/* Copyright 2014 Mozilla Foundation * * Licensed under the Apache License, Version 2.0 (the 'License'); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an 'AS IS' BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { assert, BaseException, warn } from "../shared/util.js"; import { readUint16 } from "./core_utils.js"; class JpegError extends BaseException { constructor(msg) { super(`JPEG error: ${msg}`, "JpegError"); } } class DNLMarkerError extends BaseException { constructor(message, scanLines) { super(message, "DNLMarkerError"); this.scanLines = scanLines; } } class EOIMarkerError extends BaseException { constructor(msg) { super(msg, "EOIMarkerError"); } } /** * This code was forked from https://github.com/notmasteryet/jpgjs. * The original version was created by GitHub user notmasteryet. * * - The JPEG specification can be found in the ITU CCITT Recommendation T.81 * (www.w3.org/Graphics/JPEG/itu-t81.pdf) * - The JFIF specification can be found in the JPEG File Interchange Format * (www.w3.org/Graphics/JPEG/jfif3.pdf) * - The Adobe Application-Specific JPEG markers in the * Supporting the DCT Filters in PostScript Level 2, Technical Note #5116 * (partners.adobe.com/public/developer/en/ps/sdk/5116.DCT_Filter.pdf) */ // prettier-ignore const dctZigZag = new Uint8Array([ 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 ]); const dctCos1 = 4017; // cos(pi/16) const dctSin1 = 799; // sin(pi/16) const dctCos3 = 3406; // cos(3*pi/16) const dctSin3 = 2276; // sin(3*pi/16) const dctCos6 = 1567; // cos(6*pi/16) const dctSin6 = 3784; // sin(6*pi/16) const dctSqrt2 = 5793; // sqrt(2) const dctSqrt1d2 = 2896; // sqrt(2) / 2 function buildHuffmanTable(codeLengths, values) { let k = 0, i, j, length = 16; while (length > 0 && !codeLengths[length - 1]) { length--; } const code = [{ children: [], index: 0 }]; let p = code[0], q; for (i = 0; i < length; i++) { for (j = 0; j < codeLengths[i]; j++) { p = code.pop(); p.children[p.index] = values[k]; while (p.index > 0) { p = code.pop(); } p.index++; code.push(p); while (code.length <= i) { code.push((q = { children: [], index: 0 })); p.children[p.index] = q.children; p = q; } k++; } if (i + 1 < length) { // p here points to last code code.push((q = { children: [], index: 0 })); p.children[p.index] = q.children; p = q; } } return code[0].children; } function getBlockBufferOffset(component, row, col) { return 64 * ((component.blocksPerLine + 1) * row + col); } function decodeScan( data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successivePrev, successive, parseDNLMarker = false ) { const mcusPerLine = frame.mcusPerLine; const progressive = frame.progressive; const startOffset = offset; let bitsData = 0, bitsCount = 0; function readBit() { if (bitsCount > 0) { bitsCount--; return (bitsData >> bitsCount) & 1; } bitsData = data[offset++]; if (bitsData === 0xff) { const nextByte = data[offset++]; if (nextByte) { if (nextByte === /* DNL = */ 0xdc && parseDNLMarker) { offset += 2; // Skip marker length. const scanLines = readUint16(data, offset); offset += 2; if (scanLines > 0 && scanLines !== frame.scanLines) { throw new DNLMarkerError( "Found DNL marker (0xFFDC) while parsing scan data", scanLines ); } } else if (nextByte === /* EOI = */ 0xd9) { if (parseDNLMarker) { // NOTE: only 8-bit JPEG images are supported in this decoder. const maybeScanLines = blockRow * (frame.precision === 8 ? 8 : 0); // Heuristic to attempt to handle corrupt JPEG images with too // large `scanLines` parameter, by falling back to the currently // parsed number of scanLines when it's at least (approximately) // one "half" order of magnitude smaller than expected (fixes // issue10880.pdf, issue10989.pdf, issue15492.pdf). if ( maybeScanLines > 0 && Math.round(frame.scanLines / maybeScanLines) >= 5 ) { throw new DNLMarkerError( "Found EOI marker (0xFFD9) while parsing scan data, " + "possibly caused by incorrect `scanLines` parameter", maybeScanLines ); } } throw new EOIMarkerError( "Found EOI marker (0xFFD9) while parsing scan data" ); } throw new JpegError( `unexpected marker ${((bitsData << 8) | nextByte).toString(16)}` ); } // unstuff 0 } bitsCount = 7; return bitsData >>> 7; } function decodeHuffman(tree) { let node = tree; while (true) { node = node[readBit()]; switch (typeof node) { case "number": return node; case "object": continue; } throw new JpegError("invalid huffman sequence"); } } function receive(length) { let n = 0; while (length > 0) { n = (n << 1) | readBit(); length--; } return n; } function receiveAndExtend(length) { if (length === 1) { return readBit() === 1 ? 