*As far as I can tell, this has been broken ever since PR 3289 (back in 2013) without anyone noticing.*
For any non-`MissingDataException` errors encountered in `ObjectLoader._walk`, we're simply throwing immediately which thus has the potential to *completely* break rendering of an entire page.
In practice this is obviously only an issue for PDF documents which are in one way or another corrupt, since that's the only way that `XRef.fetch` will throw non-`MissingDataException` errors. To make matters worse these errors are *intermittent*, since they can only occur if the document is still loading when the `ObjectLoader`-code runs (note the early return in `ObjectLoader.load`).
Please note that we cannot simply catch the error and let "normal" parsing continue in `ObjectLoader._walk`, since that could lead to errors elsewhere given that resources "below" the current one (in the graph) might not be checked as intended then.
All-in-all, the only way to make absolutely sure that we won't cause *unexpected* `MissingDataException`s somewhere else in the code-base is to fallback to fetching the *entire* document in this edge-case.
- Remove a *duplicated* reference test, see "issue12810", from the manifest.
- Improve the spelling in a couple of comments in `src/core/canvas.js`, most notable of the word "parallelogram".
- Update a comment, also in `src/core/canvas.js`, to actually agree with the value used to reduce confusion when reading the code.
While PR 12725 fixed bug 1671312 as reported, i.e. the "In the upper right corner "Purposes' has bad kerning."-part, it however broke other parts of the text rendering.
Note in particular the tables, e.g. on page 2 and beyond, where the glyphs are now rendered too close together. The reason for this is that the fonts in question are non-embedded ArialNarrow, which we just replace with Helvetica which obviously is not narrow. Given that the font replacement isn't a perfect fit for non-embedded ArialNarrow, we still need to re-measure the glyph widths in this case.
* add a comment to explain how minimal linewidth is computed.
* when context.linewidth < 1 after transform, firefox and chrome
don't render in the same way (issue #12810).
* set lineWidth to 1 after transform and before stroking
- aims fix issue #12295
- a pixel can be transformed into a rectangle with both heights < 1.
A single rescale leads to a rectangle with dim equals to 1 and
the other to something greater than 1.
* change the way to render rectangle with null dimensions:
- right now we rely on the lineWidth set before "re" but
it can be set after "re" and before "S" and in this case the rendering
will be wrong.
- render such rectangles as a single line.
Given that the PDF document in the issue contains the same very large JPEG image *three* times, this patch includes a test-case where only the first page has been extracted from it.
Currently any errors thrown in `preEvaluateFont`, which is a *synchronous* method, will not be handled at all in the `loadFont` method and we were thus failing to return an `ErrorFont`-instance as intended here.
Also, add an *explicit* check in `PartialEvaluator.preEvaluateFont` to ensure that Type0-fonts always have a *valid* dictionary.
Similar to other markers that we currently skip, by ignoring unsupported Coding style default (COD) options we'll at least render *something* here (although some JPEG 2000 images may look slightly wrong).
Note that if the unsupported COD options lead to additional errors, during parsing, we'll still abort parsing of the JPEG 2000 image.
* the goal is to execute actions like Open or OpenAction
* can be tested with issue6106.pdf (auto-print)
* once #12701 is merged, we can add page actions
Similar to other markers that we currently skip, by ignoring the Coding style component (COC) marker we'll at least prevent outright errors (although some JPEG 2000 images may look slightly wrong).
It appears that the PDF document in [bug 1292316](https://bugzilla.mozilla.org/show_bug.cgi?id=1292316) now renders "correctly"[1] when compared to e.g. Adobe Reader and PDFium. Most likely this bug was fixed by a *somewhat* recent patch, or patches, to the `XRef.indexObjects` method.
Before just closing [bug 1292316](https://bugzilla.mozilla.org/show_bug.cgi?id=1292316) as WFM, I figured that it probably can't hurt to add it as a new test-case to avoid accidentally regressing this document in the future.
---
[1] Given that the XRef table is corrupt, and that we're forced to recover, there's generally speaking probably some question as to what actually constitutes "correct" in this case.
There doesn't seem to be anything definitive about this in
the spec, but from experimenting, it seems acrobat lets
PDFs override the widths of the standard fonts.
