/* Copyright 2012 Mozilla Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { assert, FormatError, info, unreachable, UNSUPPORTED_FEATURES, Util, warn, } from "../shared/util.js"; import { ColorSpace } from "./colorspace.js"; import { isStream } from "./primitives.js"; import { MissingDataException } from "./core_utils.js"; const ShadingType = { FUNCTION_BASED: 1, AXIAL: 2, RADIAL: 3, FREE_FORM_MESH: 4, LATTICE_FORM_MESH: 5, COONS_PATCH_MESH: 6, TENSOR_PATCH_MESH: 7, }; const Pattern = (function PatternClosure() { // Constructor should define this.getPattern // eslint-disable-next-line no-shadow function Pattern() { unreachable("should not call Pattern constructor"); } Pattern.prototype = { // Input: current Canvas context // Output: the appropriate fillStyle or strokeStyle getPattern: function Pattern_getPattern(ctx) { unreachable(`Should not call Pattern.getStyle: ${ctx}`); }, }; Pattern.parseShading = function ( shading, matrix, xref, res, handler, pdfFunctionFactory, localColorSpaceCache ) { const dict = isStream(shading) ? shading.dict : shading; const type = dict.get("ShadingType"); try { switch (type) { case ShadingType.AXIAL: case ShadingType.RADIAL: // Both radial and axial shadings are handled by RadialAxial shading. return new Shadings.RadialAxial( dict, matrix, xref, res, pdfFunctionFactory, localColorSpaceCache ); case ShadingType.FREE_FORM_MESH: case ShadingType.LATTICE_FORM_MESH: case ShadingType.COONS_PATCH_MESH: case ShadingType.TENSOR_PATCH_MESH: return new Shadings.Mesh( shading, matrix, xref, res, pdfFunctionFactory, localColorSpaceCache ); default: throw new FormatError("Unsupported ShadingType: " + type); } } catch (ex) { if (ex instanceof MissingDataException) { throw ex; } handler.send("UnsupportedFeature", { featureId: UNSUPPORTED_FEATURES.shadingPattern, }); warn(ex); return new Shadings.Dummy(); } }; return Pattern; })(); const Shadings = {}; // A small number to offset the first/last color stops so we can insert ones to // support extend. Number.MIN_VALUE is too small and breaks the extend. Shadings.SMALL_NUMBER = 1e-6; // Radial and axial shading have very similar implementations // If needed, the implementations can be broken into two classes Shadings.RadialAxial = (function RadialAxialClosure() { function RadialAxial( dict, matrix, xref, resources, pdfFunctionFactory, localColorSpaceCache ) { this.matrix = matrix; this.coordsArr = dict.getArray("Coords"); this.shadingType = dict.get("ShadingType"); this.type = "Pattern"; const cs = ColorSpace.parse({ cs: dict.getRaw("ColorSpace") || dict.getRaw("CS"), xref, resources, pdfFunctionFactory, localColorSpaceCache, }); this.cs = cs; const bbox = dict.getArray("BBox"); if (Array.isArray(bbox) && bbox.length === 4) { this.bbox = Util.normalizeRect(bbox); } else { this.bbox = null; } let t0 = 0.0, t1 = 1.0; if (dict.has("Domain")) { const domainArr = dict.getArray("Domain"); t0 = domainArr[0]; t1 = domainArr[1]; } let extendStart = false, extendEnd = false; if (dict.has("Extend")) { const extendArr = dict.getArray("Extend"); extendStart = extendArr[0]; extendEnd = extendArr[1]; } if ( this.shadingType === ShadingType.RADIAL && (!extendStart || !extendEnd) ) { // Radial gradient only currently works if either circle is fully within // the other circle. const [x1, y1, r1, x2, y2, r2] = this.coordsArr; const distance = Math.hypot(x1 - x2, y1 - y2); if (r1 <= r2 + distance && r2 <= r1 + distance) { warn("Unsupported radial gradient."); } } this.extendStart = extendStart; this.extendEnd = extendEnd; const