The `src/shared/util.js` file is being bundled into both the `pdf.js` and `pdf.worker.js` files, meaning that its code is by definition duplicated.
Some main-thread only utility functions have already been moved to a separate `src/display/display_utils.js` file, and this patch simply extends that concept to utility functions which are used *only* on the worker-thread.
Note in particular the `getInheritableProperty` function, which expects a `Dict` as input and thus *cannot* possibly ever be used on the main-thread.
After PR 9340 all glyphs are now re-mapped to a Private Use Area (PUA) which means that if a font fails to load, for whatever reason[1], all glyphs in the font will now render as Unicode glyph outlines.
This obviously doesn't look good, to say the least, and might be seen as a "regression" since previously many glyphs were left in their original positions which provided a slightly better fallback[2].
Hence this patch, which implements a *general* fallback to the PDF.js built-in font renderer for fonts that fail to load (i.e. are rejected by the sanitizer). One caveat here is that this only works for the Font Loading API, since it's easy to handle errors in that case[3].
The solution implemented in this patch does *not* in any way delay the loading of valid fonts, which was the problem with my previous attempt at a solution, and will only require a bit of extra work/waiting for those fonts that actually fail to load.
*Please note:* This patch doesn't fix any of the underlying PDF.js font conversion bugs that's responsible for creating corrupt font files, however it does *improve* rendering in a number of cases; refer to this possibly incomplete list:
[Bug 1524888](https://bugzilla.mozilla.org/show_bug.cgi?id=1524888)
Issue 10175
Issue 10232
---
[1] Usually because the PDF.js font conversion code wasn't able to parse the font file correctly.
[2] Glyphs fell back to some default font, which while not accurate was more useful than the current state.
[3] Furthermore I'm not sure how to implement this generally, assuming that's even possible, and don't really have time/interest to look into it either.
In many cases in the code you don't actually care about the index itself, but rather just want to know if something exists in a String/Array or if a String starts in a particular way. With modern JavaScript functionality, it's thus possible to remove a number of existing `indexOf` cases.
The `Font.loading` property is only ever used *once* in the code, whereas `Font.missingFile` is more widely used. Furthermore the name `loading` feels, at least to me, slight less clear than `missingFile`. Finally, note that these two properties are the inverse of each other.
There have been lots of problems with trying to map glyphs to their unicode
values. It's more reliable to just use the private use areas so the browser's
font renderer doesn't mess with the glyphs.
Using the private use area for all glyphs did highlight other issues that this
patch also had to fix:
* small private use area - Previously, only the BMP private use area was used
which can't map many glyphs. Now, the (much bigger) PUP 16 area can also be
used.
* glyph zero not shown - Browsers will not use the glyph from a font if it is
glyph id = 0. This issue was less prevalent when we mapped to unicode values
since the fallback font would be used. However, when using the private use
area, the glyph would not be drawn at all. This is illustrated in one of the
current test cases (issue #8234) where there's an "ä" glyph at position
zero. The PDF looked like it rendered correctly, but it was actually not
using the glyph from the font. To properly show the first glyph it is always
duplicated and appended to the glyphs and the maps are adjusted.
* supplementary characters - The private use area PUP 16 is 4 bytes, so
String.fromCodePoint must be used where we previously used
String.fromCharCode. This is actually an issue that should have been fixed
regardless of this patch.
* charset - Freetype fails to load fonts when the charset size doesn't match
number of glyphs in the font. We now write out a fake charset with the
correct length. This also brought up the issue that glyphs with seac/endchar
should only ever write a standard charset, but we now write a custom one.
To get around this the seac analysis is permanently enabled so those glyphs
are instead always drawn as two glyphs.
The current font type/subtype detection code is quite inconsistent/unwieldy. In some cases it will simply assume that the font dictionary is correct, in others it will somewhat "arbitrarily" check the actual font file (more of these cases have been added over the years to fix specific bugs).
As is evident from e.g. issue 9949, the font type/subtype detection code is continuing to cause issues. In an attempt to get rid of these hacks once and for all, this patch instead re-factors the type/subtype detection to *always* parse the font file.
Please note that, as far as I can tell, we still appear to need to rely on the composite font detection based on the font dictionary. However, even if the composite/non-composite detection would get it wrong, that shouldn't really matter too much given that there's basically only two different code-paths (for "TrueType-like" vs "Type1-like" fonts).
The font in the PDF is marked as a CIDFontType0, but the font file is
actually a true type font. To fully address this issue we should really
peek into the font file and try to determine what it is. However, this
is the first case of this issue, so I think this solution is acceptable for
now.