In addition to the existing /Root and /Pages validation, also check that the /Pages-entry actually is a dictionary and that it has a valid /Count-entry.
This way we can avoid picking a trailer candidate which e.g. the `Catalog.numPages` getter will just end up rejecting, thus breaking PDF document loading completely.
* remove 1st param of _createPopup (almost useless for a method)
* prepend popup div to avoid to have them on top of some highlights (and so "disable" partially mouse events)
* add a ref test for issue #12504
* in some pdf, there are actions with "event.source.hidden = ..."
* in order to handle visibility when printing, annotationStorage is extended to store multiple properties (value, hidden, editable, ...)
Different fonts incorrectly end up with *identical* hashes, despite having different /ToUnicode data.
The issue, and it's very interesting that we've apparently not seen it before, appears to be caused by the fact that different /ToUnicode entries share the *same* underlying `ArrayBuffer`, which thus becomes problematic at the `const dataUint32 = new Uint32Array(data.buffer, 0, blockCounts);` line. The simplest solution thus seem to be to just *copy* the input, when it's an `ArrayBuffer`, rather than using it as-is. (Note that if we'd stringified the input, when calling `MurmurHash3_64.update`, the issue would also have been fixed. In this case, we're already creating an unique TypedArray.)
This changes the `transformOrigin` calculations in `AnnotationElement._createContainer` and `PopupAnnotationElement.render`, to ensure that e.g. the clickable area of annotations and/or popups are both positioned correctly.
The problem occurs for *negative* values, since they're not negated correctly because of how the `transformOrigin` strings were build; see issue 12406 for a more in-depth explanation. Previously, for negative values, the `transformOrigin` strings would thus be ignored since they're not valid.
This patch contains a possible approach for fixing issue 12294, which compared to other PRs is purposely limited to the affected `WidgetAnnotation` code.
As mentioned elsewhere, considering that we're (at least for now) trying to fix *one specific* case, I think that we should avoid modifying the `Dict` primitive[1] and/or avoid a solution that (indirectly) modifies an existing `Dict`-instance[2].
This patch simply fixes the issue at hand, since that seems easiest for now, and I'd suggest that we worry about a more general approach if/when that actually becomes necessary.
Hence the solution implemented here, for `WidgetAnnotation`, is to simply use a combination of the local *and* AcroForm /DR resources during OperatorList-parsing to ensure that things work correctly regardless of where a particular /Font resource is found.
For saving of form-data, on the other hand, we want to avoid increasing the file-size unnecessarily and need to be smarter than just merging all of the available resources. To achive this, a new `WidgetAnnotation._getSaveFieldResources` method will when necessary produce a combined resources `Dict` with only the minimum amount of data from the AcroForm /DR resources included.
---
[1] You want to avoid anything that could cause the general `Dict` implementation to become slower, or more complex, just for handling an edge-case in my opinion.
[2] If an existing `Dict`-instance is modified unexpectedly, that could very easily lead to problems elsewhere since e.g. `Dict`-instances created during parsing are not expected to be changed.
In issue 12120, the font has a 1,0 cmap and is marked symbolic which
according to the spec means we should directly use the cmap instead of
the extra steps that are defined in 9.6.6.4.
However, just fixing that caused bug 1057544 to break. The font in bug
1057544 has a 0,1 cmap (Unicode 1.1) which we were not using, but is
easy to support. We're also easily able to support some of the other
unicode cmaps, so I added those as well.
There was also a second issue with bug 1057544, the cmap doesn't have
a mapping for the "quoteright" glyph, but it is defined in the post
table. To handle this, I've moved post table as a fallback for any
font that has an encoding.
In addition to the unit tests these reference tests make sure that this
document, that triggered some edge cases in our code, can be rendered
and printed successfully now.
This is *similar* to the existing transfer function support for SMasks, but extended to simple image data.
Please note that the extra amount of data now being sent to the worker-thread, for affected /ExtGState entries, is limited to *at most* 4 `Uint8Array`s each with a length of 256 elements.
Refer to https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#G9.1658137 for additional details.
