/* Copyright 2012 Mozilla Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { BaseException, info, unreachable, warn } from "../shared/util.js"; import { log2, readUint16, readUint32 } from "./core_utils.js"; import { ArithmeticDecoder } from "./arithmetic_decoder.js"; class JpxError extends BaseException { constructor(msg) { super(`JPX error: ${msg}`, "JpxError"); } } // Table E.1 const SubbandsGainLog2 = { LL: 0, LH: 1, HL: 1, HH: 2, }; class JpxImage { constructor() { this.failOnCorruptedImage = false; } parse(data) { const head = readUint16(data, 0); // No box header, immediate start of codestream (SOC) if (head === 0xff4f) { this.parseCodestream(data, 0, data.length); return; } const length = data.length; let position = 0; while (position < length) { let headerSize = 8; let lbox = readUint32(data, position); const tbox = readUint32(data, position + 4); position += headerSize; if (lbox === 1) { // XLBox: read UInt64 according to spec. // JavaScript's int precision of 53 bit should be sufficient here. lbox = readUint32(data, position) * 4294967296 + readUint32(data, position + 4); position += 8; headerSize += 8; } if (lbox === 0) { lbox = length - position + headerSize; } if (lbox < headerSize) { throw new JpxError("Invalid box field size"); } const dataLength = lbox - headerSize; let jumpDataLength = true; switch (tbox) { case 0x6a703268: // 'jp2h' jumpDataLength = false; // parsing child boxes break; case 0x636f6c72: // 'colr' // Colorspaces are not used, the CS from the PDF is used. const method = data[position]; if (method === 1) { // enumerated colorspace const colorspace = readUint32(data, position + 3); switch (colorspace) { case 16: // this indicates a sRGB colorspace case 17: // this indicates a grayscale colorspace case 18: // this indicates a YUV colorspace break; default: warn("Unknown colorspace " + colorspace); break; } } else if (method === 2) { info("ICC profile not supported"); } break; case 0x6a703263: // 'jp2c' this.parseCodestream(data, position, position + dataLength); break; case 0x6a502020: // 'jP\024\024' if (readUint32(data, position) !== 0x0d0a870a) { warn("Invalid JP2 signature"); } break; // The following header types are valid but currently not used: case 0x6a501a1a: // 'jP\032\032' case 0x66747970: // 'ftyp' case 0x72726571: // 'rreq' case 0x72657320: // 'res ' case 0x69686472: // 'ihdr' break; default: const headerType = String.fromCharCode( (tbox >> 24) & 0xff, (tbox >> 16) & 0xff, (tbox >> 8) & 0xff, tbox & 0xff ); warn(`Unsupported header type ${tbox} (${headerType}).`); break; } if (jumpDataLength) { position += dataLength; } } } parseImageProperties(stream) { let newByte = stream.getByte(); while (newByte >= 0) { const oldByte = newByte; newByte = stream.getByte(); const code = (oldByte << 8) | newByte; // Image and tile size (SIZ) if (code === 0xff51) { stream.skip(4); const Xsiz = stream.getInt32() >>> 0; // Byte 4 const Ysiz = stream.getInt32() >>> 0; // Byte 8 const XOsiz = stream.getInt32() >>> 0; // Byte 12 const YOsiz = stream.getInt32() >>> 0; // Byte 16 stream.skip(16); const Csiz = stream.getUint16(); // Byte 36 this.width = Xsiz - XOsiz; this.height = Ysiz - YOsiz; this.componentsCount = Csiz; // Results are always returned as `Uint8ClampedArray`s. this.bitsPerComponent = 8; return; } } throw new JpxError("No size marker found in JPX stream"); } parseCodestream(data, start, end) { const context = {}; let doNotRecover = false; try { let position = start; while (position + 1 < end) { const code = readUint16(data, position); position += 2; let length = 0, j, sqcd, spqcds, spqcdSize, scalarExpounded, tile; switch (code) { case 0xff4f: // Start of codestream (SOC) context.mainHeader = true; break; case 0xffd9: // End of codestream (EOC) break; case 0xff51: // Image and tile size (SIZ) length = readUint16(data, position); const siz = {}; siz.Xsiz = readUint32(data, position + 4); siz.Ysiz = readUint32(data, position + 8); siz.XOsiz = readUint32(data, position + 12); siz.YOsiz = readUint32(data, position + 16); siz.XTsiz = readUint32(data, position + 20); siz.YTsiz = readUint32(data, position + 24); siz.XTOsiz = readUint32(data, position + 28); siz.YTOsiz = readUint32(data, position + 32); const componentsCount = readUint16(data, position + 36); siz.Csiz = componentsCount; const components = []; j = position + 38; for (let i = 0; i < componentsCount; i++) { const component = { precision: (data[j] & 0x7f) + 1, isSigned: !!(data[j] & 0x80), XRsiz: data[j + 1], YRsiz: data[j + 2], }; j += 3; calculateComponentDimensions(component, siz); components.push(component); } context.SIZ = siz; context.components = components; calculateTileGrids(context, components); context.QCC = []; context.COC = []; break; case 0xff5c: // Quantization default (QCD) length = readUint16(data, position); const qcd = {}; j = position + 2; sqcd = data[j++]; switch (sqcd & 0x1f) { case 0: spqcdSize = 8; scalarExpounded = true; break; case 1: spqcdSize = 16; scalarExpounded = false; break; case 2: spqcdSize = 16; scalarExpounded = true; break; default: throw new Error("Invalid SQcd value " + sqcd); } qcd.noQuantization = spqcdSize === 8; qcd.scalarExpounded = scalarExpounded; qcd.guardBits = sqcd >> 5; spqcds = []; while (j < length + position) { const spqcd = {}; if (spqcdSize === 8) { spqcd.epsilon = data[j++] >> 3; spqcd.mu = 0; } else { spqcd.epsilon = data[j] >> 3; spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1]; j += 2; } spqcds.push(spqcd); } qcd.SPqcds = spqcds; if (context.mainHeader) { context.QCD = qcd; } else { context.currentTile.QCD = qcd; context.currentTile.QCC = []; } break; case 0xff5d: // Quantization component (QCC) length = readUint16(data, position); const qcc = {}; j = position + 2; let cqcc; if (context.SIZ.Csiz < 257) { cqcc = data[j++]; } else { cqcc = readUint16(data, j); j += 2; } sqcd = data[j++]; switch (sqcd & 0x1f) { case 0: spqcdSize = 8; scalarExpounded = true; break; case 1: spqcdSize = 16; scalarExpounded = false; break; case 2: spqcdSize = 16; scalarExpounded = true; break; default: throw new Error("Invalid SQcd value " + sqcd); } qcc.noQuantization = spqcdSize === 8; qcc.scalarExpounded = scalarExpounded; qcc.guardBits = sqcd >> 5; spqcds = []; while (j < length + position) { const spqcd = {}; if (spqcdSize === 8) { spqcd.epsilon = data[j++] >> 3; spqcd.mu = 0; } else { spqcd.epsilon = data[j] >> 3; spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1]; j += 2; } spqcds.push(spqcd); } qcc.SPqcds = spqcds; if (context.mainHeader) { context.QCC[cqcc] = qcc; } else { context.currentTile.QCC[cqcc] = qcc; } break; case 0xff52: // Coding style default (COD) length = readUint16(data, position); const cod = {}; j = position + 2; const scod = data[j++]; cod.entropyCoderWithCustomPrecincts = !!(scod & 1); cod.sopMarkerUsed = !!(scod & 2); cod.ephMarkerUsed = !!(scod & 4); cod.progressionOrder = data[j++]; cod.layersCount = readUint16(data, j); j += 2; cod.multipleComponentTransform = data[j++]; cod.decompositionLevelsCount = data[j++]; cod.xcb = (data[j++] & 0xf) + 2; cod.ycb = (data[j++] & 0xf) + 2; const blockStyle = data[j++]; cod.selectiveArithmeticCodingBypass = !!(blockStyle & 1); cod.resetContextProbabilities = !!(blockStyle & 2); cod.terminationOnEachCodingPass = !!(blockStyle & 4); cod.verticallyStripe = !!(blockStyle & 8); cod.predictableTermination = !!(blockStyle & 16); cod.segmentationSymbolUsed = !!