, jj = fnObj.length; j < jj; j++) { var obj = xref.fetchIfRef(fnObj[j]); if (!isPDFFunction(obj)) { error('Invalid function'); } fnArray.push(PDFFunction.parse(xref, obj)); } fn = function radialAxialColorFunction(arg) { var out = []; for (var i = 0, ii = fnArray.length; i < ii; i++) { out.push(fnArray[i](arg)[0]); } return out; }; } else { if (!isPDFFunction(fnObj)) { error('Invalid function'); } fn = PDFFunction.parse(xref, fnObj); } // 10 samples seems good enough for now, but probably won't work // if there are sharp color changes. Ideally, we would implement // the spec faithfully and add lossless optimizations. var diff = t1 - t0; var step = diff / 10; var colorStops = this.colorStops = []; // Protect against bad domains so we don't end up in an infinte loop below. if (t0 >= t1 || step <= 0) { // Acrobat doesn't seem to handle these cases so we'll ignore for // now. info('Bad shading domain.'); return; } for (var i = t0; i <= t1; i += step) { var rgbColor = cs.getRgb(fn([i]), 0); var cssColor = Util.makeCssRgb(rgbColor); colorStops.push([(i - t0) / diff, cssColor]); } var background = 'transparent'; if (dict.has('Background')) { var rgbColor = cs.getRgb(dict.get('Background'), 0); background = Util.makeCssRgb(rgbColor); } if (!extendStart) { // Insert a color stop at the front and offset the first real color stop // so it doesn't conflict with the one we insert. colorStops.unshift([0, background]); colorStops[1][0] += Shadings.SMALL_NUMBER; } if (!extendEnd) { // Same idea as above in extendStart but for the end. colorStops[colorStops.length - 1][0] -= Shadings.SMALL_NUMBER; colorStops.push([1, background]); } this.colorStops = colorStops; } RadialAxial.prototype = { getIR: function RadialAxial_getIR() { var coordsArr = this.coordsArr; var shadingType = this.shadingType; var type, p0, p1, r0, r1; if (shadingType == PatternType.AXIAL) { p0 = [coordsArr[0], coordsArr[1]]; p1 = [coordsArr[2], coordsArr[3]]; r0 = null; r1 = null; type = 'axial'; } else if (shadingType == PatternType.RADIAL) { p0 = [coordsArr[0], coordsArr[1]]; p1 = [coordsArr[3], coordsArr[4]]; r0 = coordsArr[2]; r1 = coordsArr[5]; type = 'radial'; } else { error('getPattern type unknown: ' + shadingType); } var matrix = this.matrix; if (matrix) { p0 = Util.applyTransform(p0, matrix); p1 = Util.applyTransform(p1, matrix); } return ['RadialAxial', type, this.colorStops, p0, p1, r0, r1]; } }; return RadialAxial; })(); // All mesh shading. For now, they will be presented as set of the triangles // to be drawn on the canvas and rgb color for each vertex. Shadings.Mesh = (function MeshClosure() { function MeshStreamReader(stream, context) { this.stream = stream; this.context = context; this.buffer = 0; this.bufferLength = 0; } MeshStreamReader.prototype = { get hasData() { if (this.stream.end) { return this.stream.pos < this.stream.end; } if (this.bufferLength > 0) { return true; } var nextByte = this.stream.getByte(); if (nextByte < 0) { return false; } this.buffer = nextByte; this.bufferLength = 8; return true; }, readBits: function MeshStreamReader_readBits(n) { var buffer = this.buffer; var bufferLength = this.bufferLength; if (n === 32) { if (bufferLength === 0) { return ((this.stream.getByte() << 24) | (this.stream.getByte() << 16) | (this.stream.getByte() << 8) | this.stream.getByte()) >>> 0; } buffer = (buffer << 