This patch should *hopefully* remove the intermittent unit-test failure, by using the *same* `optionalContentConfigPromise` for both `renderTask`s and thus get more predictable timing behaviour.
Add a new method to the API to get the optional content configuration. Add
a new render task param that accepts the above configuration.
For now, the optional content is not controllable by the user in
the viewer, but renders with the default configuration in the PDF.
All of the test files added exhibit different uses of optional content.
Fixes#269.
Fix test to work with optional content.
- Change the stopAtErrors test to ensure the operator list has something,
instead of asserting the exact number of operators.
This might make debugging intermittent failures a bit easier in the
future because it allows us to spot unexpected differences in the number
of tests being run and allows us to run the tests locally in the same
order in case of intermittent failures.
This patch should *hopefully* remove the `Unhandled promise rejection: ...` errors, by returning the "final" promise. Also, by pausing/delaying of rendering slightly the likelihood of the test failing in the first place should thus be reduced.
When the old `Dict.getAll()` method was removed, it was replaced with a `Dict.getKeys()` call and `Dict.get(...)` calls (in a loop).
While this pattern obviously makes a lot of sense in many cases, there's some instances where we actually want the *raw* `Dict` values (i.e. `Ref`s where applicable). In those cases, `Dict.getRaw(...)` calls are instead used within the loop. However, by introducing a new `Dict.getRawValues()` method we can reduce the number of (strictly unnecessary) function calls by simply getting the *raw* `Dict` values directly.
This patch will help pathological cases the most, with issue 2813 being a particularily problematic example. While there's only *four* `/ExtGState` resources, there's a total `29062` of `setGState` operators. Even though parsing of a single `/ExtGState` resource is quite fast, having to re-parse them thousands of times does add up quite significantly.
For simplicity we'll only cache "simple" `/ExtGState` resource, since e.g. the general `SMask` case cannot be easily cached (without re-factoring other code, which may have undesirable effects on general parsing).
By caching "simple" `/ExtGState` resource, we thus improve performance by:
- Not having to fetch/validate/parse the same `/ExtGState` data over and over.
- Handling of repeated `setGState` operators becomes *synchronous* during the `OperatorList` building, instead of having to defer to the event-loop/microtask-queue since the `/ExtGState` parsing is done asynchronously.
---
Obviously I had intended to include (standard) benchmark results with this patch, but for reasons I don't understand the test run-time (even with `master`) of the document in issue 2813 is *a lot* slower than in the development viewer (making normal benchmarking infeasible).
However, testing this manually in the development viewer (using `pdfBug=Stats`) shows a *reduction* of `~10 %` in the rendering time of the PDF document in issue 2813.
Originally there weren't any (generally) good ways to handle errors gracefully, on the worker-side, however that's no longer the case and we can simply fallback to the existing `ignoreErrors` functionality instead.
Also, please note that the "no `/XObject` found"-scenario should be *extremely* unlikely in practice and would only occur in corrupt/broken documents.
Note that the `PartialEvaluator.getOperatorList` case is especially bad currently, since we'll simply (attempt to) send the data as-is to the main-thread. This is quite bad, since in a corrupt/broken document the data *could* contain anything and e.g. be unclonable (which would cause breaking errors).
Also, we're (obviously) not attempting to do anything with this "raw" `OPS.paintXObject` data on the main-thread and simply ensuring that we never send it definately seems like the correct approach.
This special-case was added in PR 1992, however it became unnecessary with the changes in PR 4824 since all of the ColorSpace parsing is now done on the worker-thread (with only RGB-data being sent to the main-thread).
Note how the `getFontID`-method in `src/core/fonts.js` is *completely* global, rather than properly tied to the current document. This means that if you repeatedly open and parse/render, and then close, even the *same* PDF document the `fontID`s will still be incremented continuously.
For comparison the `createObjId` method, on `idFactory`, will always create a *consistent* id, assuming of course that the document and its pages are parsed/rendered in the same order.
In order to address this inconsistency, it thus seems reasonable to add a new `createFontId` method on the `idFactory` and use that when obtaining `fontID`s. (When the current `getFontID` method was added the `idFactory` didn't actually exist yet, which explains why the code looks the way it does.)