(blockStyle & 32); cod.reversibleTransformation = data[j++]; if (cod.entropyCoderWithCustomPrecincts) { const precinctsSizes = []; while (j < length + position) { const precinctsSize = data[j++]; precinctsSizes.push({ PPx: precinctsSize & 0xf, PPy: precinctsSize >> 4, }); } cod.precinctsSizes = precinctsSizes; } const unsupported = []; if (cod.selectiveArithmeticCodingBypass) { unsupported.push("selectiveArithmeticCodingBypass"); } if (cod.resetContextProbabilities) { unsupported.push("resetContextProbabilities"); } if (cod.terminationOnEachCodingPass) { unsupported.push("terminationOnEachCodingPass"); } if (cod.verticallyStripe) { unsupported.push("verticallyStripe"); } if (cod.predictableTermination) { unsupported.push("predictableTermination"); } if (unsupported.length > 0) { doNotRecover = true; warn(`JPX: Unsupported COD options (${unsupported.join(", ")}).`); } if (context.mainHeader) { context.COD = cod; } else { context.currentTile.COD = cod; context.currentTile.COC = []; } break; case 0xff90: // Start of tile-part (SOT) length = readUint16(data, position); tile = {}; tile.index = readUint16(data, position + 2); tile.length = readUint32(data, position + 4); tile.dataEnd = tile.length + position - 2; tile.partIndex = data[position + 8]; tile.partsCount = data[position + 9]; context.mainHeader = false; if (tile.partIndex === 0) { // reset component specific settings tile.COD = context.COD; tile.COC = context.COC.slice(0); // clone of the global COC tile.QCD = context.QCD; tile.QCC = context.QCC.slice(0); // clone of the global COC } context.currentTile = tile; break; case 0xff93: // Start of data (SOD) tile = context.currentTile; if (tile.partIndex === 0) { initializeTile(context, tile.index); buildPackets(context); } // moving to the end of the data length = tile.dataEnd - position; parseTilePackets(context, data, position, length); break; case 0xff53: // Coding style component (COC) warn("JPX: Codestream code 0xFF53 (COC) is not implemented."); /* falls through */ case 0xff55: // Tile-part lengths, main header (TLM) case 0xff57: // Packet length, main header (PLM) case 0xff58: // Packet length, tile-part header (PLT) case 0xff64: // Comment (COM) length = readUint16(data, position); // skipping content break; default: throw new Error("Unknown codestream code: " + code.toString(16)); } position += length; } } catch (e) { if (doNotRecover || this.failOnCorruptedImage) { throw new JpxError(e.message); } else { warn(`JPX: Trying to recover from: "${e.message}".`); } } this.tiles = transformComponents(context); this.width = context.SIZ.Xsiz - context.SIZ.XOsiz; this.height = context.SIZ.Ysiz - context.SIZ.YOsiz; this.componentsCount = context.SIZ.Csiz; } } function calculateComponentDimensions(component, siz) { // Section B.2 Component mapping component.x0 = Math.ceil(siz.XOsiz / component.XRsiz); component.x1 = Math.ceil(siz.Xsiz / component.XRsiz); component.y0 = Math.ceil(siz.YOsiz / component.YRsiz); component.y1 = Math.ceil(siz.Ysiz / component.YRsiz); component.width = component.x1 - component.x0; component.height = component.y1 - component.y0; } function calculateTileGrids(context, components) { const siz = context.SIZ; // Section B.3 Division into tile and tile-components const tiles = []; let tile; const numXtiles = Math.ceil((siz.Xsiz - siz.XTOsiz) / siz.XTsiz); const numYtiles = Math.ceil((siz.Ysiz - siz.YTOsiz) / siz.YTsiz); for (let q = 0; q < numYtiles; q++) { for (let p = 0; p < numXtiles; p++) { tile = {}; tile.tx0 = Math.max(siz.XTOsiz + p * siz.XTsiz, siz.XOsiz); tile.ty0 = Math.max(siz.YTOsiz + q * siz.YTsiz, siz.YOsiz); tile.tx1 = Math.min(siz.XTOsiz + (p + 1) * siz.XTsiz, siz.Xsiz); tile.ty1 = Math.min(siz.YTOsiz + (q + 1) * siz.YTsiz, siz.Ysiz); tile.width = tile.tx1 - tile.tx0; tile.height = tile.ty1 - tile.ty0; tile.components = []; tiles.push(tile); } } context.tiles = tiles; const componentsCount = siz.Csiz; for (let i = 0, ii = componentsCount; i < ii; i++) { const component = components[i]; for (let j = 0, jj = tiles.length; j < jj; j++) { const tileComponent = {}; tile = tiles[j]; tileComponent.tcx0 = Math.ceil(tile.tx0 / component.XRsiz); tileComponent.tcy0 = Math.ceil(tile.ty0 / component.YRsiz); tileComponent.tcx1 = Math.ceil(tile.tx1 / component.XRsiz); tileComponent.tcy1 = Math.ceil(tile.ty1 / component.YRsiz); tileComponent.width = tileComponent.tcx1 - tileComponent.tcx0; tileComponent.height = tileComponent.tcy1 - tileComponent.tcy0; tile.components[i] = tileComponent; } } } function getBlocksDimensions(context, component, r) { const codOrCoc = component.codingStyleParameters; const result = {}; if (!codOrCoc.entropyCoderWithCustomPrecincts) { result.PPx = 15; result.PPy = 15; } else { result.PPx = codOrCoc.precinctsSizes[r].PPx; result.PPy = codOrCoc.precinctsSizes[r].PPy; } // calculate codeblock size as described in section B.7 result.xcb_ = r > 0 ? Math.min(codOrCoc.xcb, result.PPx - 1) : Math.min(codOrCoc.xcb, result.PPx); result.ycb_ = r > 0 ? Math.min(codOrCoc.ycb, result.PPy - 1) : Math.min(codOrCoc.ycb, result.PPy); return result; } function buildPrecincts(context, resolution, dimensions) { // Section B.6 Division resolution to precincts const precinctWidth = 1 << dimensions.PPx; const precinctHeight = 1 << dimensions.PPy; // Jasper introduces codeblock groups for mapping each subband codeblocks // to precincts. Precinct partition divides a resolution according to width // and height parameters. The subband that belongs to the resolution level // has a different size than the level, unless it is the zero resolution. // From Jasper documentation: jpeg2000.pdf, section K: Tier-2 coding: // The precinct partitioning for a particular subband is derived from a // partitioning of its parent LL band (i.e., the LL band at the next higher // resolution level)... The LL band associated with each resolution level is // divided into precincts... Each of the resulting precinct regions is then // mapped into its child subbands (if any) at the next lower resolution // level. This is accomplished by using the coordinate transformation // (u, v) = (ceil(x/2), ceil(y/2)) where (x, y) and (u, v) are the // coordinates of a point in the LL band and child subband, respectively. const isZeroRes = resolution.resLevel === 0; const precinctWidthInSubband = 1 << (dimensions.PPx + (isZeroRes ? 0 : -1)); const precinctHeightInSubband = 1 << (dimensions.PPy + (isZeroRes ? 0 : -1)); const numprecinctswide = resolution.trx1 > resolution.trx0 ? Math.ceil(resolution.trx1 / precinctWidth) - Math.floor(resolution.trx0 / precinctWidth) : 0; const numprecinctshigh = resolution.try1 > resolution.try0 ? Math.ceil(resolution.try1 / precinctHeight) - Math.floor(resolution.try0 / precinctHeight) : 0; const numprecincts = numprecinctswide * numprecinctshigh; resolution.precinctParameters = { precinctWidth, precinctHeight, numprecinctswide, numprecinctshigh, numprecincts, precinctWidthInSubband, precinctHeightInSubband, }; } function buildCodeblocks(context, subband, dimensions) { // Section B.7 Division sub-band into code-blocks const xcb_ = dimensions.xcb_; const ycb_ = dimensions.ycb_; const codeblockWidth = 1 << xcb_; const codeblockHeight = 1 << ycb_; const cbx0 = subband.tbx0 >> xcb_; const cby0 = subband.tby0 >> ycb_; const cbx1 = (subband.tbx1 + codeblockWidth - 1) >> xcb_; const cby1 = (subband.tby1 + codeblockHeight - 1) >> ycb_; const precinctParameters = subband.resolution.precinctParameters; const codeblocks = []; const precincts = []; let i, j, codeblock, precinctNumber; for (j = cby0; j < cby1; j++) { for (i = cbx0; i < cbx1; i++) { codeblock = { cbx: i, cby: j, tbx0: codeblockWidth * i, tby0: codeblockHeight * j, tbx1: codeblockWidth * (i + 1), tby1: codeblockHeight * (j + 1), }; codeblock.tbx0_ = Math.max(subband.tbx0, codeblock.tbx0); codeblock.tby0_ = Math.max(subband.tby0, codeblock.tby0); codeblock.tbx1_ = Math.min(subband.tbx1, codeblock.tbx1); codeblock.tby1_ = Math.min(subband.tby1, codeblock.tby1); // Calculate precinct number for this codeblock, codeblock position // should be relative to its subband, use actual dimension and position // See comment about codeblock group width and height const pi = Math.floor( (codeblock.tbx0_ - subband.tbx0) / precinctParameters.precinctWidthInSubband ); const pj = Math.floor( (codeblock.tby0_ - subband.tby0) / precinctParameters.precinctHeightInSubband ); precinctNumber = pi + pj * precinctParameters.numprecinctswide; codeblock.precinctNumber = precinctNumber; codeblock.subbandType = subband.type; codeblock.Lblock = 3; if ( codeblock.tbx1_ <= codeblock.tbx0_ || codeblock.tby1_ <= codeblock.tby0_ ) { continue; } codeblocks.push(codeblock); // building precinct for the sub-band let precinct = precincts[precinctNumber]; if (precinct !