The file `test/pdfs/annotation-caret-ink.pdf` is already available in
the repository as a reference test for this since I supplied it for
another patch that implemented ink annotations.
Note how `XRef.fetchUncompressed`, which is used *a lot* for most PDF documents, is calling the `makeSubStream` method without providing a `length` argument.
In practice this results in the `makeSubStream` method, on the `ChunkedStream` instance, calling the `ensureRange` method with `NaN` as the end position, thus resulting in no data being requested despite it possibly being necessary.
This may be quite bad, since in this particular case it will lead to a new `ChunkedStream` being created *and* also a new `Parser`/`Lexer` instance. Given that it's quite possible that even the very first `Parser.getObj` call could throw `MissingDataException`, this could thus lead to wasted time/resources (since re-parsing is necessary once the data finally arrives).
You obviously need to be very careful to not have `ChunkedStream.makeSubStream` accidentally requesting the *entire* file, hence its `this.end` property is of no use here, but it should be possible to at least check that the `start` of the data is present before any potentially expensive parsing occurs.
Without this some fonts may incorrectly end up with matching `hash`es, thus breaking rendering since we'll not actually try to load/parse some of the fonts.
Note that `PartialEvaluator.preEvaluateFont` will return an empty string when no hash was computed. This will complete short-circuit the `fontAlias` comparison in `PartialEvaluator.loadFont`, since fonts which are totally different will then match if their `hash`es are empty.
This function is currently called with the `OperatorList` instance as its argument, hence I cannot think of any good reason for not just moving it into the `OperatorList` properly. (This will also help with other planned changes regarding the `ImageCache` functionality.)
By transfering `ArrayBuffer`s you can avoid having two copies of the same data, i.e. one copy on each of the worker/main-thread, for data that's used only *once* on the worker-thread.
Note how the code in [`PDFImage.createMask`](80135378ca/src/core/image.js (L284-L285)) goes to great lengths to actually enable tranfering of the image data. However in [`PartialEvaluator.buildPaintImageXObject`](80135378ca/src/core/evaluator.js (L336)) the `cached` property is always set to `true`, which disqualifies the image data from being transfered; see [`getTransfers`](80135378ca/src/core/operator_list.js (L552-L554)).
For most ImageMask data this patch won't matter, since images found in the `/Resources -> /XObject` dictionary will always be indexed by name. However for *inline* images which contains ImageMask data, where only "small" images are cached (in both `parser.js` and `evaluator.js`), the current code will result in some unnecessary memory usage.
For Type3 fonts text-selection is often not that great, and there's a couple of heuristics used to try and improve things. This patch simple extends those heuristics a bit, and fixes a pre-existing "naive" array comparison, but this all feels a bit brittle to say the least.
The existing Type3 test-coverage isn't that great in general, and in particular Type3 `text` tests are few and far between, hence why this patch adds *two* different new `text` tests.
Notable changes:
- Remove the `return this;` from the `MurmurHash3_64.update` method, since it's completely unused and doesn't make a lot of sense.
- Remove the loop(s) from the `MurmurHash3_64.hexdigest` method, since creating a temporary array and then looping over it is wasteful given how simple this can be written with modern JavaScript.
Currently for every single parsed/rendered page there's no less than *four* `Date.now()` calls being made on the worker-side. This seems totally unnecessary, since the result of these calls are, by default, not used for anything *unless* the verbosity level is set to `INFO`.
The `src/shared/util.js` file is being bundled into both the `pdf.js` and `pdf.worker.js` files, meaning that its code is by definition duplicated.
Some main-thread only utility functions have already been moved to a separate `src/display/display_utils.js` file, and this patch simply extends that concept to utility functions which are used *only* on the worker-thread.
Note in particular the `getInheritableProperty` function, which expects a `Dict` as input and thus *cannot* possibly ever be used on the main-thread.
After PR 9340 all glyphs are now re-mapped to a Private Use Area (PUA) which means that if a font fails to load, for whatever reason[1], all glyphs in the font will now render as Unicode glyph outlines.
This obviously doesn't look good, to say the least, and might be seen as a "regression" since previously many glyphs were left in their original positions which provided a slightly better fallback[2].
Hence this patch, which implements a *general* fallback to the PDF.js built-in font renderer for fonts that fail to load (i.e. are rejected by the sanitizer). One caveat here is that this only works for the Font Loading API, since it's easy to handle errors in that case[3].