24) | (this.stream.getByte() << 16) | (this.stream.getByte() << 8) | this.stream.getByte(); var nextByte = this.stream.getByte(); this.buffer = nextByte & ((1 << bufferLength) - 1); return ((buffer << (8 - bufferLength)) | ((nextByte & 0xFF) >> bufferLength)) >>> 0; } if (n === 8 && bufferLength === 0) { return this.stream.getByte(); } while (bufferLength < n) { buffer = (buffer << 8) | this.stream.getByte(); bufferLength += 8; } bufferLength -= n; this.bufferLength = bufferLength; this.buffer = buffer & ((1 << bufferLength) - 1); return buffer >> bufferLength; }, align: function MeshStreamReader_align() { this.buffer = 0; this.bufferLength = 0; }, readFlag: function MeshStreamReader_readFlag() { return this.readBits(this.context.bitsPerFlag); }, readCoordinate: function MeshStreamReader_readCoordinate() { var bitsPerCoordinate = this.context.bitsPerCoordinate; var xi = this.readBits(bitsPerCoordinate); var yi = this.readBits(bitsPerCoordinate); var decode = this.context.decode; var scale = bitsPerCoordinate < 32 ? 1 / ((1 << bitsPerCoordinate) - 1) : 2.3283064365386963e-10; // 2 ^ -32 return [ xi * scale * (decode[1] - decode[0]) + decode[0], yi * scale * (decode[3] - decode[2]) + decode[2] ]; }, readComponents: function MeshStreamReader_readComponents() { var numComps = this.context.numComps; var bitsPerComponent = this.context.bitsPerComponent; var scale = bitsPerComponent < 32 ? 1 / ((1 << bitsPerComponent) - 1) : 2.3283064365386963e-10; // 2 ^ -32 var decode = this.context.decode; var components = []; for (var i = 0, j = 4; i < numComps; i++, j += 2) { var ci = this.readBits(bitsPerComponent); components.push(ci * scale * (decode[j + 1] - decode[j]) + decode[j]); } if (this.context.colorFn) { components = this.context.colorFn(components); } return this.context.colorSpace.getRgb(components, 0); } }; function decodeType4Shading(mesh, reader) { var coords = mesh.coords; var colors = mesh.colors; var operators = []; var ps = []; // not maintaining cs since that will match ps var verticesLeft = 0; // assuming we have all data to start a new triangle while (reader.hasData) { var f = reader.readFlag(); var coord = reader.readCoordinate(); var color = reader.readComponents(); if (verticesLeft === 0) { // ignoring flags if we started a triangle assert(0 <= f && f <= 2, 'Unknown type4 flag'); switch (f) { case 0: verticesLeft = 3; break; case 1: ps.push(ps[ps.length - 2], ps[ps.length - 1]); verticesLeft = 1; break; case 2: ps.push(ps[ps.length - 3], ps[ps.length - 1]); verticesLeft = 1; break; } operators.push(f); } ps.push(coords.length); coords.push(coord); colors.push(color); verticesLeft--; reader.align(); } var psPacked = new Int32Array(ps); mesh.figures.push({ type: 'triangles', coords: psPacked, colors: psPacked }); } function decodeType5Shading(mesh, reader, verticesPerRow) { var coords = mesh.coords; var colors = mesh.colors; var operators = []; var ps = []; // not maintaining cs since that will match ps while (reader.hasData) { var coord = reader.readCoordinate(); var color = reader.readComponents(); ps.push(coords.length); coords.push(coord); colors.push(color); } var psPacked = new Int32Array(ps); mesh.figures.push({ type: 'lattice', coords: psPacked, colors: psPacked, verticesPerRow: verticesPerRow }); } var MIN_SPLIT_PATCH_CHUNKS_AMOUNT = 3; var MAX_SPLIT_PATCH_CHUNKS_AMOUNT = 20; var