== undefined) { if (i < precinct.cbxMin) { precinct.cbxMin = i; } else if (i > precinct.cbxMax) { precinct.cbxMax = i; } if (j < precinct.cbyMin) { precinct.cbxMin = j; } else if (j > precinct.cbyMax) { precinct.cbyMax = j; } } else { precincts[precinctNumber] = precinct = { cbxMin: i, cbyMin: j, cbxMax: i, cbyMax: j, }; } codeblock.precinct = precinct; } } subband.codeblockParameters = { codeblockWidth: xcb_, codeblockHeight: ycb_, numcodeblockwide: cbx1 - cbx0 + 1, numcodeblockhigh: cby1 - cby0 + 1, }; subband.codeblocks = codeblocks; subband.precincts = precincts; } function createPacket(resolution, precinctNumber, layerNumber) { const precinctCodeblocks = []; // Section B.10.8 Order of info in packet const subbands = resolution.subbands; // sub-bands already ordered in 'LL', 'HL', 'LH', and 'HH' sequence for (let i = 0, ii = subbands.length; i < ii; i++) { const subband = subbands[i]; const codeblocks = subband.codeblocks; for (let j = 0, jj = codeblocks.length; j < jj; j++) { const codeblock = codeblocks[j]; if (codeblock.precinctNumber !== precinctNumber) { continue; } precinctCodeblocks.push(codeblock); } } return { layerNumber, codeblocks: precinctCodeblocks, }; } function LayerResolutionComponentPositionIterator(context) { const siz = context.SIZ; const tileIndex = context.currentTile.index; const tile = context.tiles[tileIndex]; const layersCount = tile.codingStyleDefaultParameters.layersCount; const componentsCount = siz.Csiz; let maxDecompositionLevelsCount = 0; for (let q = 0; q < componentsCount; q++) { maxDecompositionLevelsCount = Math.max( maxDecompositionLevelsCount, tile.components[q].codingStyleParameters.decompositionLevelsCount ); } let l = 0, r = 0, i = 0, k = 0; this.nextPacket = function JpxImage_nextPacket() { // Section B.12.1.1 Layer-resolution-component-position for (; l < layersCount; l++) { for (; r <= maxDecompositionLevelsCount; r++) { for (; i < componentsCount; i++) { const component = tile.components[i]; if (r > component.codingStyleParameters.decompositionLevelsCount) { continue; } const resolution = component.resolutions[r]; const numprecincts = resolution.precinctParameters.numprecincts; for (; k < numprecincts; ) { const packet = createPacket(resolution, k, l); k++; return packet; } k = 0; } i = 0; } r = 0; } throw new JpxError("Out of packets"); }; } function ResolutionLayerComponentPositionIterator(context) { const siz = context.SIZ; const tileIndex = context.currentTile.index; const tile = context.tiles[tileIndex]; const layersCount = tile.codingStyleDefaultParameters.layersCount; const componentsCount = siz.Csiz; let maxDecompositionLevelsCount = 0; for (let q = 0; q < componentsCount; q++) { maxDecompositionLevelsCount = Math.max( maxDecompositionLevelsCount, tile.components[q].codingStyleParameters.decompositionLevelsCount ); } let r = 0, l = 0, i = 0, k = 0; this.nextPacket = function JpxImage_nextPacket() { // Section B.12.1.2 Resolution-layer-component-position for (; r <= maxDecompositionLevelsCount; r++) { for (; l < layersCount; l++) { for (; i < componentsCount; i++) { const component = tile.components[i]; if (r > component.codingStyleParameters.decompositionLevelsCount) { continue; } const resolution = component.resolutions[r]; const numprecincts = resolution.precinctParameters.numprecincts; for (; k < numprecincts; ) { const packet = createPacket(resolution, k, l); k++; return packet; } k = 0; } i = 0; } l = 0; } throw new JpxError("Out of packets"); }; } function ResolutionPositionComponentLayerIterator(context) { const siz = context.SIZ; const tileIndex = context.currentTile.index; const tile = context.tiles[tileIndex]; const layersCount = tile.codingStyleDefaultParameters.layersCount; const componentsCount = siz.Csiz; let l, r, c, p; let maxDecompositionLevelsCount = 0; for (c = 0; c < componentsCount; c++) { const component = tile.components[c]; maxDecompositionLevelsCount = Math.max( maxDecompositionLevelsCount, component.codingStyleParameters.decompositionLevelsCount ); } const maxNumPrecinctsInLevel = new Int32Array( maxDecompositionLevelsCount + 1 ); for (r = 0; r <= maxDecompositionLevelsCount; ++r) { let maxNumPrecincts = 0; for (c = 0; c < componentsCount; ++c) { const resolutions = tile.components[c].resolutions; if (r < resolutions.length) { maxNumPrecincts = Math.max( maxNumPrecincts, resolutions[r].precinctParameters.numprecincts ); } } maxNumPrecinctsInLevel[r] = maxNumPrecincts; } l = 0; r = 0; c = 0; p = 0; this.nextPacket = function JpxImage_nextPacket() { // Section B.12.1.3 Resolution-position-component-layer for (; r <= maxDecompositionLevelsCount; r++) { for (; p < maxNumPrecinctsInLevel[r]; p++) { for (; c < componentsCount; c++) { const component = tile.components[c]; if (r > component.codingStyleParameters.decompositionLevelsCount) { continue; } const resolution = component.resolutions[r]; const numprecincts = resolution.precinctParameters.numprecincts; if (p >= numprecincts) { continue; } for (; l < layersCount; ) { const packet = createPacket(resolution, p, l); l++; return packet; } l = 0; } c = 0; } p = 0; } throw new JpxError("Out of packets"); }; } function PositionComponentResolutionLayerIterator(context) { const siz = context.SIZ; const tileIndex = context.currentTile.index; const tile = context.tiles[tileIndex]; const layersCount = tile.codingStyleDefaultParameters.layersCount; const componentsCount = siz.Csiz; const precinctsSizes = getPrecinctSizesInImageScale(tile); const precinctsIterationSizes = precinctsSizes; let l = 0, r = 0, c = 0, px = 0, py = 0; this.nextPacket = function JpxImage_nextPacket() { // Section B.12.1.4 Position-component-resolution-layer for (; py < precinctsIterationSizes.maxNumHigh; py++) { for (; px < precinctsIterationSizes.maxNumWide; px++) { for (; c < componentsCount; c++) { const component = tile.components[c]; const decompositionLevelsCount = component.codingStyleParameters.decompositionLevelsCount; for (; r <= decompositionLevelsCount; r++) { const resolution = component.resolutions[r]; const sizeInImageScale = precinctsSizes.components[c].resolutions[r]; const k = getPrecinctIndexIfExist( px, py, sizeInImageScale, precinctsIterationSizes, resolution ); if (k === null) { continue; } for (; l < layersCount; ) { const packet = createPacket(resolution, k, l); l++; return packet; } l = 0; } r = 0; } c = 0; } px = 0; } throw new JpxError("Out of packets"); }; } function ComponentPositionResolutionLayerIterator(context) { const siz = context.SIZ; const tileIndex = context.currentTile.index; const tile = context.tiles[tileIndex]; const layersCount = tile.codingStyleDefaultParameters.layersCount; const componentsCount = siz.Csiz; const precinctsSizes = getPrecinctSizesInImageScale(tile); let l = 0, r = 0, c = 0, px = 0, py = 