1 : -1; } const n = receive(length); if (n >= 1 << (length - 1)) { return n; } return n + (-1 << length) + 1; } function decodeBaseline(component, blockOffset) { const t = decodeHuffman(component.huffmanTableDC); const diff = t === 0 ? 0 : receiveAndExtend(t); component.blockData[blockOffset] = component.pred += diff; let k = 1; while (k < 64) { const rs = decodeHuffman(component.huffmanTableAC); const s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { break; } k += 16; continue; } k += r; const z = dctZigZag[k]; component.blockData[blockOffset + z] = receiveAndExtend(s); k++; } } function decodeDCFirst(component, blockOffset) { const t = decodeHuffman(component.huffmanTableDC); const diff = t === 0 ? 0 : receiveAndExtend(t) << successive; component.blockData[blockOffset] = component.pred += diff; } function decodeDCSuccessive(component, blockOffset) { component.blockData[blockOffset] |= readBit() << successive; } let eobrun = 0; function decodeACFirst(component, blockOffset) { if (eobrun > 0) { eobrun--; return; } let k = spectralStart; const e = spectralEnd; while (k <= e) { const rs = decodeHuffman(component.huffmanTableAC); const s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r) - 1; break; } k += 16; continue; } k += r; const z = dctZigZag[k]; component.blockData[blockOffset + z] = receiveAndExtend(s) * (1 << successive); k++; } } let successiveACState = 0, successiveACNextValue; function decodeACSuccessive(component, blockOffset) { let k = spectralStart; const e = spectralEnd; let r = 0; let s; let rs; while (k <= e) { const offsetZ = blockOffset + dctZigZag[k]; const sign = component.blockData[offsetZ] < 0 ? -1 : 1; switch (successiveACState) { case 0: // initial state rs = decodeHuffman(component.huffmanTableAC); s = rs & 15; r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r); successiveACState = 4; } else { r = 16; successiveACState = 1; } } else { if (s !== 1) { throw new JpegError("invalid ACn encoding"); } successiveACNextValue = receiveAndExtend(s); successiveACState = r ? 2 : 3; } continue; case 1: // skipping r zero items case 2: if (component.blockData[offsetZ]) { component.blockData[offsetZ] += sign * (readBit() << successive); } else { r--; if (r === 0) { successiveACState = successiveACState === 2 ? 3 : 0; } } break; case 3: // set value for a zero item if (component.blockData[offsetZ]) { component.blockData[offsetZ] += sign * (readBit() << successive); } else { component.blockData[offsetZ] = successiveACNextValue << successive; successiveACState = 0; } break; case 4: // eob if (component.blockData[offsetZ]) { component.blockData[offsetZ] += sign * (readBit() << successive); } break; } k++; } if (successiveACState === 4) { eobrun--; if (eobrun === 0) { successiveACState = 0; } } } let blockRow = 0; function decodeMcu(component, decode, mcu, row, col) { const mcuRow = (mcu / mcusPerLine) | 0; const mcuCol = mcu % mcusPerLine; blockRow = mcuRow * component.v + row; const blockCol = mcuCol * component.h + col; const blockOffset = getBlockBufferOffset(component, blockRow, blockCol); decode(component, blockOffset); } function decodeBlock(component, decode, mcu) { blockRow = (mcu / component.blocksPerLine) | 0; const blockCol = mcu % component.blocksPerLine; const blockOffset = getBlockBufferOffset(component, blockRow, blockCol); decode(component, blockOffset); } const componentsLength = components.length; let component, i, j, k, n; let decodeFn; if (progressive) { if (spectralStart === 0) { decodeFn = successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive; } else { decodeFn = successivePrev === 0 ? decodeACFirst : decodeACSuccessive; } } else { decodeFn = decodeBaseline; } let mcu = 0, fileMarker; let mcuExpected; if (componentsLength === 1) { mcuExpected = components[0].blocksPerLine * components[0].blocksPerColumn; } else { mcuExpected = mcusPerLine * frame.mcusPerColumn; } let h, v; while (mcu <= mcuExpected) { // reset interval stuff const mcuToRead = resetInterval ? Math.min(mcuExpected - mcu, resetInterval) : mcuExpected; // The `mcuToRead === 0` case should only occur when all of the expected // MCU data has been already parsed, i.e. when `mcu === mcuExpected`, but // some corrupt JPEG images contain more data than intended and we thus // want to skip over any extra RSTx markers below (fixes issue11794.pdf). if (mcuToRead > 0) { for (i = 0; i < componentsLength; i++) { components[i].pred = 0; } eobrun = 0; if (componentsLength === 1) { component = components[0]; for (n = 0; n < mcuToRead; n++) { decodeBlock(component, decodeFn, mcu); mcu++; } } else { for (n = 0; n < mcuToRead; n++) { for (i = 0; i < componentsLength; i++) { component = components[i]; h = component.h; v = component.v; for (j = 0; j < v; j++) { for (k = 0; k < h; k++) { decodeMcu(component, decodeFn, mcu, j, k); } } } mcu++; } } } // find marker bitsCount = 0; fileMarker = findNextFileMarker(data, offset); if (!fileMarker) { break; // Reached the end of the image data without finding any marker. } if (fileMarker.invalid) { // Some bad images seem to pad Scan blocks with e.g. zero bytes, skip // past those to attempt to find a valid marker (fixes issue4090.pdf). const partialMsg = mcuToRead > 0 ? "unexpected" : "excessive"; warn( `decodeScan - ${partialMsg} MCU data, current marker is: ${fileMarker.invalid}` ); offset = fileMarker.offset; } if (fileMarker.marker >= 0xffd0 && fileMarker.marker <= 0xffd7) { // RSTx offset += 2; } else { break; } } return offset - startOffset; } // A port of poppler's IDCT method which in turn is taken from: // Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz, // 'Practical Fast 1-D DCT Algorithms with 11 Multiplications', // IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989, // 988-991. function quantizeAndInverse(component, blockBufferOffset, p) { const qt = component.quantizationTable, blockData = component.blockData; let v0, v1, v2, v3, v4, v5, v6, v7; let p0, p1, p2, p3, p4, p5, p6, p7; let t; if (!qt) { throw new JpegError("missing required Quantization Table."); } // inverse DCT on rows for (let row = 0; row < 64; row += 8) { // gather block data p0 = blockData[blockBufferOffset + row]; p1 = blockData[blockBufferOffset + row + 1]; p2 = blockData[blockBufferOffset + row + 2]; p3 = blockData[blockBufferOffset + row + 3]; p4 = blockData[blockBufferOffset + row + 4]; p5 = blockData[blockBufferOffset + row + 5]; p6 = blockData[blockBufferOffset + row + 6]; p7 = blockData[blockBufferOffset + row + 7]; // dequant p0 p0 *= qt[row]; // check for all-zero AC coefficients if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) { t = (dctSqrt2 * p0 + 512) >> 10; p[row] = t; p[row + 1] = t; p[row + 2] = t; p[row + 3] = t; p[row + 4] = t; p[row + 5] = t; p[row + 6] = t; p[row + 7] = t; continue; } // dequant p1 ... p7 p1 *= qt[row + 1]; p2 *= qt[row + 2]; p3 *= qt[row + 3]; p4 *= qt[row + 4]; p5 *= qt[row + 5]; p6 *= qt[row + 6]; p7 *= qt[row + 7]; // stage 4 v0 = (dctSqrt2 * p0 + 128) >> 8; v1 = (dctSqrt2 * p4 + 128) >> 8; v2 = p2; v3 = p6; v4 = (dctSqrt1d2 * (p1 - p7) + 128) >> 8; v7 = (dctSqrt1d2 * (p1 + p7) + 128) >> 8; v5 = p3 << 4; v6 = p5 << 4; // stage 3 v0 = (v0 + v1 + 1) >> 1; v1 = v0 - v1; t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8; v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8; v3 = t; v4 = (v4 + v6 + 1) >> 1; v6 = v4 - v6; v7 = (v7 + v5 + 1) >> 1; v5 = v7 - v5; // stage 2 v0 = (v0 + v3 + 1) >> 1; v3 = v0 - v3; v1 = (v1 + v2 + 1) >> 1; v2 = v1 - v2; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p[row] = v0 + v7; p[row + 7] = v0 - v7; p[row + 1] = v1 + v6; p[row + 6] = v1 - v6; p[row + 2] = v2 + v5; p[row + 5] = v2 - v5; p[row + 3] = v3 + v4; p[row + 4] = v3 - v4; } // inverse DCT on columns for (let col = 0; col < 8; ++col) { p0 = p[col]; p1 = p[col + 8]; p2 = p[col + 16]; p3 = p[col + 24]; p4 = p[col + 32]; p5 = p[col + 40]; p6 = p[col + 48]; p7 = p[col + 56]; // check for all-zero AC coefficients if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) { t = (dctSqrt2 * p0 + 8192) >> 14; // Convert to 8-bit. if (t < -2040) { t = 0; } else if (t >= 2024) { t = 255; } else { t = (t + 2056) >> 4; } blockData[blockBufferOffset + col] = t; blockData[blockBufferOffset + col + 8] = t; blockData[blockBufferOffset + col + 16] = t; blockData[blockBufferOffset + col + 24] = t; blockData[blockBufferOffset + col + 32] = t; blockData[blockBufferOffset + col + 40] = t; blockData[blockBufferOffset + col + 48] = t; blockData[blockBufferOffset + col + 56] = t; continue; } // stage 4 v0 = (dctSqrt2 * p0 + 2048) >> 12; v1 = (dctSqrt2 * p4 + 2048) >> 12; v2 = p2; v3 = p6; v4 = (dctSqrt1d2 * (p1 - p7) + 2048) >> 12; v7 = (dctSqrt1d2 * (p1 + p7) + 2048) >> 12; v5 = p3; v6 = p5; // stage 3 // Shift v0 by 128.5 << 5 here, so we don't need to shift p0...p7 when // converting to UInt8 range later. v0 = ((v0 + v1 + 1) >> 1) + 4112; v1 = v0 - v1; t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12; v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12; v3 = t; v4 = (v4 + v6 + 1) >> 1; v6 = v4 - v6; v7 = (v7 + v5 + 1) >> 1; v5 = v7 - v5; // stage 2 v0 = (v0 + v3 + 1) >> 1; v3 = v0 - v3; v1 = (v1 + v2 + 1) >> 1; v2 = v1 - v2; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p0 = v0 + v7; p7 = v0 - v7; p1 = v1 + v6; p6 = v1 - v6; p2 = v2 + v5; p5 = v2 - v5; p3 = v3 + v4; p4 = v3 - v4; // Convert to 8-bit integers. if (p0 < 16) { p0 = 0; } else if (p0 >= 4080) { p0 = 255; } else { p0 >>= 4; } if (p1 < 16) { p1 = 0; } else if (p1 >= 4080) { p1 = 255; } else { p1 >>= 4; } if (p2 < 16) { p2 = 0; } else if (p2 >= 4080) { p2 = 255; } else { p2 >>= 4; } if (p3 < 16) { p3 = 0; } else if (p3 >= 4080) { p3 = 255; } else { p3 >>= 4; } if (p4 < 16) { p4 = 0; } else if (p4 >= 4080) { p4 = 255; } else { p4 >>= 4; } if (p5 < 16) { p5 = 0; } else if (p5 >= 4080) { p5 = 255; } else { p5 >>= 4; } if (p6 < 16) { p6 = 0; } else if (p6 >= 4080) { p6 = 255; } else { p6 >>= 4; } if (p7 < 16) { p7 = 0; } else if (p7 >= 4080) { p7 = 255; } else { p7 >>= 4; } // store block data blockData[blockBufferOffset + col] = p0; blockData[blockBufferOffset + col + 8] = p1; blockData[blockBufferOffset + col + 16] = p2; blockData[blockBufferOffset + col + 24] = p3; blockData[blockBufferOffset + col + 32] = p4; blockData[blockBufferOffset + col + 40] = p5; blockData[blockBufferOffset + col + 48] = p6; blockData[blockBufferOffset + col + 56] = p7; } } function buildComponentData(frame, component) { const blocksPerLine = component.blocksPerLine; const blocksPerColumn = component.blocksPerColumn; const computationBuffer = new Int16Array(64); for (let blockRow = 0; blockRow < blocksPerColumn; blockRow++) { for (let blockCol = 0; blockCol < blocksPerLine; blockCol++) { const offset = getBlockBufferOffset(component, blockRow, blockCol); quantizeAndInverse(component, offset, computationBuffer); } } return component.blockData; } function findNextFileMarker(data, currentPos, startPos = currentPos) { const maxPos = data.length - 1; let newPos = startPos < currentPos ? startPos : currentPos; if (currentPos >= maxPos) { return null; // Don't attempt to read non-existent data and just return. } const currentMarker = readUint16(data, currentPos); if (currentMarker >= 0xffc0 && currentMarker <= 0xfffe) { return { invalid: null, marker: currentMarker, offset: currentPos, }; } let newMarker = readUint16(data, newPos); while (!(newMarker >= 0xffc0 && newMarker <= 0xfffe)) { if (++newPos >= maxPos) { return null; // Don't attempt to read non-existent data and just return. } newMarker = readUint16(data, newPos); } return { invalid: currentMarker.toString(16), marker: newMarker, offset: newPos, }; } class JpegImage { constructor({ decodeTransform = null, colorTransform = -1 } = {}) { this._decodeTransform = decodeTransform; this._colorTransform = colorTransform; } parse(data, { dnlScanLines = null } = {}) { function readDataBlock() { const length = readUint16(data, offset); offset += 2; let endOffset = offset + length - 2; const fileMarker = findNextFileMarker(data, endOffset, offset); if (fileMarker && fileMarker.invalid) { warn( "readDataBlock - incorrect length, current marker is: " + fileMarker.invalid ); endOffset = fileMarker.offset; } const array = data.subarray(offset, endOffset); offset += array.length; return array; } function