TRIANGLE_DENSITY = 20; // count of triangles per entire mesh bounds var getB = (function getBClosure() { function buildB(count) { var lut = []; for (var i = 0; i <= count; i++) { var t = i / count, t_ = 1 - t; lut.push(new Float32Array([t_ * t_ * t_, 3 * t * t_ * t_, 3 * t * t * t_, t * t * t])); } return lut; } var cache = []; return function getB(count) { if (!cache[count]) { cache[count] = buildB(count); } return cache[count]; }; })(); function buildFigureFromPatch(mesh, index) { var figure = mesh.figures[index]; assert(figure.type === 'patch', 'Unexpected patch mesh figure'); var coords = mesh.coords, colors = mesh.colors; var pi = figure.coords; var ci = figure.colors; var figureMinX = Math.min(coords[pi[0]][0], coords[pi[3]][0], coords[pi[12]][0], coords[pi[15]][0]); var figureMinY = Math.min(coords[pi[0]][1], coords[pi[3]][1], coords[pi[12]][1], coords[pi[15]][1]); var figureMaxX = Math.max(coords[pi[0]][0], coords[pi[3]][0], coords[pi[12]][0], coords[pi[15]][0]); var figureMaxY = Math.max(coords[pi[0]][1], coords[pi[3]][1], coords[pi[12]][1], coords[pi[15]][1]); var splitXBy = Math.ceil((figureMaxX - figureMinX) * TRIANGLE_DENSITY / (mesh.bounds[2] - mesh.bounds[0])); splitXBy = Math.max(MIN_SPLIT_PATCH_CHUNKS_AMOUNT, Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitXBy)); var splitYBy = Math.ceil((figureMaxY - figureMinY) * TRIANGLE_DENSITY / (mesh.bounds[3] - mesh.bounds[1])); splitYBy = Math.max(MIN_SPLIT_PATCH_CHUNKS_AMOUNT, Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitYBy)); var verticesPerRow = splitXBy + 1; var figureCoords = new Int32Array((splitYBy + 1) * verticesPerRow); var figureColors = new Int32Array((splitYBy + 1) * verticesPerRow); var k = 0; var cl = new Uint8Array(3), cr = new Uint8Array(3); var c0 = colors[ci[0]], c1 = colors[ci[1]], c2 = colors[ci[2]], c3 = colors[ci[3]]; var bRow = getB(splitYBy), bCol = getB(splitXBy); for (var row = 0; row <= splitYBy; row++) { cl[0] = ((c0[0] * (splitYBy - row) + c2[0] * row) / splitYBy) | 0; cl[1] = ((c0[1] * (splitYBy - row) + c2[1] * row) / splitYBy) | 0; cl[2] = ((c0[2] * (splitYBy - row) + c2[2] * row) / splitYBy) | 0; cr[0] = ((c1[0] * (splitYBy - row) + c3[0] * row) / splitYBy) | 0; cr[1] = ((c1[1] * (splitYBy - row) + c3[1] * row) / splitYBy) | 0; cr[2] = ((c1[2] * (splitYBy - row) + c3[2] * row) / splitYBy) | 0; for (var col = 0; col <= splitXBy; col++, k++) { if ((row === 0 || row === splitYBy) && (col === 0 || col === splitXBy)) { continue; } var x = 0, y = 0; var q = 0; for (var i = 0; i <= 3; i++) { for (var j = 0; j <= 3; j++, q++) { var m = bRow[row][i] * bCol[col][j]; x += coords[pi[q]][0] * m; y += coords[pi[q]][1] * m; } } figureCoords[k] = coords.length; coords.push([x, y]); figureColors[k] = colors.length; var newColor = new Uint8Array(3); newColor[0] = ((cl[0] * (splitXBy - col) + cr[0] * col) / splitXBy) | 0; newColor[1] = ((cl[1] * (splitXBy - col) + cr[1] * col) / splitXBy) | 0; newColor[2] = ((cl[2] * (splitXBy - col) + cr[2] * col) / splitXBy) | 0; colors.push(newColor); } } figureCoords[0] = pi[0]; figureColors[0] = ci[0]; figureCoords[splitXBy] = pi[3]; figureColors[splitXBy] = ci[1]; figureCoords[verticesPerRow * splitYBy] = pi[12]; figureColors[verticesPerRow * splitYBy] = ci[2]; figureCoords[verticesPerRow * splitYBy + splitXBy] = pi[15]; figureColors[verticesPerRow * splitYBy + splitXBy] = ci[3]; mesh.figures[index] = { type: 'lattice', coords: figureCoords, colors: figureColors, verticesPerRow: verticesPerRow }; } function decodeType6Shading(mesh, reader) { // A special case of Type 7. The p11, p12, p21, p22 automatically filled var coords = mesh.coords; var colors = mesh.colors; var ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33 var cs = new Int32Array(4); // c00, c30, c03, c33 while (reader.hasData) { var f = reader.readFlag(); assert(0 <= f && f <= 3, 'Unknown type6 flag'); var i, ii; var pi = coords.length; for (i = 0, ii = (f !== 0 ? 8 : 12); i < ii; i++) { coords.push(reader.readCoordinate()); } var ci = colors.length; for (i = 0, ii = (f !== 0 ? 2 : 4); i < ii; i++) { colors.push(reader.readComponents()); } var tmp1, tmp2, tmp3, tmp4; switch (f) { case 0: ps[12] = pi + 3; ps[13] = pi + 4; ps[14] = pi + 5; ps[15] = pi + 6; ps[ 8] = pi + 2; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 7; ps[ 4] = pi + 1; /* calculated below */ ps[ 7] = pi + 8; ps[ 0] = pi; ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9; cs[2] = ci + 1; cs[3] = ci + 2; cs[0] = ci; cs[1] = ci + 3; break; case 1: tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15]; ps[12] = pi + 5; ps[13] = pi + 4; ps[14] = pi + 3; ps[15] = pi + 2; ps[ 8] = pi + 6; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 1; ps[ 4] = pi + 7; /* calculated below */ ps[ 7] = pi; ps[ 0] = tmp1; ps[ 1] = tmp2; ps[ 2] = tmp3; ps[ 3] = tmp4; tmp1 = cs[2]; tmp2 = cs[3]; cs[2] = ci + 1; cs[3] = ci; cs[0] = tmp1; cs[1] = tmp2; break; case 2: ps[12] = ps[15]; ps[13] = pi + 7; ps[14] = pi + 6; ps[15] = pi + 5; ps[ 8] = ps[11]; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 4; ps[ 4] = ps[7]; /* calculated below */ ps[ 7] = pi + 3; ps[ 0] = ps[3]; ps[ 1] = pi; ps[ 2] = pi + 1; ps[ 3] = pi + 2; cs[2] = cs[3]; cs[3] = ci + 1; cs[0] = cs[1]; cs[1] = ci; break; case 3: ps[12] = ps[0]; ps[13] = ps[1]; ps[14] = ps[2]; ps[15] = ps[3]; ps[ 8] = pi; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 7; ps[ 4] = pi + 1; /* calculated below */ ps[ 7] = pi + 6; ps[ 0] = pi + 2; ps[ 1] = pi + 3; ps[ 2] = pi + 4; ps[ 3] = pi + 5; cs[2] = cs[0]; cs[3] = cs[1]; cs[0] = ci; cs[1] = ci + 1; break; } // set p11, p12, p21, p22 ps[5] = coords.length; coords.push([ (-4 * coords[ps[0]][0] - coords[ps[15]][0] + 6 * (coords[ps[4]][0] + coords[ps[1]][0]) - 2 * (coords[ps[12]][0] + coords[ps[3]][0]) + 3 * (coords[ps[13]][0] + coords[ps[7]][0])) / 9, (-4 * coords[ps[0]][1] - coords[ps[15]][1] + 6 * (coords[ps[4]][1] + coords[ps[1]][1]) - 2 * (coords[ps[12]][1] + coords[ps[3]][1]) + 3 * (coords[ps[13]][1] + coords[ps[7]][1])) / 9 ]); ps[6] = coords.length; coords.push([ (-4 * coords[ps[3]][0] - coords[ps[12]][0] + 6 * (coords[ps[2]][0] + coords[ps[7]][0]) - 2 * (coords[ps[0]][0] + coords[ps[15]][0]) + 3 * (coords[ps[4]][0] + coords[ps[14]][0])) / 9, (-4 * coords[ps[3]][1] - coords[ps[12]][1] + 6 * (coords[ps[2]][1] + coords[ps[7]][1]) - 2 * (coords[ps[0]][1] + coords[ps[15]][1]) + 3 * (coords[ps[4]][1] + coords[ps[14]][1])) / 9 ]); ps[9] = coords.length; coords.push([ (-4 * coords[ps[12]][0] - coords[ps[3]][0] + 6 * (coords[ps[8]][0] + coords[ps[13]][0]) - 2 * (coords[ps[0]][0] + coords[ps[15]][0]) + 3 * (coords[ps[11]][0] + coords[ps[1]][0])) / 9, (-4 * coords[ps[12]][1] - coords[ps[3]][1] + 6 * (coords[ps[8]][1] + coords[ps[13]][1]) - 2 * (coords[ps[0]][1] + coords[ps[15]][1]) + 3 * (coords[ps[11]][1] + coords[ps[1]][1])) / 9 ]); ps[10] = coords.length; coords.push([ (-4 * coords[ps[15]][0] - coords[ps[0]][0] + 6 * (coords[ps[11]][0] + coords[ps[14]][0]) - 2 * (coords[ps[12]][0] + coords[ps[3]][0]) + 3 * (coords[ps[2]][0] + coords[ps[8]][0])) / 9, (-4 * coords[ps[15]][1] - coords[ps[0]][1] + 6 * (coords[ps[11]][1] + coords[ps[14]][1]) - 2 * (coords[ps[12]][1] + coords[ps[3]][1]) + 3 * (coords[ps[2]][1] + coords[ps[8]][1])) / 9 ]); mesh.figures.push({ type: 'patch', coords: new Int32Array(ps), // making copies of ps and cs colors: new Int32Array(cs) }); } } function decodeType7Shading(mesh, reader) { var coords = mesh.coords; var colors = mesh.colors; var ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33 var cs = new Int32Array(4); // c00, c30, c03, c33 while (reader.hasData) { var f = reader.readFlag(); assert(0 <= f && f <= 3, 'Unknown type7 flag'); var i, ii; var pi = coords.length; for (i = 0, ii = (f !== 0 ? 12 : 16); i < ii; i++) { coords.push(reader.readCoordinate()); } var ci = colors.length; for (i = 0, ii = (f !== 0 ? 2 : 4); i < ii; i++) { colors.push(reader.readComponents()); } var tmp1, tmp2, tmp3, tmp4; switch (f) { case 0: ps[12] = pi + 3; ps[13] = pi + 4; ps[14] = pi + 5; ps[15] = pi + 6; ps[ 8] = pi + 2; ps[ 9] = pi + 13; ps[10] = pi + 14; ps[11] = pi + 7; ps[ 4] = pi + 1; ps[ 5] = pi + 12; ps[ 6] = pi + 15; ps[ 7] = pi + 8; ps[ 0] = pi; ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9; cs[2] = ci + 1; cs[3] = ci + 2; cs[0] = ci; cs[1] = ci + 3; break; case 1: tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15]; ps[12] = pi + 5; ps[13] = pi + 4; ps[14] = pi + 3; ps[15] = pi + 2; ps[ 8] = pi + 6; ps[ 9] = pi + 11; ps[10] = pi + 10; ps[11] = pi + 1; ps[ 4] = pi + 7; ps[ 5] = pi + 8; ps[ 6] = pi + 9; ps[ 7] = pi; ps[ 0] = tmp1; ps[ 1] = tmp2; ps[ 2] = tmp3; ps[ 3] = tmp4; tmp1 = cs[2]; tmp2 = cs[3]; cs[2] = ci + 1; cs[3] = ci; cs[0] = tmp1; cs[1] = tmp2; break; case 2: ps[12] = ps[15]; ps[13] = pi + 7; ps[14] = pi + 6; ps[15] = pi + 5; ps[ 8] = ps[11]; ps[ 9] = pi + 8; ps[10] = pi + 11; ps[11] = pi + 4; ps[ 4] = ps[7]; ps[ 5] = pi + 9; ps[ 6] = pi + 10; ps[ 7] = pi + 3; ps[ 0] = ps[3]; ps[ 1] = pi; ps[ 2] = pi + 1; ps[ 3] = pi + 2; cs[2] = cs[3]; cs[3] = ci + 1; cs[0] = cs[1]; cs[1] = ci; break; case 3: ps[12] = ps[0]; ps[13] = ps[1]; ps[14] = ps[2]; ps[15] = ps[3]; ps[ 8] = pi; ps[ 9] = pi + 9; ps[10] = pi + 8; ps[11] = pi + 7; ps[ 4] = pi + 1; ps[ 5] = pi + 10; ps[ 6] = pi + 11; ps[ 7] = pi + 6; ps[ 0] = pi + 2; ps[ 1] = pi + 3; ps[ 2] = pi + 4; ps[ 3] = pi + 5; cs[2] = cs[0]; cs[3] = cs[1]; cs[0] = ci; cs[1] = ci + 1; break; } mesh.figures.push({ type: 'patch', coords: new Int32Array(ps), // making copies of ps and cs colors: new Int32Array(cs) }); } } function updateBounds(mesh) { var minX = mesh.coords[0][0], minY = mesh.coords[0][1], maxX = minX, maxY = minY; for (var i = 1, ii = mesh.coords.length; i < ii; i++) { var x = mesh.coords[i][0], y = mesh.coords[i][1]; minX = minX > x ? x : minX; minY = minY > y ? y : minY; maxX = maxX < x ? x : maxX; maxY = maxY < y ? y : maxY; } mesh.bounds = [minX, minY, maxX, maxY]; } function Mesh(stream, matrix, xref, res) { assert(isStream(stream), 'Mesh data is not a stream'); var dict = stream.dict; this.matrix = matrix; this.shadingType = dict.get('ShadingType'); this.type = 'Pattern'; this.bbox = dict.get('BBox'); var cs = dict.get('ColorSpace', 'CS'); cs = ColorSpace.parse(cs, xref, res); this.cs = cs; this.background = dict.has('Background') ? cs.getRgb(dict.get('Background'), 0) : null; var fnObj = dict.get('Function'); var fn; if (!fnObj) { fn = null; } else if (isArray(fnObj)) { var fnArray = []; for (var j = 0, jj = fnObj.length; j < jj; j++) { var obj = xref.fetchIfRef(fnObj[j]); if (!isPDFFunction(obj)) { error('Invalid function'); } fnArray.push(PDFFunction.parse(xref, obj)); } fn = function radialAxialColorFunction(arg) { var out = []; for (var i = 0, ii = fnArray.length; i < ii; i++) { out.push(fnArray[i](arg)[0]); } return out; }; } else { if (!isPDFFunction(fnObj)) { error('Invalid function'); } fn = PDFFunction.parse(xref, fnObj); } this.coords = []; this.colors = []; this.figures = []; var decodeContext = { bitsPerCoordinate: dict.get('BitsPerCoordinate'), bitsPerComponent: dict.get('BitsPerComponent'), bitsPerFlag: dict.get('BitsPerFlag'), decode: dict.get('Decode'), colorFn: fn, colorSpace: cs, numComps: fn ? 1 : cs.numComps }; var reader = new MeshStreamReader(stream, decodeContext); var patchMesh = false; switch (this.shadingType) { case PatternType.FREE_FORM_MESH: decodeType4Shading(this, reader); break; case PatternType.LATTICE_FORM_MESH: var verticesPerRow = dict.get('VerticesPerRow') | 0; assert(verticesPerRow >= 2, 'Invalid VerticesPerRow'); decodeType5Shading(this, reader, verticesPerRow); break; case PatternType.COONS_PATCH_MESH: decodeType6Shading(this, reader); patchMesh = true; break; case PatternType.TENSOR_PATCH_MESH: decodeType7Shading(this, reader); patchMesh = true; break; default: error('Unsupported mesh type.'); break; } if (patchMesh) { // dirty bounds calculation for determining, how dense shall be triangles updateBounds(this); for (var i = 0, ii = this.figures.length; i < ii; i++) { buildFigureFromPatch(this, i); } } // calculate bounds updateBounds(this); } Mesh.prototype = { getIR: function Mesh_getIR() { var type = this.shadingType; var i, ii, j; var coords = this.coords; var coordsPacked = new Float32Array(coords.length * 2); for (i = 0, j = 0, ii = coords.length; i < ii; i++) { var xy = coords[i]; coordsPacked[j++] = xy[0]; coordsPacked[j++] = xy[1]; } var colors = this.colors; var colorsPacked = new Uint8Array(colors.length * 3); for (i = 0, j = 0, ii = colors.length; i < ii; i++) { var c = colors[i]; colorsPacked[j++] = c[0]; colorsPacked[j++] = c[1]; colorsPacked[j++] = c[2]; } var figures = this.figures; var bbox = this.bbox; var bounds = this.bounds; var matrix = this.matrix; var background = this.background; return ['Mesh', type, coordsPacked, colorsPacked, figures, bounds, matrix, bbox, background]; } }; return Mesh; })(); Shadings.Dummy = (function DummyClosure() { function Dummy() { this.type = 'Pattern'; } Dummy.prototype = { getIR: function Dummy_getIR() { return ['Dummy']; } }; return Dummy; })(); function getTilingPatternIR(operatorList, dict, args) { var matrix = dict.get('Matrix'); var bbox = dict.get('BBox'); var xstep = dict.get('XStep'); var ystep = dict.get('YStep'); var paintType = dict.get('PaintType'); var tilingType = dict.get('TilingType'); return [ 'TilingPattern', args, operatorList, matrix, bbox, xstep, ystep, paintType, tilingType ]; }