fnObj = dict.getRaw("Function"); const fn = pdfFunctionFactory.createFromArray(fnObj); // 10 samples seems good enough for now, but probably won't work // if there are sharp color changes. Ideally, we would implement // the spec faithfully and add lossless optimizations. const NUMBER_OF_SAMPLES = 10; const step = (t1 - t0) / NUMBER_OF_SAMPLES; const colorStops = (this.colorStops = []); // Protect against bad domains. if (t0 >= t1 || step <= 0) { // Acrobat doesn't seem to handle these cases so we'll ignore for // now. info("Bad shading domain."); return; } const color = new Float32Array(cs.numComps), ratio = new Float32Array(1); let rgbColor; for (let i = 0; i <= NUMBER_OF_SAMPLES; i++) { ratio[0] = t0 + i * step; fn(ratio, 0, color, 0); rgbColor = cs.getRgb(color, 0); const cssColor = Util.makeHexColor(rgbColor[0], rgbColor[1], rgbColor[2]); colorStops.push([i / NUMBER_OF_SAMPLES, cssColor]); } let background = "transparent"; if (dict.has("Background")) { rgbColor = cs.getRgb(dict.get("Background"), 0); background = Util.makeHexColor(rgbColor[0], rgbColor[1], rgbColor[2]); } if (!extendStart) { // Insert a color stop at the front and offset the first real color stop // so it doesn't conflict with the one we insert. colorStops.unshift([0, background]); colorStops[1][0] += Shadings.SMALL_NUMBER; } if (!extendEnd) { // Same idea as above in extendStart but for the end. colorStops[colorStops.length - 1][0] -= Shadings.SMALL_NUMBER; colorStops.push([1, background]); } this.colorStops = colorStops; } RadialAxial.prototype = { getIR: function RadialAxial_getIR() { const coordsArr = this.coordsArr; const shadingType = this.shadingType; let type, p0, p1, r0, r1; if (shadingType === ShadingType.AXIAL) { p0 = [coordsArr[0], coordsArr[1]]; p1 = [coordsArr[2], coordsArr[3]]; r0 = null; r1 = null; type = "axial"; } else if (shadingType === ShadingType.RADIAL) { p0 = [coordsArr[0], coordsArr[1]]; p1 = [coordsArr[3], coordsArr[4]]; r0 = coordsArr[2]; r1 = coordsArr[5]; type = "radial"; } else { unreachable(`getPattern type unknown: ${shadingType}`); } const matrix = this.matrix; if (matrix) { p0 = Util.applyTransform(p0, matrix); p1 = Util.applyTransform(p1, matrix); if (shadingType === ShadingType.RADIAL) { const scale = Util.singularValueDecompose2dScale(matrix); r0 *= scale[0]; r1 *= scale[1]; } } return ["RadialAxial", type, this.bbox, this.colorStops, p0, p1, r0, r1]; }, }; return RadialAxial; })(); // All mesh shading. For now, they will be presented as set of the triangles // to be drawn on the canvas and rgb color for each vertex. Shadings.Mesh = (function MeshClosure() { function MeshStreamReader(stream, context) { this.stream = stream; this.context = context; this.buffer = 0; this.bufferLength = 0; const numComps = context.numComps; this.tmpCompsBuf = new Float32Array(numComps); const csNumComps = context.colorSpace.numComps; this.tmpCsCompsBuf = context.colorFn ? new Float32Array(csNumComps) : this.tmpCompsBuf; } MeshStreamReader.prototype = { get hasData() { if (this.stream.end) { return this.stream.pos < this.stream.end; } if (this.bufferLength > 0) { return true; } const nextByte = this.stream.getByte(); if (nextByte < 0) { return false; } this.buffer = nextByte; this.bufferLength = 8; return true; }, readBits: function MeshStreamReader_readBits(n) { let buffer = this.buffer; let bufferLength = this.bufferLength; if (n === 32) { if (bufferLength === 0) { return ( ((this.stream.getByte() << 24) | (this.stream.getByte() << 16) | (this.stream.getByte() << 8) | this.stream.getByte()) >>> 