Some fonts have loca tables that aren't sorted or use 0 as an offset to
signal a missing glyph. This fixes the bad loca tables by sorting them
and then rewriting the loca table and potentially re-ordering the glyf
table to match.
Fixes#11131 and bug 1650302.
Issue 4398 was fixed by PR 4437, however a test-case wasn't included as far as I can tell. Given that PR 12186 is now in the process of re-factoring that code, adding a test-case cannot hurt as far as I'm concerned.
Add a new method to the API to get the optional content configuration. Add
a new render task param that accepts the above configuration.
For now, the optional content is not controllable by the user in
the viewer, but renders with the default configuration in the PDF.
All of the test files added exhibit different uses of optional content.
Fixes#269.
Fix test to work with optional content.
- Change the stopAtErrors test to ensure the operator list has something,
instead of asserting the exact number of operators.
The default viewer, and thus Firefox, depends on the `RenderTask.onContinue` functionality to pause/continue rendering (such that the most visible page always renders first).
Despite this functionality thus being very important, it has however never actually been tested *at all* as far as I can tell. Hence this patch which adds a new boolean `renderTaskOnContinue` parameter (`false` by default), that can be used to force a reference-test to use the `RenderTask.onContinue` code-path in the `InternalRenderTask` class.
Note that I purposely made this new reference-test behaviour *optional*, since I didn't want to negatively affect the general runtime of the tests (given that there's a slight delay added to the rendering). Also, for e.g. benchmarking you'd most likely want to stay away from the `RenderTask.onContinue` functionality for similar reasons.
This should reduce the possibility of accidentally truncating some inline images, while *not* causing the "EI" detection to become significantly slower.[1]
There's obviously a possibility that these added checks are not sufficient to catch *every* single case of "EI" sequences within the actual inline image data, but without specific test-cases I decided against over-engineering the solution here.
*Please note:* The interpolation issues are somewhat orthogonal to the main issue here, which is the truncated image, and it's already tracked elsewhere.
---
[1] I've looked at the issue a few times, and this is the first approach that I was able to come up with that didn't cause *unacceptable* performance regressions in e.g. issue 2618.
*First of all, I should mention that my understanding of the finer details of the `QueueOptimizer` (and its related `CanvasGraphics` methods) is somewhat limited.*
Hence I'm not sure if there's actually a very good reason for *only* considering ImageMasks where the "skew" transformation matrix elements are zero as *repeated*, however simply looking at the code I just don't see why these elements cannot be non-zero as long as they are *all identical* for the ImageMasks.
Furthermore, looking at the *group* case (which is what we're currently falling back to), there's no particular limitation placed upon the transformation matrix elements.
While this patch obviously isn't enough to *completely* fix the issue, since there should be a visible Pattern rendered as well[1], it seem (at least to me) like enough of an improvement that submitting this is justified.
With these changes the referenced PDF document will no longer hang the *entire* browser, and rendering also finishes in a *reasonable* time (< 10 seconds for me) which seem fine given the *huge* number of identical inline images present.[2]
---
[1] Temporarily changing the Pattern to a solid color *does* render the correct/expected area, which suggests that the remaining problem is a pre-existing issue related to the Pattern-handling itself rather than the `QueueOptimizer` functionality.
[2] The document isn't exactly rendered immediately in e.g. Adobe Reader either.
Because of a really stupid `Promise`-related mistake on my part, when re-factoring `PDFImage.buildImage` during the `NativeImageDecoder` removal, we're no longer re-throwing errors occuring during image parsing/decoding as intended.
The result is that some (fairly) corrupt documents will never finish loading, and unfortunately there were apparently no sufficiently corrupt images in the test-suite to catch this.
On ISO/IEC 10918-6:2013 (E), section 6.1: (http://www.itu.int/rec/T-REC-T.872-201206-I/en)
"Images encoded with three components are assumed to be RGB data encoded as YCbCr unless the image contains an APP14 marker segment as specified in 6.5.3, in which case the colour encoding is considered either RGB or YCbCr according to the application data of the APP14 marker segment"
But common jpeg libraries consider RGB too if components index are ASCII R (0x52), G (0x47) and B (0x42): https://stackoverflow.com/questions/50798014/determining-color-space-for-jpeg/50861048
Issue #11931
Currently some JPEG images are decoded by the built-in PDF.js decoder in `src/core/jpg.js`, while others attempt to use the browser JPEG decoder. This inconsistency seem unfortunate for a number of reasons:
- It adds, compared to the other image formats supported in the PDF specification, a fair amount of code/complexity to the image handling in the PDF.js library.