0; this.nextPacket = function JpxImage_nextPacket() { // Section B.12.1.5 Component-position-resolution-layer for (; c < componentsCount; ++c) { const component = tile.components[c]; const precinctsIterationSizes = precinctsSizes.components[c]; const decompositionLevelsCount = component.codingStyleParameters.decompositionLevelsCount; for (; py < precinctsIterationSizes.maxNumHigh; py++) { for (; px < precinctsIterationSizes.maxNumWide; px++) { for (; r <= decompositionLevelsCount; r++) { const resolution = component.resolutions[r]; const sizeInImageScale = precinctsIterationSizes.resolutions[r]; const k = getPrecinctIndexIfExist( px, py, sizeInImageScale, precinctsIterationSizes, resolution ); if (k === null) { continue; } for (; l < layersCount; ) { const packet = createPacket(resolution, k, l); l++; return packet; } l = 0; } r = 0; } px = 0; } py = 0; } throw new JpxError("Out of packets"); }; } function getPrecinctIndexIfExist( pxIndex, pyIndex, sizeInImageScale, precinctIterationSizes, resolution ) { const posX = pxIndex * precinctIterationSizes.minWidth; const posY = pyIndex * precinctIterationSizes.minHeight; if ( posX % sizeInImageScale.width !== 0 || posY % sizeInImageScale.height !== 0 ) { return null; } const startPrecinctRowIndex = (posY / sizeInImageScale.width) * resolution.precinctParameters.numprecinctswide; return posX / sizeInImageScale.height + startPrecinctRowIndex; } function getPrecinctSizesInImageScale(tile) { const componentsCount = tile.components.length; let minWidth = Number.MAX_VALUE; let minHeight = Number.MAX_VALUE; let maxNumWide = 0; let maxNumHigh = 0; const sizePerComponent = new Array(componentsCount); for (let c = 0; c < componentsCount; c++) { const component = tile.components[c]; const decompositionLevelsCount = component.codingStyleParameters.decompositionLevelsCount; const sizePerResolution = new Array(decompositionLevelsCount + 1); let minWidthCurrentComponent = Number.MAX_VALUE; let minHeightCurrentComponent = Number.MAX_VALUE; let maxNumWideCurrentComponent = 0; let maxNumHighCurrentComponent = 0; let scale = 1; for (let r = decompositionLevelsCount; r >= 0; --r) { const resolution = component.resolutions[r]; const widthCurrentResolution = scale * resolution.precinctParameters.precinctWidth; const heightCurrentResolution = scale * resolution.precinctParameters.precinctHeight; minWidthCurrentComponent = Math.min( minWidthCurrentComponent, widthCurrentResolution ); minHeightCurrentComponent = Math.min( minHeightCurrentComponent, heightCurrentResolution ); maxNumWideCurrentComponent = Math.max( maxNumWideCurrentComponent, resolution.precinctParameters.numprecinctswide ); maxNumHighCurrentComponent = Math.max( maxNumHighCurrentComponent, resolution.precinctParameters.numprecinctshigh ); sizePerResolution[r] = { width: widthCurrentResolution, height: heightCurrentResolution, }; scale <<= 1; } minWidth = Math.min(minWidth, minWidthCurrentComponent); minHeight = Math.min(minHeight, minHeightCurrentComponent); maxNumWide = Math.max(maxNumWide, maxNumWideCurrentComponent); maxNumHigh = Math.max(maxNumHigh, maxNumHighCurrentComponent); sizePerComponent[c] = { resolutions: sizePerResolution, minWidth: minWidthCurrentComponent, minHeight: minHeightCurrentComponent, maxNumWide: maxNumWideCurrentComponent, maxNumHigh: maxNumHighCurrentComponent, }; } return { components: sizePerComponent, minWidth, minHeight, maxNumWide, maxNumHigh, }; } function buildPackets(context) { const siz = context.SIZ; const tileIndex = context.currentTile.index; const tile = context.tiles[tileIndex]; const componentsCount = siz.Csiz; // Creating resolutions and sub-bands for each component for (let c = 0; c < componentsCount; c++) { const component = tile.components[c]; const decompositionLevelsCount = component.codingStyleParameters.decompositionLevelsCount; // Section B.5 Resolution levels and sub-bands const resolutions = []; const subbands = []; for (let r = 0; r <= decompositionLevelsCount; r++) { const blocksDimensions = getBlocksDimensions(context, component, r); const resolution = {}; const scale = 1 << (decompositionLevelsCount - r); resolution.trx0 = Math.ceil(component.tcx0 / scale); resolution.try0 = Math.ceil(component.tcy0 / scale); resolution.trx1 = Math.ceil(component.tcx1 / scale); resolution.try1 = Math.ceil(component.tcy1 / scale); resolution.resLevel = r; buildPrecincts(context, resolution, blocksDimensions); resolutions.push(resolution); let subband; if (r === 0) { // one sub-band (LL) with last decomposition subband = {}; subband.type = "LL"; subband.tbx0 = Math.ceil(component.tcx0 / scale); subband.tby0 = Math.ceil(component.tcy0 / scale); subband.tbx1 = Math.ceil(component.tcx1 / scale); subband.tby1 = Math.ceil(component.tcy1 / scale); subband.resolution = resolution; buildCodeblocks(context, subband, blocksDimensions); subbands.push(subband); resolution.subbands = [subband]; } else { const bscale = 1 << (decompositionLevelsCount - r + 1); const resolutionSubbands = []; // three sub-bands (HL, LH and HH) with rest of decompositions subband = {}; subband.type = "HL"; subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5); subband.tby0 = Math.ceil(component.tcy0 / bscale); subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5); subband.tby1 = Math.ceil(component.tcy1 / bscale); subband.resolution = resolution; buildCodeblocks(context, subband, blocksDimensions); subbands.push(subband); resolutionSubbands.push(subband); subband = {}; subband.type = "LH"; subband.tbx0 = Math.ceil(component.tcx0 / bscale); subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5); subband.tbx1 = Math.ceil(component.tcx1 / bscale); subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5); subband.resolution = resolution; buildCodeblocks(context, subband, blocksDimensions); subbands.push(subband); resolutionSubbands.push(subband); subband = {}; subband.type = "HH"; subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5); subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5); subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5); subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5); subband.resolution = resolution; buildCodeblocks(context, subband, blocksDimensions); subbands.push(subband); resolutionSubbands.push(subband); resolution.subbands = resolutionSubbands; } } component.resolutions = resolutions; component.subbands = subbands; } // Generate the packets sequence const progressionOrder = tile.codingStyleDefaultParameters.progressionOrder; switch (progressionOrder) { case 0: tile.packetsIterator = new LayerResolutionComponentPositionIterator( context ); break; case 1: tile.packetsIterator = new ResolutionLayerComponentPositionIterator( context ); break; case 2: tile.packetsIterator = new ResolutionPositionComponentLayerIterator( context ); break; case 3: tile.packetsIterator = new PositionComponentResolutionLayerIterator( context ); break; case 4: tile.packetsIterator = new ComponentPositionResolutionLayerIterator( context ); break; default: throw new JpxError(`Unsupported progression order ${progressionOrder}`); } } function parseTilePackets(context, data, offset, dataLength) { let position = 0; let buffer, bufferSize = 0, skipNextBit = false; function readBits(count) { while (bufferSize < count) { const b = data[offset + position]; position++; if (skipNextBit) { buffer = (buffer << 7) | b; bufferSize += 7; skipNextBit = false; } else { buffer = (buffer << 8) | b; bufferSize += 8; } if (b === 0xff) { skipNextBit = true; } } bufferSize -= count; return (buffer >>> bufferSize) & ((1 << count) - 1); } function skipMarkerIfEqual(value) { if ( data[offset + position - 1] === 0xff && data[offset + position] === value ) { skipBytes(1); return true; } else if ( data[offset + position] === 0xff && data[offset + position + 1] === value ) { skipBytes(2); return true; } return false; } function skipBytes(count) { position += count; } function alignToByte() { bufferSize = 0; if (skipNextBit) { position++; skipNextBit = false; } } function readCodingpasses() { if (readBits(1) === 0) { return 1; } if (readBits(1) === 0) { return 2; } let value = readBits(2); if (value < 3) { return value + 3; } value = readBits(5); if (value < 31) { return value + 6; } value = readBits(7); return value + 37; } const tileIndex = context.currentTile.index; const tile = context.tiles[tileIndex]; const sopMarkerUsed = context.COD.sopMarkerUsed; const ephMarkerUsed = context.COD.ephMarkerUsed; const packetsIterator = tile.packetsIterator; while (position < dataLength) { alignToByte(); if (sopMarkerUsed && skipMarkerIfEqual(0x91)) { // Skip also marker segment length and packet sequence ID skipBytes(4); } const packet = packetsIterator.nextPacket(); if (!readBits(1)) { continue; } const layerNumber = packet.layerNumber, queue = []; let codeblock; for (let i = 0, ii = packet.codeblocks.length; i < ii; i++) { codeblock = packet.codeblocks[i]; let precinct = codeblock.precinct; const codeblockColumn = codeblock.cbx - precinct.cbxMin; const codeblockRow = codeblock.cby - precinct.cbyMin; let codeblockIncluded = false; let firstTimeInclusion = false; let valueReady, zeroBitPlanesTree; if (codeblock.included !== undefined) { codeblockIncluded = !!readBits(1); } else { // reading inclusion tree precinct = codeblock.precinct; let inclusionTree; if (precinct.inclusionTree !== undefined) { inclusionTree = precinct.inclusionTree; } else { // building inclusion and zero bit-planes trees const width = precinct.cbxMax - precinct.cbxMin + 1; const height = precinct.cbyMax - precinct.cbyMin + 1; inclusionTree = new InclusionTree(width, height, layerNumber); zeroBitPlanesTree = new TagTree(width, height); precinct.inclusionTree = inclusionTree; precinct.zeroBitPlanesTree = zeroBitPlanesTree; for (let l = 0; l < layerNumber; l++) { if (readBits(1) !== 0) { throw new JpxError("Invalid tag tree"); } } } if (inclusionTree.reset(codeblockColumn, codeblockRow, layerNumber)) { while (true) { if (readBits(1)) { valueReady = !inclusionTree.nextLevel(); if (valueReady) { codeblock.included = true; codeblockIncluded = firstTimeInclusion = true; break; } } else { inclusionTree.incrementValue(layerNumber); break; } } } } if (!codeblockIncluded) { continue; } if (firstTimeInclusion) { zeroBitPlanesTree = precinct.zeroBitPlanesTree; zeroBitPlanesTree.reset(codeblockColumn, codeblockRow); while (true) { if (readBits(1)) { valueReady = !zeroBitPlanesTree.nextLevel(); if (valueReady) { break; } } else { zeroBitPlanesTree.incrementValue(); } } codeblock.zeroBitPlanes = zeroBitPlanesTree.value; } const codingpasses = readCodingpasses(); while (readBits(1)) { codeblock.Lblock++; } const codingpassesLog2 = log2(codingpasses); // rounding down log2 const bits = (codingpasses < 1 << codingpassesLog2 ? codingpassesLog2 - 1 : codingpassesLog2) + codeblock.Lblock; const codedDataLength = readBits(bits); queue.push({ codeblock, codingpasses, dataLength: codedDataLength, }); } alignToByte(); if (ephMarkerUsed) { skipMarkerIfEqual(0x92); } while (queue.length > 0) { const packetItem = queue.shift(); codeblock = packetItem.codeblock; if (codeblock.data === undefined) { codeblock.data = []; } codeblock.data.push({ data, start: offset + position, end: offset + position + packetItem.dataLength, codingpasses: packetItem.codingpasses, }); position += packetItem.dataLength; } } return position; } function copyCoefficients( coefficients, levelWidth, levelHeight, subband, delta, mb, reversible, segmentationSymbolUsed ) { const x0 = subband.tbx0; const y0 = subband.tby0; const width = subband.tbx1 - subband.tbx0; const codeblocks = subband.codeblocks; const right = subband.type.charAt(0) === "H" ? 1 : 0; const bottom = subband.type.charAt(1) === "H" ? levelWidth : 0; for (let i = 0, ii = codeblocks.length; i < ii; ++i) { const codeblock = codeblocks[i]; const blockWidth = codeblock.tbx1_ - codeblock.tbx0_; const blockHeight = codeblock.tby1_ - codeblock.tby0_; if (blockWidth === 0 || blockHeight === 0) { continue; } if (codeblock.data === undefined) { continue; } const bitModel = new BitModel( blockWidth, blockHeight, codeblock.subbandType, codeblock.zeroBitPlanes, mb ); let currentCodingpassType = 2; // first bit plane starts from cleanup // collect data const data = codeblock.data; let totalLength = 0, codingpasses = 0; let j, jj, dataItem; for (j = 0, jj = data.length; j < jj; j++) { dataItem = data[j]; totalLength += dataItem.end - dataItem.start; codingpasses += dataItem.codingpasses; } const encodedData = new Uint8Array(totalLength); let position = 0; for (j = 0, jj = data.length; j < jj; j++) { dataItem = data[j]; const chunk = dataItem.data.subarray(dataItem.start, dataItem.end); encodedData.set(chunk, position); position += chunk.length; } // decoding the item const decoder = new ArithmeticDecoder(encodedData, 0, totalLength); bitModel.setDecoder(decoder); for (j = 0; j < codingpasses; j++) { switch (currentCodingpassType) { case 0: bitModel.runSignificancePropagationPass(); break; case 1: bitModel.runMagnitudeRefinementPass(); break; case 2: bitModel.runCleanupPass(); if (segmentationSymbolUsed) { bitModel.checkSegmentationSymbol(); } break; } currentCodingpassType = (currentCodingpassType + 1) % 3; } let offset = codeblock.tbx0_ - x0 + (codeblock.tby0_ - y0) * width; const sign = bitModel.coefficentsSign; const magnitude = bitModel.coefficentsMagnitude; const bitsDecoded = bitModel.bitsDecoded; const magnitudeCorrection = reversible ? 0 : 0.5; let k, n, nb; position = 0; // Do the interleaving of Section F.3.3 here, so we do not need // to copy later. LL level is not interleaved, just copied. const interleave = subband.type !== "LL"; for (j = 0; j < blockHeight; j++) { const row = (offset / width) | 0; // row in the non-interleaved subband const levelOffset = 2 * row * (levelWidth - width) + right + bottom; for (k = 0; k < blockWidth; k++) { n = magnitude[position]; if (n !== 0) { n = (n + magnitudeCorrection) * delta; if (sign[position] !== 0) { n = -n; } nb = bitsDecoded[position]; const pos = interleave ? levelOffset + (offset << 1) : offset; if (reversible && nb >= mb) { coefficients[pos] = n; } else { coefficients[pos] = n * (1 << (mb - nb)); } } offset++; position++; } offset += width - blockWidth; } } } function transformTile(context, tile, c) { const component = tile.components[c]; const codingStyleParameters = component.codingStyleParameters; const quantizationParameters = component.quantizationParameters; const decompositionLevelsCount = codingStyleParameters.decompositionLevelsCount; const spqcds = quantizationParameters.SPqcds; const scalarExpounded = quantizationParameters.scalarExpounded; const guardBits = quantizationParameters.guardBits; const segmentationSymbolUsed = codingStyleParameters.segmentationSymbolUsed; const precision = context.components[c].precision; const reversible = codingStyleParameters.reversibleTransformation; const transform = reversible ? new ReversibleTransform() : new IrreversibleTransform(); const subbandCoefficients = []; let b = 0; for (let i = 0; i <= decompositionLevelsCount; i++) { const resolution = component.resolutions[i]; const width = resolution.trx1 - resolution.trx0; const height = resolution.try1 - resolution.try0; // Allocate space for the whole sublevel. const coefficients = new Float32Array(width * height); for (let j = 0, jj = resolution.subbands.length; j < jj; j++) { let mu, epsilon; if (!scalarExpounded) { // formula E-5 mu = spqcds[0].mu; epsilon = spqcds[0].epsilon + (i > 0 ? 