/* -*- Mode: Java; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set shiftwidth=2 tabstop=2 autoindent cindent expandtab: */ 'use strict'; var PDFFunction = (function PDFFunctionClosure() { var CONSTRUCT_SAMPLED = 0; var CONSTRUCT_INTERPOLATED = 2; var CONSTRUCT_STICHED = 3; var CONSTRUCT_POSTSCRIPT = 4; return { getSampleArray: function pdfFunctionGetSampleArray(size, outputSize, bps, str) { var length = 1; for (var i = 0, ii = size.length; i < ii; i++) length *= size[i]; length *= outputSize; var array = []; var codeSize = 0; var codeBuf = 0; // 32 is a valid bps so shifting won't work var sampleMul = 1.0 / (Math.pow(2.0, bps) - 1); var strBytes = str.getBytes((length * bps + 7) / 8); var strIdx = 0; for (var i = 0; i < length; i++) { while (codeSize < bps) { codeBuf <<= 8; codeBuf |= strBytes[strIdx++]; codeSize += 8; } codeSize -= bps; array.push((codeBuf >> codeSize) * sampleMul); codeBuf &= (1 << codeSize) - 1; } return array; }, getIR: function pdfFunctionGetIR(xref, fn) { var dict = fn.dict; if (!dict) dict = fn; var types = [this.constructSampled, null, this.constructInterpolated, this.constructStiched, this.constructPostScript]; var typeNum = dict.get('FunctionType'); var typeFn = types[typeNum]; if (!typeFn) error('Unknown type of function'); return typeFn.call(this, fn, dict, xref); }, fromIR: function pdfFunctionFromIR(IR) { var type = IR[0]; switch (type) { case CONSTRUCT_SAMPLED: return this.constructSampledFromIR(IR); case CONSTRUCT_INTERPOLATED: return this.constructInterpolatedFromIR(IR); case CONSTRUCT_STICHED: return this.constructStichedFromIR(IR); case CONSTRUCT_POSTSCRIPT: default: return this.constructPostScriptFromIR(IR); } }, parse: function pdfFunctionParse(xref, fn) { var IR = this.getIR(xref, fn); return this.fromIR(IR); }, constructSampled: function pdfFunctionConstructSampled(str, dict) { function toMultiArray(arr) { var inputLength = arr.length; var outputLength = arr.length / 2; var out = new Array(outputLength); var index = 0; for (var i = 0; i < inputLength; i += 2) { out[index] = [arr[i], arr[i + 1]]; ++index; } return out; } var domain = dict.get('Domain'); var range = dict.get('Range'); if (!domain || !range) error('No domain or range'); var inputSize = domain.length / 2; var outputSize = range.length / 2; domain = toMultiArray(domain); range = toMultiArray(range); var size = dict.get('Size'); var bps = dict.get('BitsPerSample'); var order = dict.get('Order'); if (!order) order = 1; if (order !== 1) error('No support for cubic spline interpolation: ' + order); var encode = dict.get('Encode'); if (!encode) { encode = []; for (var i = 0; i < inputSize; ++i) { encode.push(0); encode.push(size[i] - 1); } } encode = toMultiArray(encode); var decode = dict.get('Decode'); if (!decode) decode = range; else decode = toMultiArray(decode); // Precalc the multipliers var inputMul = new Float64Array(inputSize); for (var i = 0; i < inputSize; ++i) { inputMul[i] = (encode[i][1] - encode[i][0]) / (domain[i][1] - domain[i][0]); } var idxMul = new Int32Array(inputSize); idxMul[0] = outputSize; for (i = 1; i < inputSize; ++i) { idxMul[i] = idxMul[i - 1] * size[i - 1]; } var nSamples = outputSize; for (i = 0; i < inputSize; ++i) nSamples *= size[i]; var samples = this.getSampleArray(size, outputSize, bps, str); return [ CONSTRUCT_SAMPLED, inputSize, domain, encode, decode, samples, size, outputSize, bps, range, inputMul, idxMul, nSamples ]; }, constructSampledFromIR: function pdfFunctionConstructSampledFromIR(IR) { var inputSize = IR[1]; var domain = IR[2]; var encode = IR[3]; var decode = IR[4]; var samples = IR[5]; var size = IR[6]; var outputSize = IR[7]; var bps = IR[8]; var range = IR[9]; var inputMul = IR[10]; var idxMul = IR[11]; var nSamples = IR[12]; return function constructSampledFromIRResult(args) { if (inputSize != args.length) error('Incorrect number of arguments: ' + inputSize + ' != ' + args.length); // Most of the below is a port of Poppler's implementation. // TODO: There's a few other ways to do multilinear interpolation such // as