The solution implemented in this patch does *not* in any way delay the loading of valid fonts, which was the problem with my previous attempt at a solution, and will only require a bit of extra work/waiting for those fonts that actually fail to load.
*Please note:* This patch doesn't fix any of the underlying PDF.js font conversion bugs that's responsible for creating corrupt font files, however it does *improve* rendering in a number of cases; refer to this possibly incomplete list:
[Bug 1524888](https://bugzilla.mozilla.org/show_bug.cgi?id=1524888)
Issue 10175
Issue 10232
---
[1] Usually because the PDF.js font conversion code wasn't able to parse the font file correctly.
[2] Glyphs fell back to some default font, which while not accurate was more useful than the current state.
[3] Furthermore I'm not sure how to implement this generally, assuming that's even possible, and don't really have time/interest to look into it either.
pdf.js had a problem when copying characters on supplementary planes
(0xPPXXXX where PP is nonzero). This is because certain methods of
PartialEvaluator use classic String.fromCharCode instead of ES6's
String.fromCodePoint.
Despite the fact that readToUnicode method *tried* to parse out-of-UCS2
code points by parsing UTF-16BE, it was inadequate because
String.fromCharCode only supports UCS-2 range of Unicode.
All objects in the PDF document follow this pattern:
```
0000000001 0 obj
<<
% Some content here...
>>
endobj
0000000002 0 obj
<<
% More content here...
endobj
```
In many cases in the code you don't actually care about the index itself, but rather just want to know if something exists in a String/Array or if a String starts in a particular way. With modern JavaScript functionality, it's thus possible to remove a number of existing `indexOf` cases.
The `toString` method always creates two string objects (for the 'R'
character and for the `num` concatenation) and in the worst case
creates three string objects (one more for the `gen` concatenation).
For the Tracemonkey paper alone, this resulted in 12000 string
objects when scrolling from the top to the bottom of the document.
Since this is a hot function, it's worth minimizing the number of string
objects, especially for large documents, to reduce peak memory usage.
This commit refactors the `toString` method to always create only one
string object.
For PDF documents with sufficiently broken XRef tables, it's usually quite obvious when you need to fallback to indexing the entire file. However, for certain kinds of corrupted PDF documents the XRef table will, for all intents and purposes, appear to be valid. It's not until you actually try to fetch various objects that things will start to break, which is the case in the referenced issues[1].
Since there's generally a real effort being in made PDF.js to load even corrupt PDF documents, this patch contains a suggested approach to attempt to do a bit more validation of the XRef table during the initial document loading phase.
Here the choice is made to attempt to load the *first* page, as a basic sanity check of the validity of the XRef table. Please note that attempting to load a more-or-less arbitrarily chosen object without any context of what it's supposed to be isn't a very useful, which is why this particular choice was made.
Obviously, just because the first page can be loaded successfully that doesn't guarantee that the *entire* XRef table is valid, however if even the first page fails to load you can be reasonably sure that the document is *not* valid[2].
Even though this patch won't cause any significant increase in the amount of parsing required during initial loading of the document[3], it will require loading of more data upfront which thus delays the initial `getDocument` call.
Whether or not this is a problem depends very much on what you actually measure, please consider the following examples:
```javascript
console.time('first');
getDocument(...).promise.then((pdfDocument) => {
console.timeEnd('first');
});
console.time('second');
getDocument(...).promise.then((pdfDocument) => {
pdfDocument.getPage(1).then((pdfPage) => { // Note: the API uses `pageNumber >= 1`, the Worker uses `pageIndex >= 0`.
console.timeEnd('second');
});
});
```
The first case is pretty much guaranteed to show a small regression, however the second case won't be affected at all since the Worker caches the result of `getPage` calls. Again, please remember that the second case is what matters for the standard PDF.js use-case which is why I'm hoping that this patch is deemed acceptable.
---
[1] In issue 7496, the problem is that the document is edited without the XRef table being correctly updated.
In issue 10326, the generator was sorting the XRef table according to the offsets rather than the objects.
[2] The idea of checking the first page in particular came from the "standard" use-case for the PDF.js library, i.e. the default viewer, where a failure to load the first page basically means that nothing will work; note how `{BaseViewer, PDFThumbnailViewer}.setDocument` depends completely on being able to fetch the *first* page.