*Please note:* Since the document id is (still) part of the `loadedName`, it's thus not possible for different documents to have identical font names.
This moves, and slightly simplifies, code that's currently residing in the unit-test utils into the actual library, such that it's bundled with `GENERIC`-builds and used in e.g. the API-code.
As an added bonus, this also brings out-of-the-box support for CMaps in e.g. the Node.js examples.
This patch contains the following *notable* improvements:
- Changes the `ColorSpace.parse` call-sites to, where possible, pass in a reference rather than actual ColorSpace data (necessary for the next point).
- Adds (local) caching of `ColorSpace`s by `Ref`, when applicable, in addition the caching by name. This (generally) improves `ColorSpace` caching for e.g. the SMask code-paths.
- Extends the (local) `ColorSpace` caching to also apply when handling Images and Patterns, thus further reducing unneeded re-parsing.
- Adds a new `ColorSpace.parseAsync` method, almost identical to the existing `ColorSpace.parse` one, but returning a Promise instead (this simplifies some code in the `PartialEvaluator`).
Since this helper function is no longer used anywhere in the main code-base, but only in a couple of unit-tests, it's thus being moved to a more appropriate spot.
Finally, the implementation of `isEmptyObj` is also tweaked slightly by removing the manual loop.
Currently some JPEG images are decoded by the built-in PDF.js decoder in `src/core/jpg.js`, while others attempt to use the browser JPEG decoder. This inconsistency seem unfortunate for a number of reasons:
- It adds, compared to the other image formats supported in the PDF specification, a fair amount of code/complexity to the image handling in the PDF.js library.
- The PDF specification support JPEG images with features, e.g. certain ColorSpaces, that browsers are unable to decode natively. Hence, determining if a JPEG image is possible to decode natively in the browser require a non-trivial amount of parsing. In particular, we're parsing (part of) the raw JPEG data to extract certain marker data and we also need to parse the ColorSpace for the JPEG image.
- While some JPEG images may, for all intents and purposes, appear to be natively supported there's still cases where the browser may fail to decode some JPEG images. In order to support those cases, we've had to implement a fallback to the PDF.js JPEG decoder if there's any issues during the native decoding. This also means that it's no longer possible to simply send the JPEG image to the main-thread and continue parsing, but you now need to actually wait for the main-thread to indicate success/failure first.
In practice this means that there's a code-path where the worker-thread is forced to wait for the main-thread, while the reverse should *always* be the case.
- The native decoding, for anything except the *simplest* of JPEG images, result in increased peak memory usage because there's a handful of short-lived copies of the JPEG data (see PR 11707).
Furthermore this also leads to data being *parsed* on the main-thread, rather than the worker-thread, which you usually want to avoid for e.g. performance and UI-reponsiveness reasons.
- Not all environments, e.g. Node.js, fully support native JPEG decoding. This has, historically, lead to some issues and support requests.
- Different browsers may use different JPEG decoders, possibly leading to images being rendered slightly differently depending on the platform/browser where the PDF.js library is used.
Originally the implementation in `src/core/jpg.js` were unable to handle all of the JPEG images in the test-suite, but over the last couple of years I've fixed (hopefully) all of those issues.
At this point in time, there's two kinds of failure with this patch:
- Changes which are basically imperceivable to the naked eye, where some pixels in the images are essentially off-by-one (in all components), which could probably be attributed to things such as different rounding behaviour in the browser/PDF.js JPEG decoder.
This type of "failure" accounts for the *vast* majority of the total number of changes in the reference tests.
- Changes where the JPEG images now looks *ever so slightly* blurrier than with the native browser decoder. For quite some time I've just assumed that this pointed to a general deficiency in the `src/core/jpg.js` implementation, however I've discovered when comparing two viewers side-by-side that the differences vanish at higher zoom levels (usually around 200% is enough).
Basically if you disable [this downscaling in canvas.js](8fb82e939c/src/display/canvas.js (L2356-L2395)), which is what happens when zooming in, the differences simply vanish!