- The PDF specification support JPEG images with features, e.g. certain ColorSpaces, that browsers are unable to decode natively. Hence, determining if a JPEG image is possible to decode natively in the browser require a non-trivial amount of parsing. In particular, we're parsing (part of) the raw JPEG data to extract certain marker data and we also need to parse the ColorSpace for the JPEG image.
- While some JPEG images may, for all intents and purposes, appear to be natively supported there's still cases where the browser may fail to decode some JPEG images. In order to support those cases, we've had to implement a fallback to the PDF.js JPEG decoder if there's any issues during the native decoding. This also means that it's no longer possible to simply send the JPEG image to the main-thread and continue parsing, but you now need to actually wait for the main-thread to indicate success/failure first.
In practice this means that there's a code-path where the worker-thread is forced to wait for the main-thread, while the reverse should *always* be the case.
- The native decoding, for anything except the *simplest* of JPEG images, result in increased peak memory usage because there's a handful of short-lived copies of the JPEG data (see PR 11707).
Furthermore this also leads to data being *parsed* on the main-thread, rather than the worker-thread, which you usually want to avoid for e.g. performance and UI-reponsiveness reasons.
- Not all environments, e.g. Node.js, fully support native JPEG decoding. This has, historically, lead to some issues and support requests.
- Different browsers may use different JPEG decoders, possibly leading to images being rendered slightly differently depending on the platform/browser where the PDF.js library is used.
Originally the implementation in `src/core/jpg.js` were unable to handle all of the JPEG images in the test-suite, but over the last couple of years I've fixed (hopefully) all of those issues.
At this point in time, there's two kinds of failure with this patch:
- Changes which are basically imperceivable to the naked eye, where some pixels in the images are essentially off-by-one (in all components), which could probably be attributed to things such as different rounding behaviour in the browser/PDF.js JPEG decoder.
This type of "failure" accounts for the *vast* majority of the total number of changes in the reference tests.
- Changes where the JPEG images now looks *ever so slightly* blurrier than with the native browser decoder. For quite some time I've just assumed that this pointed to a general deficiency in the `src/core/jpg.js` implementation, however I've discovered when comparing two viewers side-by-side that the differences vanish at higher zoom levels (usually around 200% is enough).
Basically if you disable [this downscaling in canvas.js](8fb82e939c/src/display/canvas.js (L2356-L2395)), which is what happens when zooming in, the differences simply vanish!
Hence I'm pretty satisfied that there's no significant problems with the `src/core/jpg.js` implementation, and the problems are rather tied to the general quality of the downscaling algorithm used. It could even be seen as a positive that *all* images now share the same downscaling behaviour, since this actually fixes one old bug; see issue 7041.
This should ensure that a page will always render successfully, even if there's errors during the Annotation fetching/parsing.
Additionally the `OperatorList.addOpList` method is also adjusted to ignore invalid data, to make it slightly more robust.
- Add a reduced test-case for issue 11768, to prevent future regressions.
(Given that PR 11769 is only a work-around, rather than a proper solution, it may not be entirely accurate for the issue to be closed as fixed.)
- Add more validation of the charCode, as found by the heuristics, in `PartialEvaluator._buildSimpleFontToUnicode` to prevent future issues.
At this point in time, compared to when the "ignore single-char" code was added, we *should* generally be doing a much better job of combining text into as few chunks as possible.
However, there's still bad cases where we're not able to combine text as much as one would like, which is why I'm *not* proposing to simply measure/scale all text. Instead this patch will to only measure/scale single-char text in cases where the horizontal/vertical scale is off significantly, since that's were you'd expect bad text-selection behaviour otherwise.
Note that most of the movement caused by this patch is with Type3 fonts, which is a somewhat special font type and one where our current text-selection behaviour is probably the least good.