prepareComponents(frame) { const mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / frame.maxH); const mcusPerColumn = Math.ceil(frame.scanLines / 8 / frame.maxV); for (const component of frame.components) { const blocksPerLine = Math.ceil( (Math.ceil(frame.samplesPerLine / 8) * component.h) / frame.maxH ); const blocksPerColumn = Math.ceil( (Math.ceil(frame.scanLines / 8) * component.v) / frame.maxV ); const blocksPerLineForMcu = mcusPerLine * component.h; const blocksPerColumnForMcu = mcusPerColumn * component.v; const blocksBufferSize = 64 * blocksPerColumnForMcu * (blocksPerLineForMcu + 1); component.blockData = new Int16Array(blocksBufferSize); component.blocksPerLine = blocksPerLine; component.blocksPerColumn = blocksPerColumn; } frame.mcusPerLine = mcusPerLine; frame.mcusPerColumn = mcusPerColumn; } let offset = 0; let jfif = null; let adobe = null; let frame, resetInterval; let numSOSMarkers = 0; const quantizationTables = []; const huffmanTablesAC = [], huffmanTablesDC = []; let fileMarker = readUint16(data, offset); offset += 2; if (fileMarker !== /* SOI (Start of Image) = */ 0xffd8) { throw new JpegError("SOI not found"); } fileMarker = readUint16(data, offset); offset += 2; markerLoop: while (fileMarker !== /* EOI (End of Image) = */ 0xffd9) { let i, j, l; switch (fileMarker) { case 0xffe0: // APP0 (Application Specific) case 0xffe1: // APP1 case 0xffe2: // APP2 case 0xffe3: // APP3 case 0xffe4: // APP4 case 0xffe5: // APP5 case 0xffe6: // APP6 case 0xffe7: // APP7 case 0xffe8: // APP8 case 0xffe9: // APP9 case 0xffea: // APP10 case 0xffeb: // APP11 case 0xffec: // APP12 case 0xffed: // APP13 case 0xffee: // APP14 case 0xffef: // APP15 case 0xfffe: // COM (Comment) const appData = readDataBlock(); if (fileMarker === 0xffe0) { // 'JFIF\x00' if ( appData[0] === 0x4a && appData[1] === 0x46 && appData[2] === 0x49 && appData[3] === 0x46 && appData[4] === 0 ) { jfif = { version: { major: appData[5], minor: appData[6] }, densityUnits: appData[7], xDensity: (appData[8] << 8) | appData[9], yDensity: (appData[10] << 8) | appData[11], thumbWidth: appData[12], thumbHeight: appData[13], thumbData: appData.subarray( 14, 14 + 3 * appData[12] * appData[13] ), }; } } // TODO APP1 - Exif if (fileMarker === 0xffee) { // 'Adobe' if ( appData[0] === 0x41 && appData[1] === 0x64 && appData[2] === 0x6f && appData[3] === 0x62 && appData[4] === 0x65 ) { adobe = { version: (appData[5] << 8) | appData[6], flags0: (appData[7] << 8) | appData[8], flags1: (appData[9] << 8) | appData[10], transformCode: appData[11], }; } } break; case 0xffdb: // DQT (Define Quantization Tables) const quantizationTablesLength = readUint16(data, offset); offset += 2; const quantizationTablesEnd = quantizationTablesLength + offset - 2; let z; while (offset < quantizationTablesEnd) { const quantizationTableSpec = data[offset++]; const tableData = new Uint16Array(64); if (quantizationTableSpec >> 4 === 0) { // 8 bit values for (j = 0; j < 64; j++) { z = dctZigZag[j]; tableData[z] = data[offset++]; } } else if (quantizationTableSpec >> 4 === 1) { // 16 bit values for (j = 0; j < 64; j++) { z = dctZigZag[j]; tableData[z] = readUint16(data, offset); offset += 2; } } else { throw new JpegError("DQT - invalid table spec"); } quantizationTables[quantizationTableSpec & 15] = tableData; } break; case 0xffc0: // SOF0 (Start of Frame, Baseline DCT) case 0xffc1: // SOF1 (Start of Frame, Extended DCT) case 0xffc2: // SOF2 (Start of Frame, Progressive DCT) if (frame) { throw new JpegError("Only single frame JPEGs supported"); } offset += 2; // Skip marker length. frame = {}; frame.extended = fileMarker === 0xffc1; frame.progressive = fileMarker === 0xffc2; frame.precision = data[offset++]; const sofScanLines = readUint16(data, offset); offset += 2; frame.scanLines = dnlScanLines || sofScanLines; frame.samplesPerLine = readUint16(data, offset); offset += 2; frame.components = []; frame.componentIds = {}; const componentsCount = data[offset++]; let maxH = 0, maxV = 0; for (i = 0; i < componentsCount; i++) { const componentId = data[offset]; const h = data[offset + 1] >> 4; const v = data[offset + 1] & 15; if (maxH < h) { maxH = h; } if (maxV < v) { maxV = v; } const qId = data[offset + 2]; l = frame.components.push({ h, v, quantizationId: qId, quantizationTable: null, // See comment below. }); frame.componentIds[componentId] = l - 1; offset += 3; } frame.maxH = maxH; frame.maxV = maxV; prepareComponents(frame); break; case 0xffc4: // DHT (Define Huffman Tables) const huffmanLength = readUint16(data, offset); offset += 2; for (i = 2; i < huffmanLength; ) { const huffmanTableSpec = data[offset++]; const codeLengths = new Uint8Array(16); let codeLengthSum = 0; for (j = 0; j < 16; j++, offset++) { codeLengthSum += codeLengths[j] = data[offset]; } const huffmanValues = new Uint8Array(codeLengthSum); for (j = 0; j < codeLengthSum; j++, offset++) { huffmanValues[j] = data[offset]; } i += 17 + codeLengthSum; (huffmanTableSpec >> 4 === 0 ? huffmanTablesDC : huffmanTablesAC)[ huffmanTableSpec & 15 ] = buildHuffmanTable(codeLengths, huffmanValues); } break; case 0xffdd: // DRI (Define Restart Interval) offset += 2; // Skip marker length. resetInterval = readUint16(data, offset); offset += 2; break; case 0xffda: // SOS (Start of Scan) // A DNL marker (0xFFDC), if it exists, is only allowed at the end // of the first scan segment and may only occur once in an image. // Furthermore, to prevent an infinite loop, do *not* attempt to // parse DNL markers during re-parsing of the JPEG scan data. const parseDNLMarker = ++numSOSMarkers === 1 && !dnlScanLines; offset += 2; // Skip marker length. const selectorsCount = data[offset++], components = []; for (i = 0; i < selectorsCount; i++) { const index = data[offset++]; const componentIndex = frame.componentIds[index]; const component = frame.components[componentIndex]; component.index = index; const tableSpec = data[offset++]; component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4]; component.huffmanTableAC = huffmanTablesAC[tableSpec & 15]; components.push(component); } const spectralStart = data[offset++], spectralEnd = data[offset++], successiveApproximation = data[offset++]; try { const processed = decodeScan( data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successiveApproximation >> 4, successiveApproximation & 15, parseDNLMarker ); offset += processed; } catch (ex) { if (ex instanceof DNLMarkerError) { warn(`${ex.message} -- attempting to re-parse the JPEG image.`); return this.parse(data, { dnlScanLines: ex.scanLines }); } else if (ex instanceof EOIMarkerError) { warn(`${ex.message} -- ignoring the rest of the image data.`); break markerLoop; } throw ex; } break; case 0xffdc: // DNL (Define Number of Lines) // Ignore the marker, since it's being handled in `decodeScan`. offset += 4; break; case 0xffff: // Fill bytes if (data[offset] !== 0xff) { // Avoid skipping a valid marker. offset--; } break; default: // Could be incorrect encoding -- the last 0xFF byte of the previous // block could have been eaten by the encoder, hence we fallback to // `startPos = offset - 3` when looking for the next valid marker. const nextFileMarker = findNextFileMarker( data, /* currentPos = */ offset - 2, /* startPos = */ offset - 3 ); if (nextFileMarker && nextFileMarker.invalid) { warn( "JpegImage.parse - unexpected data, current marker is: " + nextFileMarker.invalid ); offset = nextFileMarker.offset; break; } if (!nextFileMarker || offset >= data.length - 1) { warn( "JpegImage.parse - reached the end of the image data " + "without finding an EOI marker (0xFFD9)." ); break markerLoop; } throw new JpegError( "JpegImage.parse - unknown marker: " + fileMarker.toString(16) ); } fileMarker = readUint16(data, offset); offset += 2; } this.width = frame.samplesPerLine; this.height = frame.scanLines; this.jfif = jfif; this.adobe = adobe; this.components = []; for (const component of frame.components) { // Prevent errors when DQT markers are placed after SOF{n} markers, // by assigning the `quantizationTable` entry after the entire image // has been parsed (fixes issue7406.pdf). const quantizationTable = quantizationTables[component.quantizationId]; if (quantizationTable) { component.quantizationTable = quantizationTable; } this.components.push({ index: component.index, output: buildComponentData(frame, component), scaleX: component.h / frame.maxH, scaleY: component.v / frame.maxV, blocksPerLine: component.blocksPerLine, blocksPerColumn: component.blocksPerColumn, }); } this.numComponents = this.components.length; return undefined; } _getLinearizedBlockData(width, height, isSourcePDF = false) { const scaleX = this.width / width, scaleY = this.height / height; let component, componentScaleX, componentScaleY, blocksPerScanline; let x, y, i, j, k; let index; let offset = 0; let output; const numComponents = this.components.length; const dataLength = width * height * numComponents; const data = new Uint8ClampedArray(dataLength); const xScaleBlockOffset = new Uint32Array(width); const mask3LSB = 0xfffffff8; // used to clear the 3 LSBs let lastComponentScaleX; for (i = 0; i < numComponents; i++) { component = this.components[i]; componentScaleX = component.scaleX * scaleX; componentScaleY = component.scaleY * scaleY; offset = i; output = component.output; blocksPerScanline = (component.blocksPerLine + 1) << 3; // Precalculate the `xScaleBlockOffset`. Since it doesn't depend on the // component data, that's only necessary when `componentScaleX` changes. if (componentScaleX !== lastComponentScaleX) { for (x = 0; x < width; x++) { j = 0 | (x * componentScaleX); xScaleBlockOffset[x] = ((j & mask3LSB) << 3) | (j & 7); } lastComponentScaleX = componentScaleX; } // linearize the blocks of the component for (y = 0; y < height; y++) { j = 0 | (y * componentScaleY); index = (blocksPerScanline * (j & mask3LSB)) | ((j & 7) << 3); for (x = 0; x < width; x++) { data[offset] = output[index + xScaleBlockOffset[x]]; offset += numComponents; } } } // decodeTransform contains pairs of multiplier (-256..256) and additive let transform = this._decodeTransform; // In PDF files, JPEG images with CMYK colour spaces are usually inverted // (this can be observed by extracting the raw image data). // Since the conversion algorithms (see below) were written primarily for // the PDF use-cases, attempting to use `JpegImage` to parse standalone // JPEG (CMYK) images may thus result in inverted images (see issue 9513). // // Unfortunately it's not (always) possible to tell, from the image data // alone, if it needs to be inverted. Thus in an attempt to provide better // out-of-box behaviour when `JpegImage` is used standalone, default to // inverting JPEG (CMYK) images if and only if the image data does *not* // come from a PDF file and no `decodeTransform` was passed by the user. if (!isSourcePDF && numComponents === 4 && !transform) { transform = new Int32Array([-256, 255, -256, 255, -256, 255, -256, 255]); } if (transform) { for (i = 0; i < dataLength; ) { for (j = 0, k = 0; j < numComponents; j++, i++, k += 2) { data[i] = ((data[i] * transform[k]) >> 8) + transform[k + 1]; } } } return data; } get _isColorConversionNeeded() { if (this.adobe) { // The adobe transform marker overrides any previous setting. return !!this.adobe.transformCode; } if (this.numComponents === 3) { if (this._colorTransform === 0) { // If the Adobe transform marker is not present and the image // dictionary has a 'ColorTransform' entry, explicitly set to `0`, // then the colours should *not* be transformed. return false; } else if ( this.components[0].index === /* "R" = */ 0x52 && this.components[1].index === /* "G" = */ 0x47 && this.components[2].index === /* "B" = */ 0x42 ) { // If the three components are indexed as RGB in ASCII // then the colours should *not* be transformed. return false; } return true; } // `this.numComponents !== 3` if (this._colorTransform === 1) { // If the Adobe transform marker is not present and the image // dictionary has a 'ColorTransform' entry, explicitly set to `1`, // then the colours should be transformed. return true; } return false; } _convertYccToRgb(data) { let Y, Cb, Cr; for (let i = 0, length = data.length; i < length; i += 3) { Y = data[i]; Cb = data[i + 1]; Cr = data[i + 2]; data[i] = Y - 179.456 + 1.402 * Cr; data[i + 1] = Y + 135.459 - 0.344 * Cb - 0.714 * Cr; data[i + 2] = Y - 226.816 + 1.772 * Cb; } return data; } _convertYcckToRgb(data) { let Y, Cb, Cr, k; let offset = 0; for (let i = 0, length = data.length; i < length; i += 4) { Y = data[i]; Cb = data[i + 1]; Cr = data[i + 2]; k = data[i + 3]; data[offset++] = -122.67195406894 + Cb * (-6.60635669420364e-5 * Cb + 0.000437130475926232 * Cr - 5.4080610064599e-5 * Y + 0.00048449797120281 * k - 0.154362151871126) + Cr * (-0.000957964378445773 * Cr + 0.000817076911346625 * Y - 0.00477271405408747 * k + 1.53380253221734) + Y * (0.000961250184130688 * Y - 0.00266257332283933 * k + 0.48357088451265) + k * (-0.000336197177618394 * k + 0.484791561490776); data[offset++] = 107.268039397724 + Cb * (2.19927104525741e-5 * Cb - 0.000640992018297945 * Cr + 0.000659397001245577 * Y + 0.000426105652938837 * k - 0.176491792462875) + Cr * (-0.000778269941513683 * Cr + 0.00130872261408275 * Y + 0.000770482631801132 * k - 0.151051492775562) + Y * (0.00126935368114843 * Y - 0.00265090189010898 * k + 0.25802910206845) + k * (-0.000318913117588328 * k - 0.213742400323665); data[offset++] = -20.810012546947 + Cb * (-0.000570115196973677 * Cb - 2.63409051004589e-5 * Cr + 0.0020741088115012 * Y - 0.00288260236853442 * k + 0.814272968359295) + Cr * (-1.53496057440975e-5 * Cr - 0.000132689043961446 * Y + 0.000560833691242812 * k - 0.195152027534049) + Y * (0.00174418132927582 * Y - 0.00255243321439347 * k + 0.116935020465145) + k * (-0.000343531996510555 * k + 0.24165260232407); } // Ensure that only the converted RGB data is returned. return data.subarray(0, offset); } _convertYcckToCmyk(data) { let Y, Cb, Cr; for (let i = 0, length = data.length; i < length; i += 4) { Y = data[i]; Cb = data[i + 1]; Cr = data[i + 2]; data[i] = 434.456 - Y - 1.402 * Cr; data[i + 1] = 119.541 - Y + 0.344 * Cb + 0.714 * Cr; data[i + 2] = 481.816 - Y - 1.772 * Cb; // K in data[i + 3] is unchanged } return data; } _convertCmykToRgb(data) { let c, m, y, k; let offset = 0; for (let i = 0, length = data.length; i < length; i += 4) { c = data[i]; m = data[i + 1]; y = data[i + 2]; k = data[i + 3]; data[offset++] = 255 + c * (-0.00006747147073602441 * c + 0.0008379262121013727 * m + 0.0002894718188643294 * y + 0.003264231057537806 * k - 1.1185611867203937) + m * (0.000026374107616089405 * m - 0.00008626949158638572 * y - 0.0002748769067499491 * k - 0.02155688794978967) + y * (-0.00003878099212869363 * y - 0.0003267808279485286 * k + 0.0686742238595345) - k * (0.0003361971776183937 * k + 0.7430659151342254); data[offset++] = 255 + c * (0.00013596372813588848 * c + 0.000924537132573585 * m + 0.00010567359618683593 * y + 0.0004791864687436512 * k - 0.3109689587515875) + m * (-0.00023545346108370344 * m + 0.0002702845253534714 * y + 0.0020200308977307156 * k - 0.7488052167015494) + y * (0.00006834815998235662 * y + 0.00015168452363460973 * k - 0.09751927774728933) - k * (0.0003189131175883281 * k + 0.7364883807733168); data[offset++] = 255 + c * (0.000013598650411385307 * c + 0.00012423956175490851 * m + 0.0004751985097583589 * y - 0.0000036729317476630422 * k - 0.05562186980264034) + m * (0.00016141380598724676 * m + 0.0009692239130725186 * y + 0.0007782692450036253 * k - 0.44015232367526463) + y * (5.068882914068769e-7 * y + 0.0017778369011375071 * k - 0.7591454649749609) - k * (0.0003435319965105553 * k + 0.7063770186160144); } // Ensure that only the converted RGB data is returned. return data.subarray(0, offset); } getData({ width, height, forceRGB = false, isSourcePDF = false }) { if ( typeof PDFJSDev === "undefined" || PDFJSDev.test("!PRODUCTION || TESTING") ) { assert( isSourcePDF === true, 'JpegImage.getData: Unexpected "isSourcePDF" value for PDF files.' ); } if (this.numComponents > 4) { throw new JpegError("Unsupported color mode"); } // Type of data: Uint8ClampedArray(width * height * numComponents) const data = this._getLinearizedBlockData(width, height, isSourcePDF); if (this.numComponents === 1 && forceRGB) { const rgbData = new Uint8ClampedArray(data.length * 3); let offset = 0; for (const grayColor of data) { rgbData[offset++] = grayColor; rgbData[offset++] = grayColor; rgbData[offset++] = grayColor; } return rgbData; } else if (this.numComponents === 3 && this._isColorConversionNeeded) { return this._convertYccToRgb(data); } else if (this.numComponents === 4) { if (this._isColorConversionNeeded) { if (forceRGB) { return this._convertYcckToRgb(data); } return this._convertYcckToCmyk(data); } else if (forceRGB) { return this._convertCmykToRgb(data); } } return data; } } export { JpegImage };