/* -*- Mode: Java; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- / /* vim: set shiftwidth=2 tabstop=2 autoindent cindent expandtab: */ // - The JPEG specification can be found in the ITU CCITT Recommendation T.81 // (www.w3.org/Graphics/JPEG/itu-t81.pdf) // - The JFIF specification can be found in the JPEG File Interchange Format // (www.w3.org/Graphics/JPEG/jfif3.pdf) // - The Adobe Application-Specific JPEG markers in the Supporting the DCT Filters // in PostScript Level 2, Technical Note #5116 // (partners.adobe.com/public/developer/en/ps/sdk/5116.DCT_Filter.pdf) var JpegImage = (function jpegImage() { "use strict"; var dctZigZag = new Int32Array([ 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 ]); var dctCos1 = 4017 // cos(pi/16) var dctSin1 = 799 // sin(pi/16) var dctCos3 = 3406 // cos(3*pi/16) var dctSin3 = 2276 // sin(3*pi/16) var dctCos6 = 1567 // cos(6*pi/16) var dctSin6 = 3784 // sin(6*pi/16) var dctSqrt2 = 5793 // sqrt(2) var dctSqrt1d2 = 2896 // sqrt(2) / 2 function constructor() { } function buildHuffmanTable(codeLengths, values) { var k = 0, code = [], i, j, length = 16; while (length > 0 && !codeLengths[length - 1]) length--; code.push({children: [], index: 0}); var p = code[0], q; for (i = 0; i < length; i++) { for (j = 0; j < codeLengths[i]; j++) { p = code.pop(); p.children[p.index] = values[k]; while (p.index > 0) { p = code.pop(); } p.index++; code.push(p); while (code.length <= i) { code.push(q = {children: [], index: 0}); p.children[p.index] = q.children; p = q; } k++; } if (i + 1 < length) { // p here points to last code code.push(q = {children: [], index: 0}); p.children[p.index] = q.children; p = q; } } return code[0].children; } function decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successivePrev, successive) { var precision = frame.precision; var samplesPerLine = frame.samplesPerLine; var scanLines = frame.scanLines; var mcusPerLine = frame.mcusPerLine; var progressive = frame.progressive; var maxH = frame.maxH, maxV = frame.maxV; var startOffset = offset, bitsData = 0, bitsCount = 0; function readBit() { if (bitsCount > 0) { bitsCount--; return (bitsData >> bitsCount) & 1; } bitsData = data[offset++]; if (bitsData == 0xFF) { var nextByte = data[offset++]; if (nextByte) { throw "unexpected marker: " + ((bitsData << 8) | nextByte).toString(16); } // unstuff 0 } bitsCount = 7; return bitsData >>> 7; } function decodeHuffman(tree) { var node = tree, bit; while ((bit = readBit()) !== null) { node = node[bit]; if (typeof node === 'number') return node; if (typeof node !== 'object') throw "invalid huffman sequence"; } return null; } function receive(length) { var n = 0; while (length > 0) { var bit = readBit(); if (bit === null) return; n = (n << 1) | bit; length--; } return n; } function receiveAndExtend(length) { var n = receive(length); if (n >= 1 << (length - 1)) return n; return n + (-1 << length) + 1; } function decodeBaseline(component, zz) { var t = decodeHuffman(component.huffmanTableDC); var diff = t === 0 ? 0 : receiveAndExtend(t); zz[0]= (component.pred += diff); var k = 1; while (k < 64) { var rs = decodeHuffman(component.huffmanTableAC); var s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) break; k += 16; continue; } k += r; var z = dctZigZag[k]; zz[z] = receiveAndExtend(s); k++; } } function decodeDCFirst(component, zz) { var t = decodeHuffman(component.huffmanTableDC); var diff = t === 0 ? 