/** * The Type2 reader code below is only used for debugging purpose since Type2 * is only a CharString format and is never used directly as a Font file. * * So the code here is useful for dumping the data content of a .cff file in * order to investigate the similarity between a Type1 CharString and a Type2 * CharString. */ /** * Build a charset by assigning the glyph name and the human readable form * of the glyph data. */ function readCharset(aStream, aCharstrings) { var charset = {}; var format = aStream.getByte(); if (format == 0) { charset[".notdef"] = readCharstringEncoding(aCharstrings[0]); var count = aCharstrings.length - 1; for (var i = 1; i < count + 1; i++) { var sid = aStream.getByte() << 8 | aStream.getByte(); charset[CFFStrings[sid]] = readCharstringEncoding(aCharstrings[i]); //log(CFFStrings[sid] + "::" + charset[CFFStrings[sid]]); } } else if (format == 1) { error("Charset Range are not supported"); } else { error("Invalid charset format"); } return charset; }; /** * Take a Type2 binary charstring as input and transform it to a human * readable representation as specified by the 'The Type 2 Charstring Format', * chapter 3.1. */ function readCharstringEncoding(aString) { var charstringTokens = []; var count = aString.length; for (var i = 0; i < count; ) { var value = aString[i++]; var token = null; if (value < 0) { continue; } else if (value <= 11) { token = CFFEncodingMap[value]; } else if (value == 12) { token = CFFEncodingMap[value][aString[i++]]; } else if (value <= 18) { token = CFFEncodingMap[value]; } else if (value <= 20) { var mask = aString[i++]; token = CFFEncodingMap[value]; } else if (value <= 27) { token = CFFEncodingMap[value]; } else if (value == 28) { token = aString[i++] << 8 | aString[i++]; } else if (value <= 31) { token = CFFEncodingMap[value]; } else if (value < 247) { token = parseInt(value) - 139; } else if (value < 251) { token = ((value - 247) * 256) + aString[i++] + 108; } else if (value < 255) { token = -((value - 251) * 256) - aString[i++] - 108; } else {// value == 255 token = aString[i++] << 24 | aString[i++] << 16 | aString[i++] << 8 | aString[i]; } charstringTokens.push(token); } return charstringTokens; }; /** * Take a binary DICT Data as input and transform it into a human readable * form as specified by 'The Compact Font Format Specification', chapter 5. */ function readFontDictData(aString, aMap) { var fontDictDataTokens = []; var count = aString.length; for (var i = 0; i < count; i) { var value = aString[i++]; var token = null; if (value == 12) { token = aMap[value][aString[i++]]; } else if (value == 28) { token = aString[i++] << 8 | aString[i++]; } else if (value == 29) { token = aString[i++] << 24 | aString[i++] << 16 | aString[i++] << 8 | aString[i++]; } else if (value == 30) { token = ""; var parsed = false; while (!parsed) { var byte = aString[i++]; var nibbles = [parseInt(byte / 16), parseInt(byte % 16)]; for (var j = 0; j < nibbles.length; j++) { var nibble = nibbles[j]; switch (nibble) { case 0xA: token += "."; break; case 0xB: token += "E"; break; case 0xC: token += "E-"; break; case 0xD: break; case 0xE: token += "-"; break; case 0xF: parsed = true; break; default: token += nibble; break; } } }; token = parseFloat(token); } else if (value <= 31) { token = aMap[value]; } else if (value <= 246) { token = parseInt(value) - 139; } else if (value <= 250) { token = ((value - 247) * 256) + aString[i++] + 108; } else if (value <= 254) { token = -((value - 251) * 256) - aString[i++] - 108; } else if (value == 255) { error("255 is not a valid DICT command"); } fontDictDataTokens.push(token); } return fontDictDataTokens; }; /** * Take a stream as input and return an array of objects. * In CFF an INDEX is a structure with the following format: * { * count: 2 bytes (Number of objects stored in INDEX), * offsize: 1 byte (Offset array element size), * offset: [count + 1] bytes (Offsets array), * data: - (Objects data) * } * * More explanation are given in the 'CFF Font Format Specification', * chapter 5. */ function readFontIndexData(aStream, aIsByte) { var count = aStream.getByte() << 8 | aStream.getByte(); var offsize = aStream.getByte(); function getNextOffset() { switch (offsize) { case 0: return 0; case 1: return aStream.getByte(); case 2: return aStream.getByte() << 8 | aStream.getByte(); case 3: return aStream.getByte() << 16 | aStream.getByte() << 8 | aStream.getByte(); case 4: return aStream.getByte() << 24 | aStream.getByte() << 16 | aStream.getByte() << 8 | aStream.getByte(); } }; var offsets = []; for (var i = 0; i < count + 1; i++) offsets.push(getNextOffset()); log("Found " + count + " objects at offsets :" + offsets + " (offsize: " + offsize + ")"); // Now extract the objects var relativeOffset = aStream.pos; var objects = []; for (var i = 0; i < count; i++) { var offset = offsets[i]; aStream.pos = relativeOffset + offset - 1; var data = []; var length = offsets[i + 1] - 1; for (var j = offset - 1; j < length; j++) data.push(aIsByte ? aStream.getByte() : aStream.getChar()); objects.push(data); } return objects; }; var Type2Parser = function(aFilePath) { var font = new Dict(); // Turn on this flag for additional debugging logs var debug = false; function dump(aStr) { if (debug) log(aStr); }; function parseAsToken(aString, aMap) { var decoded = readFontDictData(aString, aMap); var stack = []; var count = decoded.length; for (var i = 0; i < count; i++) { var token = decoded[i]; if (IsNum(token)) { stack.push(token); } else { switch (token.operand) { case "SID": font.set(token.name, CFFStrings[stack.pop()]); break; case "number number": font.set(token.name, { offset: stack.pop(), size: stack.pop() }); break; case "boolean": font.set(token.name, stack.pop()); break; case "delta": font.set(token.name, stack.pop()); break; default: if (token.operand && token.operand.length) { var array = []; for (var j = 0; j < token.operand.length; j++) array.push(stack.pop()); font.set(token.name, array); } else { font.set(token.name, stack.pop()); } break; } } } }; this.parse = function(aStream) { font.set("major", aStream.getByte()); font.set("minor", aStream.getByte()); font.set("hdrSize", aStream.getByte()); font.set("offsize", aStream.getByte()); // Move the cursor after the header aStream.skip(font.get("hdrSize") - aStream.pos); // Read the NAME Index dump("Reading Index: Names"); font.set("Names", readFontIndexData(aStream)); log("Names: " + font.get("Names")); // Read the Top Dict Index dump("Reading Index: TopDict"); var topDict = readFontIndexData(aStream, true); log("TopDict: " + topDict); // Read the String Index dump("Reading Index: Strings"); var strings = readFontIndexData(aStream); log("strings: " + strings); // Fill up the Strings dictionary with the new unique strings for (var i = 0; i < strings.length; i++) CFFStrings.push(strings[i].join("")); // Parse the TopDict operator var objects = []; var count = topDict.length; for (var i = 0; i < count; i++) parseAsToken(topDict[i], CFFDictDataMap); // Read the Global Subr Index that comes just after the Strings Index // (cf. "The Compact Font Format Specification" Chapter 16) dump("Reading Global Subr Index"); var subrs = readFontIndexData(aStream); // Reading Private Dict var private = font.get("Private"); log("Reading Private Dict (offset: " + private.offset + " size: " + private.size + ")"); aStream.pos = private.offset; var privateDict = []; for (var i = 0; i < private.size; i++) privateDict.push(aStream.getByte()); dump("private:" + privateDict); parseAsToken(privateDict, CFFDictPrivateDataMap); for (var p in font.map) dump(p + "::" + font.get(p)); // Read CharStrings Index var charStringsOffset = font.get("CharStrings"); dump("Read CharStrings Index (offset: " + charStringsOffset + ")"); aStream.pos = charStringsOffset; var charStrings = readFontIndexData(aStream, true); // Read Charset dump("Read Charset for " + charStrings.length + " glyphs"); var charsetEntry = font.get("charset"); if (charsetEntry == 0) { error("Need to support CFFISOAdobeCharset"); } else if (charsetEntry == 1) { error("Need to support CFFExpert"); } else if (charsetEntry == 2) { error("Need to support CFFExpertSubsetCharset"); } else { aStream.pos = charsetEntry; var charset = readCharset(aStream, charStrings); } } }; var xhr = new XMLHttpRequest(); xhr.open("GET", "titi.cff", false); xhr.mozResponseType = xhr.responseType = "arraybuffer"; xhr.expected = (document.URL.indexOf("file:") == 0) ? 0 : 200; xhr.send(null); var cffData = xhr.mozResponseArrayBuffer || xhr.mozResponse || xhr.responseArrayBuffer || xhr.response; var cff = new Type2Parser("titi.cff"); //cff.parse(new Stream(cffData)); /** * Write to a file (works only on Firefox in privilege mode"); */ function writeToFile(aBytes, aFilePath) { netscape.security.PrivilegeManager.enablePrivilege("UniversalXPConnect"); var Cc = Components.classes, Ci = Components.interfaces; var file = Cc['@mozilla.org/file/local;1'].createInstance(Ci.nsILocalFile); file.initWithPath(aFilePath); var stream = Cc["@mozilla.org/network/file-output-stream;1"] .createInstance(Ci.nsIFileOutputStream); stream.init(file, 0x04 | 0x08 | 0x20, 0600, 0); var bos = Cc["@mozilla.org/binaryoutputstream;1"] .createInstance(Ci.nsIBinaryOutputStream); bos.setOutputStream(stream); bos.writeByteArray(aBytes, aBytes.length); stream.close(); };