[3] The only extra parsing is caused by, potentially, having to traverse *part* of the `Pages` tree to find the first page.
Note that the OpenAction dictionary may contain other information besides just a destination array, e.g. instructions for auto-printing[1].
Given first of all that an arbitrary `Dict` cannot be sent from the Worker (since cloning would fail), and second of all that the data obviously needs to be validated, this patch purposely only adds support for fetching a destination from the OpenAction entry[2].
---
[1] This information is, currently in PDF.js, being included through the `getJavaScript` API method.
[2] This significantly reduces the complexity of the implementation, which seems fine for now. If there's ever need for other kinds of OpenAction to be fetched, additional API methods could/should be implemented as necessary (could e.g. follow the `getOpenActionWhatever` naming scheme).
The custom entries, provided that they exist *and* that their types are safe to include, are exposed through a new `Custom` infoDict entry to clearly separate them from the standard ones.
Fixes 5970.
Fixes 10344.
Given that Signature (Widget) annotations are currently not supported, since they cannot be validated, simply ignoring the `fieldValue` seems OK for now considering that attempting to blindly include unparsed/unvalidated data isn't very useful.
Fixes 10347.
The intent of the code, based on existing comments, is to perform a binary search. However, because of what appears to be a typo in the code responsible for computing the current search index, this code is always checking *every* entry (albeit only at the "final" node) starting from the last one.
According to the specification, see https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#G6.2384179, the keys of NameTree/NumberTree should be ordered.
For corrupt PDF files, which violate this assumption, we thus need to fallback to an exhaustive search in order to e.g. find all destinations.
*Please note:* Given that this only implements a fallback for the "final" node of the Tree, there's obviously a risk that the patch isn't sufficient for dealing with all kinds of out-of-order corruption. However, this kind of problem should be rare in practice, and without a real-world test-case it's difficult to implement a completely general solution (and there's obviously a question if you'd even want to).
These interfaces are already used in different files, in both the `src/core/` and `src/display/` folders, and having them reside in their own file seems a lot clearer and is also similar to the existing viewer interfaces.
As part of moving the `interface` definitions, they're also converted to ES6 classes.
The `Font.loading` property is only ever used *once* in the code, whereas `Font.missingFile` is more widely used. Furthermore the name `loading` feels, at least to me, slight less clear than `missingFile`. Finally, note that these two properties are the inverse of each other.
Currently there's only a single spot in the code-base where `JpegImage.getData` is called, however it nonetheless seem like a good idea to ensure during tests that the `isSourcePDF` parameter is correctly set. (Especially considering that the PDF use-cases will break without it.)
Additionally, in `JpegImage._getLinearizedBlockData`, the code can be made a tiny bit more efficient by checking the value of `isSourcePDF` *first* to avoid useless checks (for the default PDF use-cases).
There have been lots of problems with trying to map glyphs to their unicode
values. It's more reliable to just use the private use areas so the browser's
font renderer doesn't mess with the glyphs.
Using the private use area for all glyphs did highlight other issues that this
patch also had to fix:
* small private use area - Previously, only the BMP private use area was used
which can't map many glyphs. Now, the (much bigger) PUP 16 area can also be
used.
* glyph zero not shown - Browsers will not use the glyph from a font if it is
glyph id = 0. This issue was less prevalent when we mapped to unicode values
since the fallback font would be used. However, when using the private use
area, the glyph would not be drawn at all. This is illustrated in one of the
current test cases (issue #8234) where there's an "ä" glyph at position
zero. The PDF looked like it rendered correctly, but it was actually not
using the glyph from the font. To properly show the first glyph it is always
duplicated and appended to the glyphs and the maps are adjusted.
* supplementary characters - The private use area PUP 16 is 4 bytes, so
String.fromCodePoint must be used where we previously used
String.fromCharCode. This is actually an issue that should have been fixed
regardless of this patch.
* charset - Freetype fails to load fonts when the charset size doesn't match
number of glyphs in the font. We now write out a fake charset with the
correct length. This also brought up the issue that glyphs with seac/endchar
should only ever write a standard charset, but we now write a custom one.
To get around this the seac analysis is permanently enabled so those glyphs
are instead always drawn as two glyphs.
The purpose of this patch is to provide a better default behaviour when `JpegImage` is used to parse standalone JPEG images with CMYK colour spaces.