0 ); } buffer = (buffer << 24) | (this.stream.getByte() << 16) | (this.stream.getByte() << 8) | this.stream.getByte(); const nextByte = this.stream.getByte(); this.buffer = nextByte & ((1 << bufferLength) - 1); return ( ((buffer << (8 - bufferLength)) | ((nextByte & 0xff) >> bufferLength)) >>> 0 ); } if (n === 8 && bufferLength === 0) { return this.stream.getByte(); } while (bufferLength < n) { buffer = (buffer << 8) | this.stream.getByte(); bufferLength += 8; } bufferLength -= n; this.bufferLength = bufferLength; this.buffer = buffer & ((1 << bufferLength) - 1); return buffer >> bufferLength; }, align: function MeshStreamReader_align() { this.buffer = 0; this.bufferLength = 0; }, readFlag: function MeshStreamReader_readFlag() { return this.readBits(this.context.bitsPerFlag); }, readCoordinate: function MeshStreamReader_readCoordinate() { const bitsPerCoordinate = this.context.bitsPerCoordinate; const xi = this.readBits(bitsPerCoordinate); const yi = this.readBits(bitsPerCoordinate); const decode = this.context.decode; const scale = bitsPerCoordinate < 32 ? 1 / ((1 << bitsPerCoordinate) - 1) : 2.3283064365386963e-10; // 2 ^ -32 return [ xi * scale * (decode[1] - decode[0]) + decode[0], yi * scale * (decode[3] - decode[2]) + decode[2], ]; }, readComponents: function MeshStreamReader_readComponents() { const numComps = this.context.numComps; const bitsPerComponent = this.context.bitsPerComponent; const scale = bitsPerComponent < 32 ? 1 / ((1 << bitsPerComponent) - 1) : 2.3283064365386963e-10; // 2 ^ -32 const decode = this.context.decode; const components = this.tmpCompsBuf; for (let i = 0, j = 4; i < numComps; i++, j += 2) { const ci = this.readBits(bitsPerComponent); components[i] = ci * scale * (decode[j + 1] - decode[j]) + decode[j]; } const color = this.tmpCsCompsBuf; if (this.context.colorFn) { this.context.colorFn(components, 0, color, 0); } return this.context.colorSpace.getRgb(color, 0); }, }; function decodeType4Shading(mesh, reader) { const coords = mesh.coords; const colors = mesh.colors; const operators = []; const ps = []; // not maintaining cs since that will match ps let verticesLeft = 0; // assuming we have all data to start a new triangle while (reader.hasData) { const f = reader.readFlag(); const coord = reader.readCoordinate(); const color = reader.readComponents(); if (verticesLeft === 0) { // ignoring flags if we started a triangle if (!(0 <= f && f <= 2)) { throw new FormatError("Unknown type4 flag"); } switch (f) { case 0: verticesLeft = 3; break; case 1: ps.push(ps[ps.length - 2], ps[ps.length - 1]); verticesLeft = 1; break; case 2: ps.push(ps[ps.length - 3], ps[ps.length - 1]); verticesLeft = 1; break; } operators.push(f); } ps.push(coords.length); coords.push(coord); colors.push(color); verticesLeft--; reader.align(); } mesh.figures.push({ type: "triangles", coords: new Int32Array(ps), colors: new Int32Array(ps), }); } function decodeType5Shading(mesh, reader, verticesPerRow) { const coords = mesh.coords; const colors = mesh.colors; const ps = []; // not maintaining cs since that will match ps while (reader.hasData) { const coord = reader.readCoordinate(); const color = reader.readComponents(); ps.push(coords.length); coords.push(coord); colors.push(color); } mesh.figures.push({ type: "lattice", coords: new Int32Array(ps), colors: new Int32Array(ps), verticesPerRow, }); } const MIN_SPLIT_PATCH_CHUNKS_AMOUNT = 3; const MAX_SPLIT_PATCH_CHUNKS_AMOUNT = 20; const TRIANGLE_DENSITY = 20; // count of triangles per entire mesh bounds const