0 : (receiveAndExtend(t) << successive); zz[0] = (component.pred += diff); } function decodeDCSuccessive(component, zz) { zz[0] |= readBit() << successive; } var eobrun = 0; function decodeACFirst(component, zz) { if (eobrun > 0) { eobrun--; return; } var k = spectralStart, e = spectralEnd; while (k <= e) { var rs = decodeHuffman(component.huffmanTableAC); var s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r) - 1; break; } k += 16; continue; } k += r; var z = dctZigZag[k]; zz[z] = receiveAndExtend(s) * (1 << successive); k++; } } var successiveACState = 0, successiveACNextValue; function decodeACSuccessive(component, zz) { var k = spectralStart, e = spectralEnd, r = 0; while (k <= e) { var z = dctZigZag[k]; switch (successiveACState) { case 0: // initial state var rs = decodeHuffman(component.huffmanTableAC); var s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r); successiveACState = 4; } else { r = 16; successiveACState = 1; } } else { if (s !== 1) throw "invalid ACn encoding"; successiveACNextValue = receiveAndExtend(s); successiveACState = r ? 2 : 3; } continue; case 1: // skipping r zero items case 2: if (zz[z]) zz[z] += (readBit() << successive); else { r--; if (r === 0) successiveACState = successiveACState == 2 ? 3 : 0; } break; case 3: // set value for a zero item if (zz[z]) zz[z] += (readBit() << successive); else { zz[z] = successiveACNextValue << successive; successiveACState = 0; } break; case 4: // eob if (zz[z]) zz[z] += (readBit() << successive); break; } k++; } if (successiveACState === 4) { eobrun--; if (eobrun === 0) successiveACState = 0; } } function decodeMcu(component, decode, mcu, row, col) { var mcuRow = (mcu / mcusPerLine) | 0; var mcuCol = mcu % mcusPerLine; var blockRow = mcuRow * component.v + row; var blockCol = mcuCol * component.h + col; decode(component, component.blocks[blockRow][blockCol]); } function decodeBlock(component, decode, mcu) { var blockRow = (mcu / component.blocksPerLine) | 0; var blockCol = mcu % component.blocksPerLine; decode(component, component.blocks[blockRow][blockCol]); } var componentsLength = components.length; var component, i, j, k, n; var decodeFn; if (progressive) { if (spectralStart === 0) decodeFn = successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive; else decodeFn = successivePrev === 0 ? decodeACFirst : decodeACSuccessive; } else { decodeFn = decodeBaseline; } var mcu = 0, marker; var mcuExpected; if (componentsLength == 1) { mcuExpected = components[0].blocksPerLine * components[0].blocksPerColumn; } else { mcuExpected = mcusPerLine * frame.mcusPerColumn; } if (!resetInterval) resetInterval = mcuExpected; var h, v; while (mcu < mcuExpected) { // reset interval stuff for (i = 0; i < componentsLength; i++) components[i].pred = 0; eobrun = 0; if (componentsLength == 1) { component = components[0]; for (n = 0; n < resetInterval; n++) { decodeBlock(component, decodeFn, mcu); mcu++; } } else { for (n = 0; n < resetInterval; n++) { for (i = 0; i < componentsLength; i++) { component = components[i]; h = component.h; v = component.v; for (j = 0; j < v; j++) { for (k = 0; k < h; k++) { decodeMcu(component, decodeFn, mcu, j, k); } } } mcu++; } } // find marker bitsCount = 0; marker = (data[offset] << 8) | data[offset + 1]; if (marker <= 0xFF00) { throw "marker was not found"; } if (marker >= 0xFFD0 && marker <= 0xFFD7) { // RSTx offset += 2; } else break; } return offset - startOffset; } function buildComponentData(frame, component) { var lines = []; var blocksPerLine = component.blocksPerLine; var blocksPerColumn = component.blocksPerColumn; var samplesPerLine = blocksPerLine << 3; var R = new Int32Array(64), r = new Uint8Array(64); // A port of poppler's IDCT method which in turn is taken from: // Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz, // "Practical Fast 1-D DCT Algorithms with 11 Multiplications", // IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989, // 988-991. function quantizeAndInverse(zz, dataOut, dataIn) { var qt = component.quantizationTable; var v0, v1, v2, v3, v4, v5, v6, v7, t; var p = dataIn; var i; // dequant for (i = 0; i < 64; i++) p[i] = zz[i] * qt[i]; // inverse DCT on rows for (i = 0; i < 8; ++i) { var row = 8 * i; // check for all-zero AC coefficients if (p[1 + row] == 0 && p[2 + row] == 0 && p[3 + row] == 0 && p[4 + row] == 0 && p[5 + row] == 0 && p[6 + row] == 0 && p[7 + row] == 0) { t = (dctSqrt2 * p[0 + row] + 512) >> 10; p[0 + row] = t; p[1 + row] = t; p[2 + row] = t; p[3 + row] = t; p[4 + row] = t; p[5 + row] = t; p[6 + row] = t; p[7 + row] = t; continue; } // stage 4 v0 = (dctSqrt2 * p[0 + row] + 128) >> 8; v1 = (dctSqrt2 * p[4 + row] + 128) >> 8; v2 = p[2 + row]; v3 = p[6 + row]; v4 = (dctSqrt1d2 * (p[1 + row] - p[7 + row]) + 128) >> 8; v7 = (dctSqrt1d2 * (p[1 + row] + p[7 + row]) + 128) >> 8; v5 = p[3 + row] << 4; v6 = p[5 + row] << 4; // stage 3 t = (v0 - v1+ 1) >> 1; v0 = (v0 + v1 + 1) >> 1; v1 = t; t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8; v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8; v3 = t; t = (v4 - v6 + 1) >> 1; v4 = (v4 + v6 + 1) >> 1; v6 = t; t = (v7 + v5 + 1) >> 1; v5 = (v7 - v5 + 1) >> 1; v7 = t; // stage 2 t = (v0 - v3 + 1) >> 1; v0 = (v0 + v3 + 1) >> 1; v3 = t; t = (v1 - v2 + 1) >> 1; v1 = (v1 + v2 + 1) >> 1; v2 = t; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p[0 + row] = v0 + v7; p[7 + row] = v0 - v7; p[1 + row] = v1 + v6; p[6 + row] = v1 - v6; p[2 + row] = v2 + v5; p[5 + row] = v2 - v5; p[3 + row] = v3 + v4; p[4 + row] = v3 - v4; } // inverse DCT on columns for (i = 0; i < 8; ++i) { var col = i; // check for all-zero AC coefficients if (p[1*8 + col] == 0 && p[2*8 + col] == 0 && p[3*8 + col] == 0 && p[4*8 + col] == 0 && p[5*8 + col] == 0 && p[6*8 + col] == 0 && p[7*8 + col] == 0) { t = (dctSqrt2 * dataIn[i+0] + 8192) >> 14; p[0*8 + col] = t; p[1*8 + col] = t; p[2*8 + col] = t; p[3*8 + col] = t; p[4*8 + col] = t; p[5*8 + col] = t; p[6*8 + col] = t; p[7*8 + col] = t; continue; } // stage 4 v0 = (dctSqrt2 * p[0*8 + col] + 2048) >> 12; v1 = (dctSqrt2 * p[4*8 + col] + 2048) >> 12; v2 = p[2*8 + col]; v3 = p[6*8 + col]; v4 = (dctSqrt1d2 * (p[1*8 + col] - p[7*8 + col]) + 2048) >> 12; v7 = (dctSqrt1d2 * (p[1*8 + col] + p[7*8 + col]) + 2048) >> 12; v5 = p[3*8 + col]; v6 = p[5*8 + col]; // stage 3 t = (v0 - v1 + 1) >> 1; v0 = (v0 + v1 + 1) >> 1; v1 = t; t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12; v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12; v3 = t; t = (v4 - v6 + 1) >> 1; v4 = (v4 + v6 + 1) >> 1; v6 = t; t = (v7 + v5 + 1) >> 1; v5 = (v7 - v5 + 1) >> 1; v7 = t; // stage 2 t = (v0 - v3 + 1) >> 1; v0 = (v0 + v3 + 1) >> 1; v3 = t; t = (v1 - v2 + 1) >> 1; v1 = (v1 + v2 + 1) >> 1; v2 = t; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p[0*8 + col] = v0 + v7; p[7*8 + col] = v0 - v7; p[1*8 + col] = v1 + v6; p[6*8 + col] = v1 - v6; p[2*8 + col] = v2 + v5; p[5*8 + col] = v2 - v5; p[3*8 + col] = v3 + v4; p[4*8 + col] = v3 - v4; } // convert to 8-bit integers for (i = 0; i < 64; ++i) { var sample = 128 + ((p[i] + 8) >> 4); dataOut[i] = sample < 0 ? 0 : sample > 0xFF ? 0xFF : sample; } } var i, j; for (var blockRow = 0; blockRow < blocksPerColumn; blockRow++) { var scanLine = blockRow << 3; for (i = 0; i < 8; i++) lines.push(new Uint8Array(samplesPerLine)); for (var blockCol = 0; blockCol < blocksPerLine; blockCol++) { quantizeAndInverse(component.blocks[blockRow][blockCol], r, R); var offset = 0, sample = blockCol << 3; for (j = 0; j < 8; j++) { var line = lines[scanLine + j]; for (i = 0; i < 8; i++) line[sample + i] = r[offset++]; } } } return lines; } constructor.prototype = { load: function load(path) { var xhr = new XMLHttpRequest(); xhr.open("GET", path, true); xhr.responseType = "arraybuffer"; xhr.onload = (function() { // TODO catch parse error var data = new Uint8Array(xhr.response || xhr.mozResponseArrayBuffer); this.parse(data); if (this.onload) this.onload(); }).bind(this); xhr.send(null); }, parse: function parse(data) { var offset = 