Hence I'm pretty satisfied that there's no significant problems with the `src/core/jpg.js` implementation, and the problems are rather tied to the general quality of the downscaling algorithm used. It could even be seen as a positive that *all* images now share the same downscaling behaviour, since this actually fixes one old bug; see issue 7041.
Currently image resources, as opposed to e.g. font resources, are handled exclusively on a page-specific basis. Generally speaking this makes sense, since pages are separate from each other, however there's PDF documents where many (or even all) pages actually references exactly the same image resources (through the XRef table). Hence, in some cases, we're decoding the *same* images over and over for every page which is obviously slow and wasting both CPU and memory resources better used elsewhere.[1]
Obviously we cannot simply treat all image resources as-if they're used throughout the entire PDF document, since that would end up increasing memory usage too much.[2]
However, by introducing a `GlobalImageCache` in the worker we can track image resources that appear on more than one page. Hence we can switch image resources from being page-specific to being document-specific, once the image resource has been seen on more than a certain number of pages.
In many cases, such as e.g. the referenced issue, this patch will thus lead to reduced memory usage for image resources. Scrolling through all pages of the document, there's now only a few main-thread copies of the same image data, as opposed to one for each rendered page (i.e. there could theoretically be *twenty* copies of the image data).
While this obviously benefit both CPU and memory usage in this case, for *very* large image data this patch *may* possibly increase persistent main-thread memory usage a tiny bit. Thus to avoid negatively affecting memory usage too much in general, particularly on the main-thread, the `GlobalImageCache` will *only* cache a certain number of image resources at the document level and simply fallback to the default behaviour.
Unfortunately the asynchronous nature of the code, with ranged/streamed loading of data, actually makes all of this much more complicated than if all data could be assumed to be immediately available.[3]
*Please note:* The patch will lead to *small* movement in some existing test-cases, since we're now using the built-in PDF.js JPEG decoder more. This was done in order to simplify the overall implementation, especially on the main-thread, by limiting it to only the `OPS.paintImageXObject` operator.
---
[1] There's e.g. PDF documents that use the same image as background on all pages.
[2] Given that data stored in the `commonObjs`, on the main-thread, are only cleared manually through `PDFDocumentProxy.cleanup`. This as opposed to data stored in the `objs` of each page, which is automatically removed when the page is cleaned-up e.g. by being evicted from the cache in the default viewer.
[3] If the latter case were true, we could simply check for repeat images *before* parsing started and thus avoid handling *any* duplicate image resources.
Having `assert` calls without a message string isn't very helpful when debugging, and it turns out that it's easy enough to make use of ESLint to enforce better `assert` call-sites.
In a couple of cases the `assert` calls were changed to "regular" throwing of errors instead, since that seemed more appropriate.
Please find additional details about the ESLint rule at https://eslint.org/docs/rules/no-restricted-syntax
The other testing code already uses the name of the browser as the
unique identifier, so I don't see a good reason to not use that for
identifying browsers to quit as well. Doing so simplifies the (already
somewhat complex) testing logic and ensures that we can use existing
functionality (such as the `getSession` function) to retrieve sessions.
As evident from the code, `PageViewport` only supports[1] `rotation` values which are a multiple of 90 degrees. Besides it being somewhat difficult to imagine meaningful use-cases for a non-multiple of 90 degrees `rotation`, the code also becomes both simpler and more efficient by not having to consider arbitrary `rotation` values.
However, any invalid rotation will *silently* fallback to assume zero `rotation` which probably isn't great for e.g. `PDFPageProxy.getViewport` in the API. Hence this patch, which will now enforce that only valid `rotation` values are accepted.
---
[1] As far as I can tell, from looking through the history, nothing else has ever been supported either.
*Please note:* These changes were done automatically, using the `gulp lint --fix` command.