piecewise, which is much faster but an approximation. var out = new Float64Array(outputSize); var x; var e = new Array(inputSize); var efrac0 = new Float64Array(inputSize); var efrac1 = new Float64Array(inputSize); var sBuf = new Float64Array(1 << inputSize); var i, j, k, idx, t; // map input values into sample array for (i = 0; i < inputSize; ++i) { x = (args[i] - domain[i][0]) * inputMul[i] + encode[i][0]; if (x < 0) { x = 0; } else if (x > size[i] - 1) { x = size[i] - 1; } e[i] = [Math.floor(x), 0]; if ((e[i][1] = e[i][0] + 1) >= size[i]) { // this happens if in[i] = domain[i][1] e[i][1] = e[i][0]; } efrac1[i] = x - e[i][0]; efrac0[i] = 1 - efrac1[i]; } // for each output, do m-linear interpolation for (i = 0; i < outputSize; ++i) { // pull 2^m values out of the sample array for (j = 0; j < (1 << inputSize); ++j) { idx = i; for (k = 0, t = j; k < inputSize; ++k, t >>= 1) { idx += idxMul[k] * (e[k][t & 1]); } if (idx >= 0 && idx < nSamples) { sBuf[j] = samples[idx]; } else { sBuf[j] = 0; // TODO Investigate if this is what Adobe does } } // do m sets of interpolations for (j = 0, t = (1 << inputSize); j < inputSize; ++j, t >>= 1) { for (k = 0; k < t; k += 2) { sBuf[k >> 1] = efrac0[j] * sBuf[k] + efrac1[j] * sBuf[k + 1]; } } // map output value to range out[i] = (sBuf[0] * (decode[i][1] - decode[i][0]) + decode[i][0]); if (out[i] < range[i][0]) { out[i] = range[i][0]; } else if (out[i] > range[i][1]) { out[i] = range[i][1]; } } return out; } }, constructInterpolated: function pdfFunctionConstructInterpolated(str, dict) { var c0 = dict.get('C0') || [0]; var c1 = dict.get('C1') || [1]; var n = dict.get('N'); if (!isArray(c0) || !isArray(c1)) error('Illegal dictionary for interpolated function'); var length = c0.length; var diff = []; for (var i = 0; i < length; ++i) diff.push(c1[i] - c0[i]); return [CONSTRUCT_INTERPOLATED, c0, diff, n]; }, constructInterpolatedFromIR: function pdfFunctionconstructInterpolatedFromIR(IR) { var c0 = IR[1]; var diff = IR[2]; var n = IR[3]; var length = diff.length; return function constructInterpolatedFromIRResult(args) { var x = n == 1 ? args[0] : Math.pow(args[0], n); var out = []; for (var j = 0; j < length; ++j) out.push(c0[j] + (x * diff[j])); return out; } }, constructStiched: function pdfFunctionConstructStiched(fn, dict, xref) { var domain = dict.get('Domain'); var range = dict.get('Range'); if (!domain) error('No domain'); var inputSize = domain.length / 2; if (inputSize != 1) error('Bad domain for stiched function'); var fnRefs = dict.get('Functions'); var fns = []; for (var i = 0, ii = fnRefs.length; i < ii; ++i) fns.push(PDFFunction.getIR(xref, xref.fetchIfRef(fnRefs[i]))); var bounds = dict.get('Bounds'); var encode = dict.get('Encode'); return [CONSTRUCT_STICHED, domain, bounds, encode, fns]; }, constructStichedFromIR: function pdfFunctionConstructStichedFromIR(IR) { var domain = IR[1]; var bounds = IR[2]; var encode = IR[3]; var fnsIR = IR[4]; var fns = []; for (var i = 0, ii = fnsIR.length; i < ii; i++) { fns.push(PDFFunction.fromIR(fnsIR[i])); } return function constructStichedFromIRResult(args) { var clip = function constructStichedFromIRClip(v, min, max) { if (v > max) v = max; else if (v < min) v = min; return v; }; // clip to domain var v = clip(args[0], domain[0], domain[1]); // calulate which bound the value is in for (var i = 0, ii = bounds.length; i < ii; ++i) { if (v < bounds[i]) break; } // encode value into domain of function var dmin = domain[0]; if (i > 0) dmin = bounds[i - 1]; var dmax = domain[1]; if (i < bounds.length) dmax = bounds[i]; var rmin = encode[2 * i]; var rmax = encode[2 * i + 1]; var v2 = rmin + (v - dmin) * (rmax - rmin) / (dmax - dmin); // call the appropropriate function return fns[i]([v2]); }; }, constructPostScript: function pdfFunctionConstructPostScript() { return [CONSTRUCT_POSTSCRIPT]; }, constructPostScriptFromIR: function pdfFunctionConstructPostScriptFromIR() { TODO('unhandled type of function'); return function constructPostScriptFromIRResult() { return [255, 105, 180]; }; } }; })();