Fixes#11718 in which the `ff` ligature glyph is at index zero in a CFF font. Beacuse this is a CIDFont, glyph names are CIDs, which are integers. Thus the string `".notdef"` is not correct. The rest of the charset data is already parsed correctly as integers when the boolean argument `cid` is true.
The /Differences array of the problematic font contains a `/c.1` entry, which is consequently detected as a *possible* Cdd{d}/cdd{d} glyphName by the existing heuristics.
Because of how the base 10 conversion is implemented, which is necessary for the base 16 special case, the parsed charCode becomes `0.1` thus causing `String.fromCodePoint` to throw since that obviously isn't a valid code point.
To fix the referenced issue, and to hopefully prevent similar ones in the future, the patch adds *additional* validation of the charCode found by the heuristics.
The PDF document in question is *corrupt*, since it contains an XObject with a truncated dictionary and where the stream contents start without a "stream" operator.
Fixes#11477
The PDF draws many space characters but the embedded fonts don't have a glyph named `space`, so `.notdef` should be drawn instead. PDF.js assumed that Type1 fonts define `.notdef` as the first glyph (index 0). However, now the fonts have the glyph `A` at index 0 and `.notdef` is the last one, so `A` appears where spaces are expected.
Because the rest of the font machinery in `core/fonts.js` assumes `.notdef` is at index zero, it's easiest to modify `core/type1_parser.js` so that it "repairs" fonts and makes sure `.notdef` is at index 0.
The PDF document in question is *corrupt*, since it contains multiple instances of incorrect operators.
We obviously don't want to slow down parsing of *all* documents (since most are valid), just to accommodate a particular bad PDF generator, hence the reason for the inline check before calling the `ensureStateFont` method.
*This whole patch feels somewhat arbitrary, and I'd be slightly worried about possibly breaking something else.*
To limit the impact of these changes, we only re-parse JPEG images using a reduced `scanLines` value if and only if: An unexpected EOI (End of Image) marker was encountered during decoding of Scan data *and* the "actual" `scanLines` value is at least one order of magnitude smaller than expected.
In the current `AnnotationLayer` implementation, Popup annotations require that the parent annotation have already been rendered (otherwise they're simply ignored).
Usually the annotations are ordered, in the `/Annots` array, in such a way that this isn't a problem, however there's obviously no guarantee that all PDF generators actually do so. Hence we simply ensure, when rendering the `AnnotationLayer`, that the Popup annotations are handled last.
- Re-factor the "incorrect encoding" check, since this can be easily achieved using the general `findNextFileMarker` helper function (with a suitable `startPos` argument).
- Tweak a condition, to make it easier to see that the end of the data has been reached.
- Add a reference test for issue 1877, since it's what prompted the "incorrect encoding" check.
Fixes#11403
The PDF uses the non-embedded Type1 font Helvetica. Character codes 194 and 160 (`Â` and `NBSP`) are encoded as `.notdef`. We shouldn't show those glyphs because it seems that Acrobat Reader doesn't draw glyphs that are named `.notdef` in fonts like this.
In addition to testing `glyphName === ".notdef"`, we must test also `glyphName === ""` because the name `""` is used in `core/encodings.js` for undefined glyphs in encodings like `WinAnsiEncoding`.
The solution above hides the `Â` characters but now the replacement character (space) appears to be too wide. I found out that PDF.js ignores font's `Widths` array if the font has no `FontDescriptor` entry. That happens in #11403, so the default widths of Helvetica were used as specified in `core/metrics.js` and `.nodef` got a width of 333. The correct width is 0 as specified by the `Widths` array in the PDF. Thus we must never ignore `Widths`.
In the PDF document in question, there's an ASCII85Decode inline image where the '>' part of EOD (end-of-data) marker is missing; hence the PDF document is corrupt.
For documents with a Linearization dictionary the computed `startXRef` position will be relative to the raw file, rather than the actual PDF document itself (which begins with `%PDF-`).
Hence it's necessary to subtract `stream.start` in this case, since otherwise the `XRef.readXRef` method will increment the position too far resulting in parsing errors.