/* -*- Mode: Java; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set shiftwidth=2 tabstop=2 autoindent cindent expandtab: */ 'use strict'; var PatternType = { AXIAL: 2, RADIAL: 3 }; var Pattern = (function PatternClosure() { // Constructor should define this.getPattern function Pattern() { error('should not call Pattern constructor'); } Pattern.prototype = { // Input: current Canvas context // Output: the appropriate fillStyle or strokeStyle getPattern: function Pattern_getPattern(ctx) { error('Should not call Pattern.getStyle: ' + ctx); } }; Pattern.shadingFromIR = function Pattern_shadingFromIR(raw) { return Shadings[raw[0]].fromIR(raw); }; Pattern.parseShading = function Pattern_parseShading(shading, matrix, xref, res) { var dict = isStream(shading) ? shading.dict : shading; var type = dict.get('ShadingType'); switch (type) { case PatternType.AXIAL: case PatternType.RADIAL: // Both radial and axial shadings are handled by RadialAxial shading. return new Shadings.RadialAxial(dict, matrix, xref, res); default: return new Shadings.Dummy(); } }; return Pattern; })(); var Shadings = {}; // Radial and axial shading have very similar implementations // If needed, the implementations can be broken into two classes Shadings.RadialAxial = (function RadialAxialClosure() { function RadialAxial(dict, matrix, xref, res, ctx) { this.matrix = matrix; this.coordsArr = dict.get('Coords'); this.shadingType = dict.get('ShadingType'); this.type = 'Pattern'; this.ctx = ctx; var cs = dict.get('ColorSpace', 'CS'); cs = ColorSpace.parse(cs, xref, res); this.cs = cs; var t0 = 0.0, t1 = 1.0; if (dict.has('Domain')) { var domainArr = dict.get('Domain'); t0 = domainArr[0]; t1 = domainArr[1]; } var extendStart = false, extendEnd = false; if (dict.has('Extend')) { var extendArr = dict.get('Extend'); extendStart = extendArr[0]; extendEnd = extendArr[1]; TODO('Support extend'); } this.extendStart = extendStart; this.extendEnd = extendEnd; var fnObj = dict.get('Function'); if (isArray(fnObj)) error('No support for array of functions'); if (!isPDFFunction(fnObj)) error('Invalid function'); var fn = PDFFunction.parse(xref, fnObj); // 10 samples seems good enough for now, but probably won't work // if there are sharp color changes. Ideally, we would implement // the spec faithfully and add lossless optimizations. var step = (t1 - t0) / 10; var diff = t1 - t0; var colorStops = []; for (var i = t0; i <= t1; i += step) { var rgbColor = cs.getRgb(fn([i])); var cssColor = Util.makeCssRgb(rgbColor[0], rgbColor[1], rgbColor[2]); colorStops.push([(i - t0) / diff, cssColor]); } this.colorStops = colorStops; } RadialAxial.fromIR = function RadialAxial_fromIR(raw) { var type = raw[1]; var colorStops = raw[2]; var p0 = raw[3]; var p1 = raw[4]; var r0 = raw[5]; var r1 = raw[6]; return { type: 'Pattern', getPattern: function RadialAxial_getPattern(ctx) { var curMatrix = ctx.mozCurrentTransform; if (curMatrix) { var userMatrix = ctx.mozCurrentTransformInverse; p0 = Util.applyTransform(p0, curMatrix); p0 = Util.applyTransform(p0, userMatrix); p1 = Util.applyTransform(p1, curMatrix); p1 = Util.applyTransform(p1, userMatrix); } var grad; if (type == PatternType.AXIAL) grad = ctx.createLinearGradient(p0[0], p0[1], p1[0], p1[1]); else if (type == PatternType.RADIAL) grad = ctx.createRadialGradient(p0[0], p0[1], r0, p1[0], p1[1], r1); for (var i = 0, ii = colorStops.length; i < ii; ++i) { var c = colorStops[i]; grad.addColorStop(c[0], c[1]); } return grad; } }; }; RadialAxial.prototype = { getIR: function RadialAxial_getIR() { var coordsArr = this.coordsArr; var type = this.shadingType; if (type == PatternType.AXIAL) { var p0 = [coordsArr[0], coordsArr[1]]; var p1 = [coordsArr[2], coordsArr[3]]; var r0 = null; var r1 = null; } else if (type == PatternType.RADIAL) { var p0 = [coordsArr[0], coordsArr[1]]; var p1 = [coordsArr[3], coordsArr[4]]; var r0 = coordsArr[2]; var r1 = coordsArr[5]; } else { error('getPattern type unknown: ' + type); } var matrix = this.matrix; if (matrix) { p0 = Util.applyTransform(p0, matrix); p1 = Util.applyTransform(p1, matrix); } return ['RadialAxial', type, this.colorStops, p0, p1, r0, r1]; } }; return RadialAxial; })(); Shadings.Dummy = (function DummyClosure() { function Dummy() { this.type = 'Pattern'; } Dummy.fromIR = function Dummy_fromIR() { return 'hotpink'; }; Dummy.prototype = { getIR: function Dummy_getIR() { return ['Dummy']; } }; return Dummy; })(); var TilingPattern = (function TilingPatternClosure() { var PaintType = { COLORED: 1, UNCOLORED: 2 }; var MAX_PATTERN_SIZE = 512; function TilingPattern(IR, color, ctx, objs) { var operatorList = IR[2]; this.matrix = IR[3]; var bbox = IR[4]; var xstep = IR[5]; var ystep = IR[6]; var paintType = IR[7]; TODO('TilingType'); this.curMatrix = ctx.mozCurrentTransform; this.invMatrix = ctx.mozCurrentTransformInverse; this.ctx = ctx; this.type = 'Pattern'; var x0 = bbox[0], y0 = bbox[1], x1 = bbox[2], y1 = bbox[3]; var topLeft = [x0, y0]; // we want the canvas to be as large as the step size var botRight = [x0 + xstep, y0 + ystep]; var width = botRight[0] - topLeft[0]; var height = botRight[1] - topLeft[1]; // TODO: hack to avoid OOM, we would ideally compute the tiling // pattern to be only as large as the acual size in device space // This could be computed with .mozCurrentTransform, but still // needs to be implemented while (Math.abs(width) > MAX_PATTERN_SIZE || Math.abs(height) > MAX_PATTERN_SIZE) { width = height = MAX_PATTERN_SIZE; } var tmpCanvas = createScratchCanvas(width, height); // set the new canvas element context as the graphics context var tmpCtx = tmpCanvas.getContext('2d'); var graphics = new CanvasGraphics(tmpCtx, objs); switch (paintType) { case PaintType.COLORED: tmpCtx.fillStyle = ctx.fillStyle; tmpCtx.strokeStyle = ctx.strokeStyle; break; case PaintType.UNCOLORED: var cssColor = Util.makeCssRgb(this, color[0], color[1], color[2]); tmpCtx.fillStyle = cssColor; tmpCtx.strokeStyle = cssColor; break; default: error('Unsupported paint type: ' + paintType); } var scale = [width / xstep, height / ystep]; this.scale = scale; // transform coordinates to pattern space var tmpTranslate = [1, 0, 0, 1, -topLeft[0], -topLeft[1]]; var tmpScale = [scale[0], 0, 0, scale[1], 0, 0]; graphics.transform.apply(graphics, tmpScale); graphics.transform.apply(graphics, tmpTranslate); if (bbox && isArray(bbox) && 4 == bbox.length) { var bboxWidth = x1 - x0; var bboxHeight = y1 - y0; graphics.rectangle(x0, y0, bboxWidth, bboxHeight); graphics.clip(); graphics.endPath(); } graphics.executeOperatorList(operatorList); this.canvas = tmpCanvas; } TilingPattern.getIR = function TilingPattern_getIR(operatorList, dict, args) { var matrix = dict.get('Matrix'); var bbox = dict.get('BBox'); var xstep = dict.get('XStep'); var ystep = dict.get('YStep'); var paintType = dict.get('PaintType'); return [ 'TilingPattern', args, operatorList, matrix, bbox, xstep, ystep, paintType ]; }; TilingPattern.prototype = { getPattern: function TilingPattern_getPattern() { var matrix = this.matrix; var curMatrix = this.curMatrix; var ctx = this.ctx; if (curMatrix) ctx.setTransform.apply(ctx, curMatrix); if (matrix) ctx.transform.apply(ctx, matrix); var scale = this.scale; ctx.scale(1 / scale[0], 1 / scale[1]); return ctx.createPattern(this.canvas, 'repeat'); } }; return TilingPattern; })();