getB = (function getBClosure() { function buildB(count) { const lut = []; for (let i = 0; i <= count; i++) { const t = i / count, t_ = 1 - t; lut.push( new Float32Array([ t_ * t_ * t_, 3 * t * t_ * t_, 3 * t * t * t_, t * t * t, ]) ); } return lut; } const cache = []; // eslint-disable-next-line no-shadow return function getB(count) { if (!cache[count]) { cache[count] = buildB(count); } return cache[count]; }; })(); function buildFigureFromPatch(mesh, index) { const figure = mesh.figures[index]; assert(figure.type === "patch", "Unexpected patch mesh figure"); const coords = mesh.coords, colors = mesh.colors; const pi = figure.coords; const ci = figure.colors; const figureMinX = Math.min( coords[pi[0]][0], coords[pi[3]][0], coords[pi[12]][0], coords[pi[15]][0] ); const figureMinY = Math.min( coords[pi[0]][1], coords[pi[3]][1], coords[pi[12]][1], coords[pi[15]][1] ); const figureMaxX = Math.max( coords[pi[0]][0], coords[pi[3]][0], coords[pi[12]][0], coords[pi[15]][0] ); const figureMaxY = Math.max( coords[pi[0]][1], coords[pi[3]][1], coords[pi[12]][1], coords[pi[15]][1] ); let splitXBy = Math.ceil( ((figureMaxX - figureMinX) * TRIANGLE_DENSITY) / (mesh.bounds[2] - mesh.bounds[0]) ); splitXBy = Math.max( MIN_SPLIT_PATCH_CHUNKS_AMOUNT, Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitXBy) ); let splitYBy = Math.ceil( ((figureMaxY - figureMinY) * TRIANGLE_DENSITY) / (mesh.bounds[3] - mesh.bounds[1]) ); splitYBy = Math.max( MIN_SPLIT_PATCH_CHUNKS_AMOUNT, Math.min(MAX_SPLIT_PATCH_CHUNKS_AMOUNT, splitYBy) ); const verticesPerRow = splitXBy + 1; const figureCoords = new Int32Array((splitYBy + 1) * verticesPerRow); const figureColors = new Int32Array((splitYBy + 1) * verticesPerRow); let k = 0; const cl = new Uint8Array(3), cr = new Uint8Array(3); const c0 = colors[ci[0]], c1 = colors[ci[1]], c2 = colors[ci[2]], c3 = colors[ci[3]]; const bRow = getB(splitYBy), bCol = getB(splitXBy); for (let row = 0; row <= splitYBy; row++) { cl[0] = ((c0[0] * (splitYBy - row) + c2[0] * row) / splitYBy) | 0; cl[1] = ((c0[1] * (splitYBy - row) + c2[1] * row) / splitYBy) | 0; cl[2] = ((c0[2] * (splitYBy - row) + c2[2] * row) / splitYBy) | 0; cr[0] = ((c1[0] * (splitYBy - row) + c3[0] * row) / splitYBy) | 0; cr[1] = ((c1[1] * (splitYBy - row) + c3[1] * row) / splitYBy) | 0; cr[2] = ((c1[2] * (splitYBy - row) + c3[2] * row) / splitYBy) | 0; for (let col = 0; col <= splitXBy; col++, k++) { if ( (row === 0 || row === splitYBy) && (col === 0 || col === splitXBy) ) { continue; } let x = 0, y = 0; let q = 0; for (let i = 0; i <= 3; i++) { for (let j = 0; j <= 3; j++, q++) { const m = bRow[row][i] * bCol[col][j]; x += coords[pi[q]][0] * m; y += coords[pi[q]][1] * m; } } figureCoords[k] = coords.length; coords.push([x, y]); figureColors[k] = colors.length; const newColor = new Uint8Array(3); newColor[0] = ((cl[0] * (splitXBy - col) + cr[0] * col) / splitXBy) | 0; newColor[1] = ((cl[1] * (splitXBy - col) + cr[1] * col) / splitXBy) | 0; newColor[2] = ((cl[2] * (splitXBy - col) + cr[2] * col) / splitXBy) | 0; colors.push(newColor); } } figureCoords[0] = pi[0]; figureColors[0] = ci[0]; figureCoords[splitXBy] = pi[3]; figureColors[splitXBy] = ci[1]; figureCoords[verticesPerRow * splitYBy] = pi[12]; figureColors[verticesPerRow * splitYBy] = ci[2]; figureCoords[verticesPerRow * splitYBy + splitXBy] = pi[15]; figureColors[verticesPerRow * splitYBy + splitXBy] = ci[3]; mesh.figures[index] = { type: "lattice", coords: figureCoords, colors: figureColors, verticesPerRow, }; } function decodeType6Shading(mesh, reader) { // A special case of Type 7. The p11, p12, p21, p22 automatically filled const coords = mesh.coords; const colors = mesh.colors; const ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33 const cs = new Int32Array(4); // c00, c30, c03, c33 while (reader.hasData) { const f = reader.readFlag(); if (!