0, length = data.length; function readUint16() { var value = (data[offset] << 8) | data[offset + 1]; offset += 2; return value; } function readDataBlock() { var length = readUint16(); var array = data.subarray(offset, offset + length - 2); offset += array.length; return array; } function prepareComponents(frame) { var maxH = 0, maxV = 0; var component, componentId; for (componentId in frame.components) { if (frame.components.hasOwnProperty(componentId)) { component = frame.components[componentId]; if (maxH < component.h) maxH = component.h; if (maxV < component.v) maxV = component.v; } } var mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / maxH); var mcusPerColumn = Math.ceil(frame.scanLines / 8 / maxV); for (componentId in frame.components) { if (frame.components.hasOwnProperty(componentId)) { component = frame.components[componentId]; var blocksPerLine = Math.ceil(Math.ceil(frame.samplesPerLine / 8) * component.h / maxH); var blocksPerColumn = Math.ceil(Math.ceil(frame.scanLines / 8) * component.v / maxV); var blocksPerLineForMcu = mcusPerLine * component.h; var blocksPerColumnForMcu = mcusPerColumn * component.v; var blocks = []; for (var i = 0; i < blocksPerColumnForMcu; i++) { var row = []; for (var j = 0; j < blocksPerLineForMcu; j++) row.push(new Int32Array(64)); blocks.push(row); } component.blocksPerLine = blocksPerLine; component.blocksPerColumn = blocksPerColumn; component.blocks = blocks; } } frame.maxH = maxH; frame.maxV = maxV; frame.mcusPerLine = mcusPerLine; frame.mcusPerColumn = mcusPerColumn; } var jfif = null; var adobe = null; var pixels = null; var frame, resetInterval; var quantizationTables = [], frames = []; var huffmanTablesAC = [], huffmanTablesDC = []; var fileMarker = readUint16(); if (fileMarker != 0xFFD8) { // SOI (Start of Image) throw "SOI not found"; } fileMarker = readUint16(); while (fileMarker != 0xFFD9) { // EOI (End of image) var i, j, l; switch(fileMarker) { case 0xFFE0: // APP0 (Application Specific) case 0xFFE1: // APP1 case 0xFFE2: // APP2 case 0xFFE3: // APP3 case 0xFFE4: // APP4 case 0xFFE5: // APP5 case 0xFFE6: // APP6 case 0xFFE7: // APP7 case 0xFFE8: // APP8 case 0xFFE9: // APP9 case 0xFFEA: // APP10 case 0xFFEB: // APP11 case 0xFFEC: // APP12 case 0xFFED: // APP13 case 0xFFEE: // APP14 case 0xFFEF: // APP15 case 0xFFFE: // COM (Comment) var appData = readDataBlock(); if (fileMarker === 0xFFE0) { if (appData[0] === 0x4A && appData[1] === 0x46 && appData[2] === 0x49 && appData[3] === 0x46 && appData[4] === 0) { // 'JFIF\x00' jfif = { version: { major: appData[5], minor: appData[6] }, densityUnits: appData[7], xDensity: (appData[8] << 8) | appData[9], yDensity: (appData[10] << 8) | appData[11], thumbWidth: appData[12], thumbHeight: appData[13], thumbData: appData.subarray(14, 14 + 3 * appData[12] * appData[13]) }; } } // TODO APP1 - Exif if (fileMarker === 0xFFEE) { if (appData[0] === 0x41 && appData[1] === 0x64 && appData[2] === 0x6F && appData[3] === 0x62 && appData[4] === 0x65 && appData[5] === 0) { // 'Adobe\x00' adobe = { version: appData[6], flags0: (appData[7] << 8) | appData[8], flags1: (appData[9] << 8) | appData[10], transformCode: appData[11] }; } } break; case 0xFFDB: // DQT (Define Quantization Tables) var quantizationTableCount = Math.floor((readUint16() - 2) / 65); for (i = 0; i < quantizationTableCount; i++) { var quantizationTableSpec = data[offset++]; var tableData = new Int32Array(64); if ((quantizationTableSpec >> 4) === 0) { // 8 bit values for (j = 0; j < 64; j++) { var z = dctZigZag[j]; tableData[z] = data[offset++]; } } else if ((quantizationTableSpec >> 4) === 1) { //16 bit for (j = 0; j < 64; j++) { var z = dctZigZag[j]; tableData[z] = readUint16(); } } else throw "DQT: invalid table spec"; quantizationTables[quantizationTableSpec & 15] = tableData; } break; case 