This rule is already enabled in mozilla-central, see https://searchfox.org/mozilla-central/rev/567b68b8ff4b6d607ba34a6f1926873d21a7b4d7/tools/lint/eslint/eslint-plugin-mozilla/lib/configs/recommended.js#103-104
The main advantage, besides improved consistency, of this rule is that it reduces the size of the code (by 3 bytes for each case). In the PDF.js code-base there's close to 8000 instances being fixed by the `dot-notation` ESLint rule, which end up reducing the size of even the *built* files significantly; the total size of the `gulp mozcentral` build target changes from `3 247 456` to `3 224 278` bytes, which is a *reduction* of `23 178` bytes (or ~0.7%) for a completely mechanical change.
A large number of these changes affect the (large) lookup tables used on the worker-thread, but given that they are still initialized lazily I don't *think* that the new formatting this patch introduces should undo any of the improvements from PR 6915.
Please find additional details about the ESLint rule at https://eslint.org/docs/rules/dot-notation
This patch fixes yet another instalment in the never-ending series of "what the *bleep* was I thinking", by changing the `PDFDocumentProxy.getViewerPreferences` method to return `null` by default.
Not only is this method now consistent with many other API methods, for the data not present case, but it also avoids having to e.g. loop through an object to check if it's actually empty (note the old unit-test).
Please note that these changes were done automatically, using `gulp lint --fix`.
Given that the major version number was increased, there's a fair number of (primarily whitespace) changes; please see https://prettier.io/blog/2020/03/21/2.0.0.html
In order to reduce the size of these changes somewhat, this patch maintains the old "arrowParens" style for now (once mozilla-central updates Prettier we can simply choose the same formatting, assuming it will differ here).
With two kind of builds now being produced, with/without translation/polyfills, it's unfortunately somewhat easy for users to accidentally pick the wrong one.
In the case where a user would attempt to use a modern build of PDF.js in an older browser, such as e.g. IE11, the failure would be immediate when the code is loaded (given the use of unsupported ECMAScript features).
However in some browsers/environments, in particular Node.js, a modern PDF.js build may load correctly and thus *appear* to function, only to fail for e.g. certain API calls. To hopefully lessen the support burden, and to try and improve things overall, this patch adds checks to ensure that a modern build of PDF.js cannot be used in browsers/environments which lack native support for critical functionality (such as e.g. `ReadableStream`). Hence we'll fail early, with an error message telling users to pick an ES5-compatible build instead.
To ensure that we actually test things better especially w.r.t. usage of the PDF.js library in Node.js environments, the `gulp npm-test` task as used by Node.js/Travis was changed (back) to test an ES5-compatible build.
(Since the bots still test the code as-is, without transpilation/polyfills, this shouldn't really be a problem as far as I can tell.)
As part of these changes there's now both `gulp lib` and `gulp lib-es5` build targets, similar to e.g. the generic builds, which thanks to some re-factoring only required adding a small amount of code.
*Please note:* While it's probably too early to tell if this will be a widespread issue, it's possible that this is the sort of patch that *may* warrant being `git cherry-pick`ed onto the current beta version (v2.4.456).
This functionality was only added to the default viewer for backwards compatibility and to support the various PDF viewer tests in mozilla-central, with the intention to eventually remove it completely.
While the different mozilla-central tests cannot be *easily* converted from DOM events, it's however possible to limit that functionality to only MOZCENTRAL builds *and* when tests are running.
Rather than depending of the re-dispatching of internal events to the DOM, the default viewer can instead be used in e.g. the following way:
```javascript
document.addEventListener("webviewerloaded", function() {
PDFViewerApplication.initializedPromise.then(function() {
// The viewer has now been initialized, and its properties can be accessed.
PDFViewerApplication.eventBus.on("pagerendered", function(event) {
console.log("Has rendered page number: " + event.pageNumber);
});
});
});
```
Fixes#11718 in which the `ff` ligature glyph is at index zero in a CFF font. Beacuse this is a CIDFont, glyph names are CIDs, which are integers. Thus the string `".notdef"` is not correct. The rest of the charset data is already parsed correctly as integers when the boolean argument `cid` is true.
*This is part of a series of patches that will try to split PR 11566 into smaller chunks, to make reviewing more feasible.*
Once all the code has been fixed, we'll be able to eventually enable the ESLint no-shadow rule; see https://eslint.org/docs/rules/no-shadow