(0 <= f && f <= 3)) { throw new FormatError("Unknown type6 flag"); } const pi = coords.length; for (let i = 0, ii = f !== 0 ? 8 : 12; i < ii; i++) { coords.push(reader.readCoordinate()); } const ci = colors.length; for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) { colors.push(reader.readComponents()); } let tmp1, tmp2, tmp3, tmp4; switch (f) { // prettier-ignore case 0: ps[12] = pi + 3; ps[13] = pi + 4; ps[14] = pi + 5; ps[15] = pi + 6; ps[ 8] = pi + 2; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 7; ps[ 4] = pi + 1; /* calculated below */ ps[ 7] = pi + 8; ps[ 0] = pi; ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9; cs[2] = ci + 1; cs[3] = ci + 2; cs[0] = ci; cs[1] = ci + 3; break; // prettier-ignore case 1: tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15]; ps[12] = tmp4; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2; ps[ 8] = tmp3; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3; ps[ 4] = tmp2; /* calculated below */ ps[ 7] = pi + 4; ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5; tmp1 = cs[2]; tmp2 = cs[3]; cs[2] = tmp2; cs[3] = ci; cs[0] = tmp1; cs[1] = ci + 1; break; // prettier-ignore case 2: tmp1 = ps[15]; tmp2 = ps[11]; ps[12] = ps[3]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2; ps[ 8] = ps[7]; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3; ps[ 4] = tmp2; /* calculated below */ ps[ 7] = pi + 4; ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5; tmp1 = cs[3]; cs[2] = cs[1]; cs[3] = ci; cs[0] = tmp1; cs[1] = ci + 1; break; // prettier-ignore case 3: ps[12] = ps[0]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2; ps[ 8] = ps[1]; /* values for 5, 6, 9, 10 are */ ps[11] = pi + 3; ps[ 4] = ps[2]; /* calculated below */ ps[ 7] = pi + 4; ps[ 0] = ps[3]; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5; cs[2] = cs[0]; cs[3] = ci; cs[0] = cs[1]; cs[1] = ci + 1; break; } // set p11, p12, p21, p22 ps[5] = coords.length; coords.push([ (-4 * coords[ps[0]][0] - coords[ps[15]][0] + 6 * (coords[ps[4]][0] + coords[ps[1]][0]) - 2 * (coords[ps[12]][0] + coords[ps[3]][0]) + 3 * (coords[ps[13]][0] + coords[ps[7]][0])) / 9, (-4 * coords[ps[0]][1] - coords[ps[15]][1] + 6 * (coords[ps[4]][1] + coords[ps[1]][1]) - 2 * (coords[ps[12]][1] + coords[ps[3]][1]) + 3 * (coords[ps[13]][1] + coords[ps[7]][1])) / 9, ]); ps[6] = coords.length; coords.push([ (-4 * coords[ps[3]][0] - coords[ps[12]][0] + 6 * (coords[ps[2]][0] + coords[ps[7]][0]) - 2 * (coords[ps[0]][0] + coords[ps[15]][0]) + 3 * (coords[ps[4]][0] + coords[ps[14]][0])) / 9, (-4 * coords[ps[3]][1] - coords[ps[12]][1] + 6 * (coords[ps[2]][1] + coords[ps[7]][1]) - 2 * (coords[ps[0]][1] + coords[ps[15]][1]) + 3 * (coords[ps[4]][1] + coords[ps[14]][1])) / 9, ]); ps[9] = coords.length; coords.push([ (-4 * coords[ps[12]][0] - coords[ps[3]][0] + 6 * (coords[ps[8]][0] + coords[ps[13]][0]) - 2 * (coords[ps[0]][0] + coords[ps[15]][0]) + 3 * (coords[ps[11]][0] + coords[ps[1]][0])) / 9, (-4 * coords[ps[12]][1] - coords[ps[3]][1] + 6 * (coords[ps[8]][1] + coords[ps[13]][1]) - 2 * (coords[ps[0]][1] + coords[ps[15]][1]) + 3 * (coords[ps[11]][1] + coords[ps[1]][1])) / 9, ]); ps[10] = coords.length; coords.push([ (-4 * coords[ps[15]][0] - coords[ps[0]][0] + 6 * (coords[ps[11]][0] + coords[ps[14]][0]) - 2 * (coords[ps[12]][0] + coords[ps[3]][0]) + 3 * (coords[ps[2]][0] + coords[ps[8]][0])) / 9, (-4 * coords[ps[15]][1] - coords[ps[0]][1] + 6 * (coords[ps[11]][1] + coords[ps[14]][1]) - 2 * (coords[ps[12]][1] + coords[ps[3]][1]) + 3 * (coords[ps[2]][1] + coords[ps[8]][1])) / 9, ]); mesh.figures.push({ type: "patch", coords: new Int32Array(ps), // making copies of ps and cs colors: new Int32Array(cs), }); } } function decodeType7Shading(mesh, reader) { const coords = mesh.coords; const colors = mesh.colors; const ps = new Int32Array(16); // p00, p10, ..., p30, p01, ..., p33 const cs = new Int32Array(4); // c00, c30, c03, c33 while (reader.hasData) { const f = reader.readFlag(); if (!(0 <= f && f <= 3)) { throw new FormatError("Unknown type7 flag"); } const pi = coords.length; for (let i = 0, ii = f !== 0 ? 12 : 16; i < ii; i++) { coords.push(reader.readCoordinate()); } const ci = colors.length; for (let i = 0, ii = f !== 0 ? 2 : 4; i < ii; i++) { colors.push(reader.readComponents()); } let tmp1, tmp2, tmp3, tmp4; switch (f) { // prettier-ignore case 0: ps[12] = pi + 3; ps[13] = pi + 4; ps[14] = pi + 5; ps[15] = pi + 6; ps[ 8] = pi + 2; ps[ 9] = pi + 13; ps[10] = pi + 14; ps[11] = pi + 7; ps[ 4] = pi + 1; ps[ 5] = pi + 12; ps[ 6] = pi + 15; ps[ 7] = pi + 8; ps[ 0] = pi; ps[ 1] = pi + 11; ps[ 2] = pi + 10; ps[ 3] = pi + 9; cs[2] = ci + 1; cs[3] = ci + 2; cs[0] = ci; cs[1] = ci + 3; break; // prettier-ignore case 1: tmp1 = ps[12]; tmp2 = ps[13]; tmp3 = ps[14]; tmp4 = ps[15]; ps[12] = tmp4; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2; ps[ 8] = tmp3; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3; ps[ 4] = tmp2; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4; ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5; tmp1 = cs[2]; tmp2 = cs[3]; cs[2] = tmp2; cs[3] = ci; cs[0] = tmp1; cs[1] = ci + 1; break; // prettier-ignore case 2: tmp1 = ps[15]; tmp2 = ps[11]; ps[12] = ps[3]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2; ps[ 8] = ps[7]; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3; ps[ 4] = tmp2; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4; ps[ 0] = tmp1; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5; tmp1 = cs[3]; cs[2] = cs[1]; cs[3] = ci; cs[0] = tmp1; cs[1] = ci + 1; break; // prettier-ignore case 3: ps[12] = ps[0]; ps[13] = pi + 0; ps[14] = pi + 1; ps[15] = pi + 2; ps[ 8] = ps[1]; ps[ 9] = pi + 9; ps[10] = pi + 10; ps[11] = pi + 3; ps[ 4] = ps[2]; ps[ 5] = pi + 8; ps[ 6] = pi + 11; ps[ 7] = pi + 4; ps[ 0] = ps[3]; ps[ 1] = pi + 7; ps[ 2] = pi + 6; ps[ 3] = pi + 5; cs[2] = cs[0]; cs[3] = ci; cs[0] = cs[1]; cs[1] = ci + 1; break; } mesh.figures.push({ type: "patch", coords: new Int32Array(ps), // making copies of ps and cs colors: new Int32Array(cs), }); } } function updateBounds(mesh) { let minX = mesh.coords[0][0], minY = mesh.coords[0][1], maxX = minX, maxY = minY; for (let i = 1, ii = mesh.coords.length; i < ii; i++) { const x = mesh.coords[i][0], y = mesh.coords[i][1]; minX = minX > x ? x : minX; minY = minY > y ? y : minY; maxX = maxX < x ? x : maxX; maxY = maxY < y ? y : maxY; } mesh.bounds = [minX, minY, maxX, maxY]; } function packData(mesh) { let i, ii, j, jj; const coords = mesh.coords; const coordsPacked = new Float32Array(coords.length * 2); for (i = 0, j = 0, ii = coords.length; i < ii; i++) { const xy = coords[i]; coordsPacked[j++] = xy[0]; coordsPacked[j++] = xy[1]; } mesh.coords = coordsPacked; const colors = mesh.colors; const colorsPacked = new Uint8Array(colors.length * 3); for (i = 0, j = 0, ii = colors.length; i < ii; i++) { const c = colors[i]; colorsPacked[j++] = c[0]; colorsPacked[j++] = c[1]; colorsPacked[j++] = c[2]; } mesh.colors = colorsPacked; const figures = mesh.figures; for (i = 0, ii = figures.length; i < ii; i++) { const figure = figures[i], ps = figure.coords, cs = figure.colors; for (j = 0, jj = ps.length; j < jj; j++) { ps[j] *= 2; cs[j] *= 3; } } } function Mesh( stream, matrix, xref, resources, pdfFunctionFactory, localColorSpaceCache ) { if (!isStream(stream)) { throw new FormatError("Mesh data is not a stream"); } const dict = stream.dict; this.matrix = matrix; this.shadingType = dict.get("ShadingType"); this.type = "Pattern"; const bbox = dict.getArray("BBox"); if (Array.isArray(bbox) && bbox.length === 4) { this.bbox = Util.normalizeRect(bbox); } else { this.bbox = null; } const cs = ColorSpace.parse({ cs: dict.getRaw("ColorSpace") || dict.getRaw("CS"), xref, resources, pdfFunctionFactory, localColorSpaceCache, }); this.cs = cs; this.background = dict.has("Background") ? cs.getRgb(dict.get("Background"), 0) : null; const fnObj = dict.getRaw("Function"); const fn = fnObj ? pdfFunctionFactory.createFromArray(fnObj) : null; this.coords = []; this.colors = []; this.figures = []; const decodeContext = { bitsPerCoordinate: dict.get("BitsPerCoordinate"), bitsPerComponent: dict.get("BitsPerComponent"), bitsPerFlag: dict.get("BitsPerFlag"), decode: dict.getArray("Decode"), colorFn: fn, colorSpace: cs, numComps: fn ? 1 : cs.numComps, }; const reader = new MeshStreamReader(stream, decodeContext); let patchMesh = false; switch (this.shadingType) { case ShadingType.FREE_FORM_MESH: decodeType4Shading(this, reader); break; case ShadingType.LATTICE_FORM_MESH: const verticesPerRow = dict.get("VerticesPerRow") | 0; if (verticesPerRow < 2) { throw new FormatError("Invalid VerticesPerRow"); } decodeType5Shading(this, reader, verticesPerRow); break; case ShadingType.COONS_PATCH_MESH: decodeType6Shading(this, reader); patchMesh = true; break; case ShadingType.TENSOR_PATCH_MESH: decodeType7Shading(this, reader); patchMesh = true; break; default: unreachable("Unsupported mesh type."); break; } if (patchMesh) { // dirty bounds calculation for determining, how dense shall be triangles updateBounds(this); for (let i = 0, ii = this.figures.length; i < ii; i++) { buildFigureFromPatch(this, i); } } // calculate bounds updateBounds(this); packData(this); } Mesh.prototype = { getIR: function Mesh_getIR() { return [ "Mesh", this.shadingType, this.coords, this.colors, this.figures, this.bounds, this.matrix, this.bbox, this.background, ]; }, }; return Mesh; })(); Shadings.Dummy = (function DummyClosure() { function Dummy() { this.type = "Pattern"; } Dummy.prototype = { getIR: function Dummy_getIR() { return ["Dummy"]; }, }; return Dummy; })(); function getTilingPatternIR(operatorList, dict, color) { const matrix = dict.getArray("Matrix"); const bbox = Util.normalizeRect(dict.getArray("BBox")); const xstep = dict.get("XStep"); const ystep = dict.get("YStep"); const paintType = dict.get("PaintType"); const tilingType = dict.get("TilingType"); // Ensure that the pattern has a non-zero width and height, to prevent errors // in `pattern_helper.js` (fixes issue8330.pdf). if (bbox[2] - bbox[0] === 0 || bbox[3] - bbox[1] === 0) { throw new FormatError(`Invalid getTilingPatternIR /BBox array: [${bbox}].`); } return [ "TilingPattern", color, operatorList, matrix, bbox, xstep, ystep, paintType, tilingType, ]; } export { getTilingPatternIR, Pattern };