0xFFC0: // SOF0 (Start of Frame, Baseline DCT) case 0xFFC2: // SOF2 (Start of Frame, Progressive DCT) readUint16(); // skip data length frame = {}; frame.progressive = (fileMarker === 0xFFC2); frame.precision = data[offset++]; frame.scanLines = readUint16(); frame.samplesPerLine = readUint16(); frame.components = {}; frame.componentsOrder = []; var componentsCount = data[offset++], componentId; var maxH = 0, maxV = 0; for (i = 0; i < componentsCount; i++) { componentId = data[offset]; var h = data[offset + 1] >> 4; var v = data[offset + 1] & 15; var qId = data[offset + 2]; frame.componentsOrder.push(componentId); frame.components[componentId] = { h: h, v: v, quantizationTable: quantizationTables[qId] }; offset += 3; } prepareComponents(frame); frames.push(frame); break; case 0xFFC4: // DHT (Define Huffman Tables) var huffmanLength = readUint16(); for (i = 2; i < huffmanLength;) { var huffmanTableSpec = data[offset++]; var codeLengths = new Uint8Array(16); var codeLengthSum = 0; for (j = 0; j < 16; j++, offset++) codeLengthSum += (codeLengths[j] = data[offset]); var huffmanValues = new Uint8Array(codeLengthSum); for (j = 0; j < codeLengthSum; j++, offset++) huffmanValues[j] = data[offset]; i += 17 + codeLengthSum; ((huffmanTableSpec >> 4) === 0 ? huffmanTablesDC : huffmanTablesAC)[huffmanTableSpec & 15] = buildHuffmanTable(codeLengths, huffmanValues); } break; case 0xFFDD: // DRI (Define Restart Interval) readUint16(); // skip data length resetInterval = readUint16(); break; case 0xFFDA: // SOS (Start of Scan) var scanLength = readUint16(); var selectorsCount = data[offset++]; var components = [], component; for (i = 0; i < selectorsCount; i++) { component = frame.components[data[offset++]]; var tableSpec = data[offset++]; component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4]; component.huffmanTableAC = huffmanTablesAC[tableSpec & 15]; components.push(component); } var spectralStart = data[offset++]; var spectralEnd = data[offset++]; var successiveApproximation = data[offset++]; var processed = decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successiveApproximation >> 4, successiveApproximation & 15); offset += processed; break; default: throw "unknown JPEG marker " + fileMarker.toString(16); } fileMarker = readUint16(); } if (frames.length != 1) throw "only single frame JPEGs supported"; this.width = frame.samplesPerLine; this.height = frame.scanLines; this.jfif = jfif; this.adobe = adobe; this.components = []; for (var i = 0; i < frame.componentsOrder.length; i++) { var component = frame.components[frame.componentsOrder[i]]; this.components.push({ lines: buildComponentData(frame, component), scaleX: component.h / frame.maxH, scaleY: component.v / frame.maxV }); } }, getData: function getData(width, height) { function clampTo8bit(a) { return a < 0 ? 0 : a > 255 ? 255 : a; } var scaleX = this.width / width, scaleY = this.height / height; var component1, component2, component3, component4; var component1Line, component2Line, component3Line, component4Line; var x, y; var offset = 0; var Y, Cb, Cr, K, C, M, Ye, R, G, B; var colorTransform; var dataLength = width * height * this.components.length; var data = new Uint8Array(dataLength); switch (this.components.length) { case 1: component1 = this.components[0]; for (y = 0; y < height; y++) { component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)]; for (x = 0; x < width; x++) { Y = component1Line[0 | (x * component1.scaleX * scaleX)]; data[offset++] = Y; } } break; case 3: // The default transform for three components is true colorTransform = true; // The adobe transform marker overrides any previous setting if (this.adobe && this.adobe.transformCode) colorTransform = true; else if (typeof this.colorTransform !