*I was feeling bored; so this is a very quick, and somewhat naive, attempt at fixing the bug.*
The breaking error, i.e. `Error during font loading: invalid array length`, was thrown when attempting to re-size the `stack` to a *negative* length when parsing the CALL functions.
Fixes https://bugzilla.mozilla.org/show_bug.cgi?id=1473809.
There's a number of issues with the fonts in the referenced PDF file. First of all, they contain broken `ToUnicode` data (`NUL` bytes all over the place). However even if you skip those, the `ToUnicode` data appears to contain nothing but a `IdentityH` CMap which won't help provide a proper glyph mapping.
The real issue actually turns out to be that the PDF file uses the "Calibri" font[1], but doesn't include any font files. Since that one isn't a standard font, and uses a fairly different CID to GID map compared to the standard fonts, we're not able to render the file even remotely correct.
To work around this, I'm thus proposing that we include a (incomplete) glyph map for Calibri, and fallback to the standard Helvetica font. Obviously this isn't going to look perfect, but it's really the best that we can hope to achieve given that the PDF file is missing the necessary font data.
Finally, please note that none of the PDF readers I've tried (Adobe Reader, PDFium in Chrome) were able to extract the text (which isn't very surprising, given the broken `ToUnicode` data).
Fixes 9195.
---
[1] According to Wikipedia, see https://en.wikipedia.org/wiki/Calibri, Calibri is (primarily) a Windows font.
In some fonts, the included `ToUnicode` data is incomplete causing text-selection to not work properly. For simple fonts that contain encoding data, we can manually build a `ToUnicode` map to attempt to improve things.
Please note that since we're currently using the `ToUnicode` data during glyph mapping, in an attempt to avoid rendering regressions, I purposely didn't want to amend to original `ToUnicode` data for this text-selection edge-case.
Instead, I opted for the current solution, which will (hopefully) give slightly better text-extraction results in PDF file with incomplete `ToUnicode` data.
According to the PDF specification, see [section 9.10.2](http://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#G8.1873172):
> A conforming reader can use these methods, in the priority given, to map a character code to a Unicode value.
> ...
Reading that paragraph literally, it doesn't seem too unreasonable to use *different* methods for different charcodes.
Fixes 8229.
In issue #8707, there's a char code mapped to a non-
existing glyph which shouldn't be drawn. However, we
saw it was missing and tried to then use the post table and
end up mapping it incorrectly.
This illuminated a problem with issue #5704 and bug
893730 where glyphs disappeared after above fix. This was
from the cmap returning the wrong glyph id. Which in turn was
caused because the font had multiple of the same type of cmap
table and we were choosing the last one. Now, we instead
default to the first one. I'm unsure if we should instead be
merging the multiple cmaps, but using only the first one works.
The initial issue with #8255 was I added a missing glyphs
check to adjustMapping, but this caused us to skip re-mapping
a glyph if the fontCharCode was a missingGlyph which in turn
caused us to overwrite a valid glyph id with an invalid one. While
fixing this, I also added a warning if the private use area is full since
this also accidentally happened when I made a different mistake.
This brought to light a number of issues where we map
missing glyphs to notdef, but often the notdef is actually defined
and then ends up being drawn. Now the glyphs don't get
mapped in toFontChar and so they are not drawn by the canvas.
Fixing the above brought up another issue though in bug1050040.pdf.
In this PDF, the font fails to load by the browser and before we were still
drawing the glyphs because it looked like the font had them, but with the fixes
above the glyphs showed up as missing so we didn't attempt draw them. To
fix this, I now throw an error when the loca table is in really bad shape and
we fall back to trying to use a system font. We now also use this fall back if
there are any format errors during converting fonts.
This replaces `assert` calls with `throw new FormatError()`/`throw new Error()`.
In a few places, throwing an `Error` (which is what `assert` meant) isn't correct since the enclosing function is supposed to return a `Promise`, hence some cases were changed to `Promise.reject(...)` and similarily for `createPromiseCapability` instances.
*As mentioned the last time that I touched this particular part of the font code, I'm sincerely hope that this doesn't cause any regressions!*
However, the patch passes all tests added in PRs 5770, 6270, and 7904 (and obviously all other tests as well). Furthermore, I've manually checked all the issues/bugs referenced in those PRs without finding any issues.
Fixes 8480.
Please note that the `glyphlist.js` and `unicode.js` files are converted to CommonJS modules instead, since Babel cannot handle files that large and they are thus excluded from transpilation.