1 - i : 0); } else { mu = spqcds[b].mu; epsilon = spqcds[b].epsilon; b++; } const subband = resolution.subbands[j]; const gainLog2 = SubbandsGainLog2[subband.type]; // calculate quantization coefficient (Section E.1.1.1) const delta = reversible ? 1 : 2 ** (precision + gainLog2 - epsilon) * (1 + mu / 2048); const mb = guardBits + epsilon - 1; // In the first resolution level, copyCoefficients will fill the // whole array with coefficients. In the succeeding passes, // copyCoefficients will consecutively fill in the values that belong // to the interleaved positions of the HL, LH, and HH coefficients. // The LL coefficients will then be interleaved in Transform.iterate(). copyCoefficients( coefficients, width, height, subband, delta, mb, reversible, segmentationSymbolUsed ); } subbandCoefficients.push({ width, height, items: coefficients, }); } const result = transform.calculate( subbandCoefficients, component.tcx0, component.tcy0 ); return { left: component.tcx0, top: component.tcy0, width: result.width, height: result.height, items: result.items, }; } function transformComponents(context) { const siz = context.SIZ; const components = context.components; const componentsCount = siz.Csiz; const resultImages = []; for (let i = 0, ii = context.tiles.length; i < ii; i++) { const tile = context.tiles[i]; const transformedTiles = []; for (let c = 0; c < componentsCount; c++) { transformedTiles[c] = transformTile(context, tile, c); } const tile0 = transformedTiles[0]; const out = new Uint8ClampedArray(tile0.items.length * componentsCount); const result = { left: tile0.left, top: tile0.top, width: tile0.width, height: tile0.height, items: out, }; // Section G.2.2 Inverse multi component transform let shift, offset; let pos = 0, j, jj, y0, y1, y2; if (tile.codingStyleDefaultParameters.multipleComponentTransform) { const fourComponents = componentsCount === 4; const y0items = transformedTiles[0].items; const y1items = transformedTiles[1].items; const y2items = transformedTiles[2].items; const y3items = fourComponents ? transformedTiles[3].items : null; // HACK: The multiple component transform formulas below assume that // all components have the same precision. With this in mind, we // compute shift and offset only once. shift = components[0].precision - 8; offset = (128 << shift) + 0.5; const component0 = tile.components[0]; const alpha01 = componentsCount - 3; jj = y0items.length; if (!component0.codingStyleParameters.reversibleTransformation) { // inverse irreversible multiple component transform for (j = 0; j < jj; j++, pos += alpha01) { y0 = y0items[j] + offset; y1 = y1items[j]; y2 = y2items[j]; out[pos++] = (y0 + 1.402 * y2) >> shift; out[pos++] = (y0 - 0.34413 * y1 - 0.71414 * y2) >> shift; out[pos++] = (y0 + 1.772 * y1) >> shift; } } else { // inverse reversible multiple component transform for (j = 0; j < jj; j++, pos += alpha01) { y0 = y0items[j] + offset; y1 = y1items[j]; y2 = y2items[j]; const g = y0 - ((y2 + y1) >> 2); out[pos++] = (g + y2) >> shift; out[pos++] = g >> shift; out[pos++] = (g + y1) >> shift; } } if (fourComponents) { for (j = 0, pos = 3; j < jj; j++, pos += 4) { out[pos] = (y3items[j] + offset) >> shift; } } } else { // no multi-component transform for (let c = 0; c < componentsCount; c++) { const items = transformedTiles[c].items; shift = components[c].precision - 8; offset = (128 << shift) + 0.5; for (pos = c, j = 0, jj = items.length; j < jj; j++) { out[pos] = (items[j] + offset) >> shift; pos += componentsCount; } } } resultImages.push(result); } return resultImages; } function initializeTile(context, tileIndex) { const siz = context.SIZ; const componentsCount = siz.Csiz; const tile = context.tiles[tileIndex]; for (let c = 0; c < componentsCount; c++) { const component = tile.components[c]; const qcdOrQcc = context.currentTile.QCC[c] !== undefined ? context.currentTile.QCC[c] : context.currentTile.QCD; component.quantizationParameters = qcdOrQcc; const codOrCoc = context.currentTile.COC[c] !== undefined ? context.currentTile.COC[c] : context.currentTile.COD; component.codingStyleParameters = codOrCoc; } tile.codingStyleDefaultParameters = context.currentTile.COD; } // Section B.10.2 Tag trees class TagTree { constructor(width, height) { const levelsLength = log2(Math.max(width, height)) + 1; this.levels = []; for (let i = 0; i < levelsLength; i++) { const level = { width, height, items: [], }; this.levels.push(level); width = Math.ceil(width / 2); height = Math.ceil(height / 2); } } reset(i, j) { let currentLevel = 0, value = 0, level; while (currentLevel < this.levels.length) { level = this.levels[currentLevel]; const index = i + j * level.width; if (level.items[index] !== undefined) { value = level.items[index]; break; } level.index = index; i >>= 1; j >>= 1; currentLevel++; } currentLevel--; level = this.levels[currentLevel]; level.items[level.index] = value; this.currentLevel = currentLevel; delete this.value; } incrementValue() { const level = this.levels[this.currentLevel]; level.items[level.index]++; } nextLevel() { let currentLevel = this.currentLevel; let level = this.levels[currentLevel]; const value = level.items[level.index]; currentLevel--; if (currentLevel < 0) { this.value = value; return false; } this.currentLevel = currentLevel; level = this.levels[currentLevel]; level.items[level.index] = value; return true; } } class InclusionTree { constructor(width, height, defaultValue) { const levelsLength = log2(Math.max(width, height)) + 1; this.levels = []; for (let i = 0; i < levelsLength; i++) { const items = new Uint8Array(width * height); for (let j = 0, jj = items.length; j < jj; j++) { items[j] = defaultValue; } const level = { width, height, items, }; this.levels.push(level); width = Math.ceil(width / 2); height = Math.ceil(height / 2); } } reset(i, j, stopValue) { let currentLevel = 0; while (currentLevel < this.levels.length) { const level = this.levels[currentLevel]; const index = i + j * level.width; level.index = index; const value = level.items[index]; if (value === 0xff) { break; } if (value > stopValue) { this.currentLevel = currentLevel; // already know about this one, propagating the value to top levels this.propagateValues(); return false; } i >>= 1; j >>= 1; currentLevel++; } this.currentLevel = currentLevel - 1; return true; } incrementValue(stopValue) { const level = this.levels[this.currentLevel]; level.items[level.index] = stopValue + 1; this.propagateValues(); } propagateValues() { let levelIndex = this.currentLevel; let level = this.levels[levelIndex]; const currentValue = level.items[level.index]; while (--levelIndex >= 0) { level = this.levels[levelIndex]; level.items[level.index] = currentValue; } } nextLevel() { let currentLevel = this.currentLevel; let level = this.levels[currentLevel]; const value = level.items[level.index]; level.items[level.index] = 0xff; currentLevel--; if (currentLevel < 0) { return false; } this.currentLevel = currentLevel; level = this.levels[currentLevel]; level.items[level.index] = value; return true; } } // Section D. Coefficient bit modeling const BitModel = (function BitModelClosure() { const UNIFORM_CONTEXT = 17; const RUNLENGTH_CONTEXT = 18; // Table D-1 // The index is binary presentation: 0dddvvhh, ddd - sum of Di (0..4), // vv - sum of Vi (0..2), and hh - sum of Hi (0..2) const LLAndLHContextsLabel = new Uint8Array([ 0, 5, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 1, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8, ]); const HLContextLabel = new Uint8Array([ 0, 3, 4, 0, 5, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 1, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8, ]); const HHContextLabel = new Uint8Array([ 0, 1, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 4, 5, 0, 4, 5, 5, 0, 5, 5, 5, 0, 0, 0, 0, 0, 6, 7, 7, 0, 7, 7, 7, 0, 7, 7, 7, 0, 0, 0, 0, 0, 8, 8, 8, 0, 8, 8, 8, 0, 8, 8, 8, 0, 0, 0, 0, 0, 8, 8, 8, 0, 8, 8, 8, 0, 8, 8, 8, ]); // eslint-disable-next-line no-shadow class BitModel { constructor(width, height, subband, zeroBitPlanes, mb) { this.width = width; this.height = height; let contextLabelTable; if (subband === "HH") { contextLabelTable = HHContextLabel; } else if (subband === "HL") { contextLabelTable = HLContextLabel; } else { contextLabelTable = LLAndLHContextsLabel; } this.contextLabelTable = contextLabelTable; const coefficientCount = width * height; // coefficients outside the encoding region treated as insignificant // add border state cells for significanceState this.neighborsSignificance = new Uint8Array(coefficientCount); this.coefficentsSign = new Uint8Array(coefficientCount); let coefficentsMagnitude; if (mb > 14) { coefficentsMagnitude = new Uint32Array(coefficientCount); } else if (mb > 6) { coefficentsMagnitude = new Uint16Array(coefficientCount); } else { coefficentsMagnitude = new Uint8Array(coefficientCount); } this.coefficentsMagnitude = coefficentsMagnitude; this.processingFlags = new Uint8Array(coefficientCount); const bitsDecoded = new Uint8Array(coefficientCount); if (zeroBitPlanes !== 0) { for (let i = 0; i < coefficientCount; i++) { bitsDecoded[i] = zeroBitPlanes; } } this.bitsDecoded = bitsDecoded; this.reset(); } setDecoder(decoder) { this.decoder = decoder; } reset() { // We have 17 contexts that are accessed via context labels, // plus the uniform and runlength context. this.contexts = new Int8Array(19); // Contexts are packed into 1 byte: // highest 7 bits carry the index, lowest bit carries mps this.contexts[0] = (4 << 1) | 0; this.contexts[UNIFORM_CONTEXT] = (46 << 1) | 0; this.contexts[RUNLENGTH_CONTEXT] = (3 << 1) | 0; } setNeighborsSignificance(row, column, index) { const neighborsSignificance = this.neighborsSignificance; const width = this.width, height = this.height; const left = column > 0; const right = column + 1 < width; let i; if (row > 0) { i = index - width; if (left) { neighborsSignificance[i - 1] += 0x10; } if (right) { neighborsSignificance[i + 1] += 0x10; } neighborsSignificance[i] += 0x04; } if (row + 1 < height) { i = index + width; if (left) { neighborsSignificance[i - 1] += 0x10; } if (right) { neighborsSignificance[i + 1] += 0x10; } neighborsSignificance[i] += 0x04; } if (left) { neighborsSignificance[index - 1] += 0x01; } if (right) { neighborsSignificance[index + 1] += 0x01; } neighborsSignificance[index] |= 0x80; } runSignificancePropagationPass() { const decoder = this.decoder; const width = this.width, height = this.height; const coefficentsMagnitude = this.coefficentsMagnitude; const coefficentsSign = this.coefficentsSign; const neighborsSignificance = this.neighborsSignificance; const processingFlags = this.processingFlags; const contexts = this.contexts; const labels = this.contextLabelTable; const bitsDecoded = this.bitsDecoded; const processedInverseMask = ~1; const processedMask = 1; const firstMagnitudeBitMask = 2; for (let i0 = 0; i0 < height; i0 += 4) { for (let j = 0; j < width; j++) { let index = i0 * width + j; for (let i1 = 0; i1 < 4; i1++, index += width) { const i = i0 + i1; if (i >= height) { break; } // clear processed flag first processingFlags[index] &= processedInverseMask; if (coefficentsMagnitude[index] || !neighborsSignificance[index]) { continue; } const contextLabel = labels[neighborsSignificance[index]]; const decision = decoder.readBit(contexts, contextLabel); if (decision) { const sign = this.decodeSignBit(i, j, index); coefficentsSign[index] = sign; coefficentsMagnitude[index] = 1; this.setNeighborsSignificance(i, j, index); processingFlags[index] |= firstMagnitudeBitMask; } bitsDecoded[index]++; processingFlags[index] |= processedMask; } } } } decodeSignBit(row, column, index) { const width = this.width, height = this.height; const coefficentsMagnitude = this.coefficentsMagnitude; const coefficentsSign = this.coefficentsSign; let contribution, sign0, sign1, significance1; let contextLabel, decoded; // calculate horizontal contribution significance1 = column > 0 && coefficentsMagnitude[index - 1] !== 0; if (column + 1 < width && coefficentsMagnitude[index + 1] !== 0) { sign1 = coefficentsSign[index + 1]; if (significance1) { sign0 = coefficentsSign[index - 1]; contribution = 1 - sign1 - sign0; } else { contribution = 1 - sign1 - sign1; } } else if (significance1) { sign0 = coefficentsSign[index - 1]; contribution = 1 - sign0 - sign0; } else { contribution = 0; } const horizontalContribution = 3 * contribution; // calculate vertical contribution and combine with the horizontal significance1 = row > 0 && coefficentsMagnitude[index - width] !== 0; if (row + 1 < height && coefficentsMagnitude[index + width] !== 0) { sign1 = coefficentsSign[index + width]; if (significance1) { sign0 = coefficentsSign[index - width]; contribution = 1 - sign1 - sign0 + horizontalContribution; } else { contribution = 1 - sign1 - sign1 + horizontalContribution; } } else if (significance1) { sign0 = coefficentsSign[index - width]; contribution = 1 - sign0 - sign0 + horizontalContribution; } else { contribution = horizontalContribution; } if (contribution >= 0) { contextLabel = 9 + contribution; decoded = this.decoder.readBit(this.contexts, contextLabel); } else { contextLabel = 9 - contribution; decoded = this.decoder.readBit(this.contexts, contextLabel) ^ 1; } return decoded; } runMagnitudeRefinementPass() { const decoder = this.decoder; const width = this.width, height = this.height; const coefficentsMagnitude = this.coefficentsMagnitude; const neighborsSignificance = this.neighborsSignificance; const contexts = this.contexts; const bitsDecoded = this.bitsDecoded; const processingFlags = this.processingFlags; const processedMask = 1; const firstMagnitudeBitMask = 2; const length = width * height; const width4 = width * 4; for (let index0 = 0, indexNext; index0 < length; index0 = indexNext) { indexNext = Math.min(length, index0 + width4); for (let j = 0; j < width; j++) { for (let index = index0 + j; index < indexNext; index += width) { // significant but not those that have just become if ( !coefficentsMagnitude[index] || (processingFlags[index] & processedMask) !== 0 ) { continue; } let contextLabel = 16; if ((processingFlags[index] & firstMagnitudeBitMask) !== 0) { processingFlags[index] ^= firstMagnitudeBitMask; // first refinement const significance = neighborsSignificance[index] & 127; contextLabel = significance === 0 ? 