Since the issue that the patch concerns is somewhat of a special-case, the implementation utilizes the already existing decode support in an attempt to minimize the impact w.r.t. code size.
*Please note:* It's always possible for the user of `JpegImage` to control image inversion, and thus override the new behaviour, by simply passing a custom `decodeTransform` array upon initialization.
Apparently there's some PDF generators, in this case the culprit is "Nooog Pdf Library / Nooog PStoPDF v1.5", that manage to mess up PDF creation enough that endstream[1] commands actually become truncated.
*Please note:* The solution implemented here isn't perfect, since it won't be able to cope with PDF files that contains a *mixture* of correct and truncated endstream commands.
However, considering that this particular mode of corruption *fortunately* doesn't seem very common[2], a slightly less complex solution ought to suffice for now.
Fixes 10004.
---
[1] Scanning through the PDF data to find endstream commands becomes necessary, in order to determine the stream length in cases where the `Length` entry of the (stream) dictionary is missing/incorrect.
[2] I cannot recall having seen any (previous) issues/bugs with "Missing endstream" errors.
Reduces the amount of boilerplate code when defining the the sub-classes.
Please note that a couple of the closures were kept, since it's not (yet) possible to include helper functions inside of `class`es.
This property is not only completely unused now, it never actually appears to have been used. Even though the memory savings, from not initializing these extra typed arrays, won't be significant in the grand scheme of things it still seems completely unnecessary to keep allocating this data.
As far as I can tell, the main reason for the existence of `defaultColor` seem to be for documentation purposes. Hence the code is changed into comments instead, to keep the information around (but without the unnecessary allocations).
For proof-of-concept, this patch converts a couple of `Promise` returning methods to use `async` instead.
Please note that the `generic` build, based on this patch, has been successfully testing in IE11 (i.e. the viewer loads and nothing is obviously broken).
Being able to use modern JavaScript features like `async`/`await` is a huge plus, but there's one (obvious) side-effect: The size of the built files will increase slightly (unless `SKIP_BABEL == true`). That's unavoidable, but seems like a small price to pay in the grand scheme of things.
Finally, note that the `chromium` build target was changed to no longer skip Babel translation, since the Chrome extension still supports version `49` of the browser (where native `async` support isn't available).
Not only is this method completely unused *now*, looking through the history of the code it never appears to have been used for anything either.
Years ago `mainXRefEntriesOffset` was included when creating `XRef` instances, however it wasn't actually used for anything (the parameter was never checked, nor assigned to a property on `XRef`).
If this method ever becomes useful (again) it's easy enough to restore it thanks to version control, but including dead code in the builds just seems wasteful.
Please note that while this *improves* issue 9984 slightly (and likely others too), it's not a complete solution.
The remaining issues are related to the, more general, problems with the existing heuristics related to attempting to combine separate text items.
One of the `QueueOptimizer` cases wasn't updated to use `Uint8ClampedArray`s, which leads to inconsistent image data on the API side (but no actual rendering bugs, as far as I can tell).
To prevent future errors, a non-production/test-only `assert` was added to ensure that the relevant image data only uses `Uint8ClampedArray`s.
This commit is the first step towards implementing parsing for the
appearance streams of annotations.
Co-authored-by: Jonas Jenwald <jonas.jenwald@gmail.com>
Co-authored-by: Tim van der Meij <timvandermeij@gmail.com>
The current font type/subtype detection code is quite inconsistent/unwieldy. In some cases it will simply assume that the font dictionary is correct, in others it will somewhat "arbitrarily" check the actual font file (more of these cases have been added over the years to fix specific bugs).
As is evident from e.g. issue 9949, the font type/subtype detection code is continuing to cause issues. In an attempt to get rid of these hacks once and for all, this patch instead re-factors the type/subtype detection to *always* parse the font file.
Please note that, as far as I can tell, we still appear to need to rely on the composite font detection based on the font dictionary. However, even if the composite/non-composite detection would get it wrong, that shouldn't really matter too much given that there's basically only two different code-paths (for "TrueType-like" vs "Type1-like" fonts).
The font in the PDF is marked as a CIDFontType0, but the font file is
actually a true type font. To fully address this issue we should really
peek into the font file and try to determine what it is. However, this
is the first case of this issue, so I think this solution is acceptable for
now.