== 'undefined') colorTransform = !!this.colorTransform; component1 = this.components[0]; component2 = this.components[1]; component3 = this.components[2]; for (y = 0; y < height; y++) { component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)]; component2Line = component2.lines[0 | (y * component2.scaleY * scaleY)]; component3Line = component3.lines[0 | (y * component3.scaleY * scaleY)]; for (x = 0; x < width; x++) { if (!colorTransform) { R = component1Line[0 | (x * component1.scaleX * scaleX)]; G = component2Line[0 | (x * component2.scaleX * scaleX)]; B = component3Line[0 | (x * component3.scaleX * scaleX)]; } else { Y = component1Line[0 | (x * component1.scaleX * scaleX)]; Cb = component2Line[0 | (x * component2.scaleX * scaleX)]; Cr = component3Line[0 | (x * component3.scaleX * scaleX)]; R = clampTo8bit(Y + 1.402 * (Cr - 128)); G = clampTo8bit(Y - 0.3441363 * (Cb - 128) - 0.71413636 * (Cr - 128)); B = clampTo8bit(Y + 1.772 * (Cb - 128)); } data[offset++] = R; data[offset++] = G; data[offset++] = B; } } break; case 4: if (!this.adobe) throw 'Unsupported color mode (4 components)'; // The default transform for four components is false colorTransform = false; // The adobe transform marker overrides any previous setting if (this.adobe && this.adobe.transformCode) colorTransform = true; else if (typeof this.colorTransform !== 'undefined') colorTransform = !!this.colorTransform; component1 = this.components[0]; component2 = this.components[1]; component3 = this.components[2]; component4 = this.components[3]; for (y = 0; y < height; y++) { component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)]; component2Line = component2.lines[0 | (y * component2.scaleY * scaleY)]; component3Line = component3.lines[0 | (y * component3.scaleY * scaleY)]; component4Line = component4.lines[0 | (y * component4.scaleY * scaleY)]; for (x = 0; x < width; x++) { if (!colorTransform) { C = component1Line[0 | (x * component1.scaleX * scaleX)]; M = component2Line[0 | (x * component2.scaleX * scaleX)]; Ye = component3Line[0 | (x * component3.scaleX * scaleX)]; K = component4Line[0 | (x * component4.scaleX * scaleX)]; } else { Y = component1Line[0 | (x * component1.scaleX * scaleX)]; Cb = component2Line[0 | (x * component2.scaleX * scaleX)]; Cr = component3Line[0 | (x * component3.scaleX * scaleX)]; K = component4Line[0 | (x * component4.scaleX * scaleX)]; C = 255 - clampTo8bit(Y + 1.402 * (Cr - 128)); M = 255 - clampTo8bit(Y - 0.3441363 * (Cb - 128) - 0.71413636 * (Cr - 128)); Ye = 255 - clampTo8bit(Y + 1.772 * (Cb - 128)); } data[offset++] = C; data[offset++] = M; data[offset++] = Ye; data[offset++] = K; } } break; default: throw 'Unsupported color mode'; } return data; }, copyToImageData: function copyToImageData(imageData) { var width = imageData.width, height = imageData.height; var imageDataArray = imageData.data; var data = this.getData(width, height); var i = 0, j = 0, x, y; var Y, K, C, M, R, G, B; switch (this.components.length) { case 1: for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { Y = data[i++]; imageDataArray[j++] = Y; imageDataArray[j++] = Y; imageDataArray[j++] = Y; imageDataArray[j++] = 255; } } break; case 3: for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { R = data[i++]; G = data[i++]; B = data[i++]; imageDataArray[j++] = R; imageDataArray[j++] = G; imageDataArray[j++] = B; imageDataArray[j++] = 255; } } break; case 4: for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { C = data[i++]; M = data[i++]; Y = data[i++]; K = data[i++]; R = 255 - clampTo8bit(C * (1 - K / 255) + K); G = 255 - clampTo8bit(M * (1 - K / 255) + K); B = 255 - clampTo8bit(Y * (1 - K / 255) + K); imageDataArray[j++] = R; imageDataArray[j++] = G; imageDataArray[j++] = B; imageDataArray[j++] = 255; } } break; default: throw 'Unsupported color mode'; } } }; return constructor; })();