15 : 14; } const bit = decoder.readBit(contexts, contextLabel); coefficentsMagnitude[index] = (coefficentsMagnitude[index] << 1) | bit; bitsDecoded[index]++; processingFlags[index] |= processedMask; } } } } runCleanupPass() { const decoder = this.decoder; const width = this.width, height = this.height; const neighborsSignificance = this.neighborsSignificance; const coefficentsMagnitude = this.coefficentsMagnitude; const coefficentsSign = this.coefficentsSign; const contexts = this.contexts; const labels = this.contextLabelTable; const bitsDecoded = this.bitsDecoded; const processingFlags = this.processingFlags; const processedMask = 1; const firstMagnitudeBitMask = 2; const oneRowDown = width; const twoRowsDown = width * 2; const threeRowsDown = width * 3; let iNext; for (let i0 = 0; i0 < height; i0 = iNext) { iNext = Math.min(i0 + 4, height); const indexBase = i0 * width; const checkAllEmpty = i0 + 3 < height; for (let j = 0; j < width; j++) { const index0 = indexBase + j; // using the property: labels[neighborsSignificance[index]] === 0 // when neighborsSignificance[index] === 0 const allEmpty = checkAllEmpty && processingFlags[index0] === 0 && processingFlags[index0 + oneRowDown] === 0 && processingFlags[index0 + twoRowsDown] === 0 && processingFlags[index0 + threeRowsDown] === 0 && neighborsSignificance[index0] === 0 && neighborsSignificance[index0 + oneRowDown] === 0 && neighborsSignificance[index0 + twoRowsDown] === 0 && neighborsSignificance[index0 + threeRowsDown] === 0; let i1 = 0, index = index0; let i = i0, sign; if (allEmpty) { const hasSignificantCoefficent = decoder.readBit( contexts, RUNLENGTH_CONTEXT ); if (!hasSignificantCoefficent) { bitsDecoded[index0]++; bitsDecoded[index0 + oneRowDown]++; bitsDecoded[index0 + twoRowsDown]++; bitsDecoded[index0 + threeRowsDown]++; continue; // next column } i1 = (decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) | decoder.readBit(contexts, UNIFORM_CONTEXT); if (i1 !== 0) { i = i0 + i1; index += i1 * width; } sign = this.decodeSignBit(i, j, index); coefficentsSign[index] = sign; coefficentsMagnitude[index] = 1; this.setNeighborsSignificance(i, j, index); processingFlags[index] |= firstMagnitudeBitMask; index = index0; for (let i2 = i0; i2 <= i; i2++, index += width) { bitsDecoded[index]++; } i1++; } for (i = i0 + i1; i < iNext; i++, index += width) { if ( coefficentsMagnitude[index] || (processingFlags[index] & processedMask) !== 0 ) { continue; } const contextLabel = labels[neighborsSignificance[index]]; const decision = decoder.readBit(contexts, contextLabel); if (decision === 1) { sign = this.decodeSignBit(i, j, index); coefficentsSign[index] = sign; coefficentsMagnitude[index] = 1; this.setNeighborsSignificance(i, j, index); processingFlags[index] |= firstMagnitudeBitMask; } bitsDecoded[index]++; } } } } checkSegmentationSymbol() { const decoder = this.decoder; const contexts = this.contexts; const symbol = (decoder.readBit(contexts, UNIFORM_CONTEXT) << 3) | (decoder.readBit(contexts, UNIFORM_CONTEXT) << 2) | (decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) | decoder.readBit(contexts, UNIFORM_CONTEXT); if (symbol !== 0xa) { throw new JpxError("Invalid segmentation symbol"); } } } return BitModel; })(); // Section F, Discrete wavelet transformation class Transform { constructor() { if (this.constructor === Transform) { unreachable("Cannot initialize Transform."); } } calculate(subbands, u0, v0) { let ll = subbands[0]; for (let i = 1, ii = subbands.length; i < ii; i++) { ll = this.iterate(ll, subbands[i], u0, v0); } return ll; } extend(buffer, offset, size) { // Section F.3.7 extending... using max extension of 4 let i1 = offset - 1, j1 = offset + 1; let i2 = offset + size - 2, j2 = offset + size; buffer[i1--] = buffer[j1++]; buffer[j2++] = buffer[i2--]; buffer[i1--] = buffer[j1++]; buffer[j2++] = buffer[i2--]; buffer[i1--] = buffer[j1++]; buffer[j2++] = buffer[i2--]; buffer[i1] = buffer[j1]; buffer[j2] = buffer[i2]; } filter(x, offset, length) { unreachable("Abstract method `filter` called"); } iterate(ll, hl_lh_hh, u0, v0) { const llWidth = ll.width, llHeight = ll.height; let llItems = ll.items; const width = hl_lh_hh.width; const height = hl_lh_hh.height; const items = hl_lh_hh.items; let i, j, k, l, u, v; // Interleave LL according to Section F.3.3 for (k = 0, i = 0; i < llHeight; i++) { l = i * 2 * width; for (j = 0; j < llWidth; j++, k++, l += 2) { items[l] = llItems[k]; } } // The LL band is not needed anymore. llItems = ll.items = null; const bufferPadding = 4; const rowBuffer = new Float32Array(width + 2 * bufferPadding); // Section F.3.4 HOR_SR if (width === 1) { // if width = 1, when u0 even keep items as is, when odd divide by 2 if ((u0 & 1) !== 0) { for (v = 0, k = 0; v < height; v++, k += width) { items[k] *= 0.5; } } } else { for (v = 0, k = 0; v < height; v++, k += width) { rowBuffer.set(items.subarray(k, k + width), bufferPadding); this.extend(rowBuffer, bufferPadding, width); this.filter(rowBuffer, bufferPadding, width); items.set(rowBuffer.subarray(bufferPadding, bufferPadding + width), k); } } // Accesses to the items array can take long, because it may not fit into // CPU cache and has to be fetched from main memory. Since subsequent // accesses to the items array are not local when reading columns, we // have a cache miss every time. To reduce cache misses, get up to // 'numBuffers' items at a time and store them into the individual // buffers. The colBuffers should be small enough to fit into CPU cache. let numBuffers = 16; const colBuffers = []; for (i = 0; i < numBuffers; i++) { colBuffers.push(new Float32Array(height + 2 * bufferPadding)); } let b, currentBuffer = 0; ll = bufferPadding + height; // Section F.3.5 VER_SR if (height === 1) { // if height = 1, when v0 even keep items as is, when odd divide by 2 if ((v0 & 1) !== 0) { for (u = 0; u < width; u++) { items[u] *= 0.5; } } } else { for (u = 0; u < width; u++) { // if we ran out of buffers, copy several image columns at once if (currentBuffer === 0) { numBuffers = Math.min(width - u, numBuffers); for (k = u, l = bufferPadding; l < ll; k += width, l++) { for (b = 0; b < numBuffers; b++) { colBuffers[b][l] = items[k + b]; } } currentBuffer = numBuffers; } currentBuffer--; const buffer = colBuffers[currentBuffer]; this.extend(buffer, bufferPadding, height); this.filter(buffer, bufferPadding, height); // If this is last buffer in this group of buffers, flush all buffers. if (currentBuffer === 0) { k = u - numBuffers + 1; for (l = bufferPadding; l < ll; k += width, l++) { for (b = 0; b < numBuffers; b++) { items[k + b] = colBuffers[b][l]; } } } } } return { width, height, items }; } } // Section 3.8.2 Irreversible 9-7 filter class IrreversibleTransform extends Transform { filter(x, offset, length) { const len = length >> 1; offset |= 0; let j, n, current, next; const alpha = -1.586134342059924; const beta = -0.052980118572961; const gamma = 0.882911075530934; const delta = 0.443506852043971; const K = 1.230174104914001; const K_ = 1 / K; // step 1 is combined with step 3 // step 2 j = offset - 3; for (n = len + 4; n--; j += 2) { x[j] *= K_; } // step 1 & 3 j = offset - 2; current = delta * x[j - 1]; for (n = len + 3; n--; j += 2) { next = delta * x[j + 1]; x[j] = K * x[j] - current - next; if (n--) { j += 2; current = delta * x[j + 1]; x[j] = K * x[j] - current - next; } else { break; } } // step 4 j = offset - 1; current = gamma * x[j - 1]; for (n = len + 2; n--; j += 2) { next = gamma * x[j + 1]; x[j] -= current + next; if (n--) { j += 2; current = gamma * x[j + 1]; x[j] -= current + next; } else { break; } } // step 5 j = offset; current = beta * x[j - 1]; for (n = len + 1; n--; j += 2) { next = beta * x[j + 1]; x[j] -= current + next; if (n--) { j += 2; current = beta * x[j + 1]; x[j] -= current + next; } else { break; } } // step 6 if (len !== 0) { j = offset + 1; current = alpha * x[j - 1]; for (n = len; n--; j += 2) { next = alpha * x[j + 1]; x[j] -= current + next; if (n--) { j += 2; current = alpha * x[j + 1]; x[j] -= current + next; } else { break; } } } } } // Section 3.8.1 Reversible 5-3 filter class ReversibleTransform extends Transform { filter(x, offset, length) { const len = length >> 1; offset |= 0; let j, n; for (j = offset, n = len + 1; n--; j += 2) { x[j] -= (x[j - 1] + x[j + 1] + 2) >> 2; } for (j = offset + 1, n = len; n--; j += 2) { x[j] += (x[j - 1] + x[j + 1]) >> 1; } } } export { JpxImage };