"use strict"; var fs = require("fs"); try { var ttest = require("ttest"); } catch (e) { console.log('\nttest is not installed -- to intall, run "npm install ttest"'); console.log("Continuing without significance test...\n"); } var VALID_GROUP_BYS = ["browser", "pdf", "page", "round", "stat"]; function parseOptions() { var yargs = require("yargs") .usage( "Compare the results of two stats files.\n" + "Usage:\n $0 [options]" ) .demand(2) .string(["groupBy"]) .describe( "groupBy", "How statistics should grouped. Valid options: " + VALID_GROUP_BYS.join(" ") ) .default("groupBy", "browser,stat"); var result = yargs.argv; result.baseline = result._[0]; result.current = result._[1]; if (result.groupBy) { result.groupBy = result.groupBy.split(/[;, ]+/); } return result; } function group(stats, groupBy) { var vals = []; for (var i = 0; i < stats.length; i++) { var curStat = stats[i]; var keyArr = []; for (var j = 0; j < groupBy.length; j++) { keyArr.push(curStat[groupBy[j]]); } var key = keyArr.join(","); if (vals[key] === undefined) { vals[key] = []; } vals[key].push(curStat["time"]); } return vals; } /* * Flatten the stats so that there's one row per stats entry. * Also, if results are not grouped by 'stat', keep only 'Overall' results. */ function flatten(stats) { var rows = []; stats.forEach(function(curStat) { curStat["stats"].forEach(function(s) { rows.push({ browser: curStat["browser"], page: curStat["page"], pdf: curStat["pdf"], round: curStat["round"], stat: s["name"], time: s["end"] - s["start"], }); }); }); // Use only overall results if not grouped by 'stat' if (!options.groupBy.includes("stat")) { rows = rows.filter(function(s) { return s.stat === "Overall"; }); } return rows; } function pad(s, length, dir /* default: 'right' */) { s = "" + s; var spaces = new Array(Math.max(0, length - s.length + 1)).join(" "); return dir === "left" ? spaces + s : s + spaces; } function mean(array) { function add(a, b) { return a + b; } return array.reduce(add, 0) / array.length; } /* Comparator for row key sorting. */ function compareRow(a, b) { a = a.split(","); b = b.split(","); for (var i = 0; i < Math.min(a.length, b.length); i++) { var intA = parseInt(a[i], 10); var intB = parseInt(b[i], 10); var ai = isNaN(intA) ? a[i] : intA; var bi = isNaN(intB) ? b[i] : intB; if (ai < bi) { return -1; } if (ai > bi) { return 1; } } return 0; } /* * Dump various stats in a table to compare the baseline and current results. * T-test Refresher: * If I understand t-test correctly, p is the probability that we'll observe * another test that is as extreme as the current result assuming the null * hypothesis is true. P is NOT the probability of the null hypothesis. The null * hypothesis in this case is that the baseline and current results will be the * same. It is generally accepted that you can reject the null hypothesis if the * p-value is less than 0.05. So if p < 0.05 we can reject the results are the * same which doesn't necessarily mean the results are faster/slower but it can * be implied. */ function stat(baseline, current) { var baselineGroup = group(baseline, options.groupBy); var currentGroup = group(current, options.groupBy); var keys = Object.keys(baselineGroup); keys.sort(compareRow); var labels = options.groupBy.slice(0); labels.push("Count", "Baseline(ms)", "Current(ms)", "+/-", "% "); if (ttest) { labels.push("Result(P<.05)"); } var i, row, rows = []; // collect rows and measure column widths var width = labels.map(function(s) { return s.length; }); rows.push(labels); for (var k = 0; k < keys.length; k++) { var key = keys[k]; var baselineMean = mean(baselineGroup[key]); var currentMean = mean(currentGroup[key]); row = key.split(","); row.push( "" + baselineGroup[key].length, "" + Math.round(baselineMean), "" + Math.round(currentMean), "" + Math.round(currentMean - baselineMean), ((100 * (currentMean - baselineMean)) / baselineMean).toFixed(2) ); if (ttest) { var p = baselineGroup[key].length < 2 ? 1 : ttest(baselineGroup[key], currentGroup[key]).pValue(); if (p < 0.05) { row.push(currentMean < baselineMean ? "faster" : "slower"); } else { row.push(""); } } for (i = 0; i < row.length; i++) { width[i] = Math.max(width[i], row[i].length); } rows.push(row); } // add horizontal line var hline = width.map(function(w) { return new Array(w + 1).join("-"); }); rows.splice(1, 0, hline); // print output console.log("-- Grouped By " + options.groupBy.join(", ") + " --"); var groupCount = options.groupBy.length; for (var r = 0; r < rows.length; r++) { row = rows[r]; for (i = 0; i < row.length; i++) { row[i] = pad(row[i], width[i], i < groupCount ? "right" : "left"); } console.log(row.join(" | ")); } } function main() { var baseline, current; try { var baselineFile = fs.readFileSync(options.baseline).toString(); baseline = flatten(JSON.parse(baselineFile)); } catch (e) { console.log('Error reading file "' + options.baseline + '": ' + e); process.exit(0); } try { var currentFile = fs.readFileSync(options.current).toString(); current = flatten(JSON.parse(currentFile)); } catch (e) { console.log('Error reading file "' + options.current + '": ' + e); process.exit(0); } stat(baseline, current); } var options = parseOptions(); main();