This simplifies/consolidates the ESLint configuration slightly in the `src/` folder, and prevents the addition of any new files where `var` is being used.[1]
Hence we no longer need to manually add `/* eslint no-var: error */` in files, which is easy to forget, and can instead disable the rule in the `src/core/` files where `var` is still in use.
---
[1] Obviously the `no-var` rule can, in the same way as every other rule, be disabled on a case-by-case basis where actually necessary.
This removes additional `// eslint-disable-next-line no-shadow` usage, which our old pseudo-classes necessitated.
*Please note:* I'm purposely not doing any `var` to `let`/`const` conversion here, since it's generally better to (if possible) do that automatically on e.g. a directory basis instead.
This patch contains the following *notable* improvements:
- Changes the `ColorSpace.parse` call-sites to, where possible, pass in a reference rather than actual ColorSpace data (necessary for the next point).
- Adds (local) caching of `ColorSpace`s by `Ref`, when applicable, in addition the caching by name. This (generally) improves `ColorSpace` caching for e.g. the SMask code-paths.
- Extends the (local) `ColorSpace` caching to also apply when handling Images and Patterns, thus further reducing unneeded re-parsing.
- Adds a new `ColorSpace.parseAsync` method, almost identical to the existing `ColorSpace.parse` one, but returning a Promise instead (this simplifies some code in the `PartialEvaluator`).
Because of a really stupid `Promise`-related mistake on my part, when re-factoring `PDFImage.buildImage` during the `NativeImageDecoder` removal, we're no longer re-throwing errors occuring during image parsing/decoding as intended.
The result is that some (fairly) corrupt documents will never finish loading, and unfortunately there were apparently no sufficiently corrupt images in the test-suite to catch this.
Currently some JPEG images are decoded by the built-in PDF.js decoder in `src/core/jpg.js`, while others attempt to use the browser JPEG decoder. This inconsistency seem unfortunate for a number of reasons:
- It adds, compared to the other image formats supported in the PDF specification, a fair amount of code/complexity to the image handling in the PDF.js library.
- The PDF specification support JPEG images with features, e.g. certain ColorSpaces, that browsers are unable to decode natively. Hence, determining if a JPEG image is possible to decode natively in the browser require a non-trivial amount of parsing. In particular, we're parsing (part of) the raw JPEG data to extract certain marker data and we also need to parse the ColorSpace for the JPEG image.
- While some JPEG images may, for all intents and purposes, appear to be natively supported there's still cases where the browser may fail to decode some JPEG images. In order to support those cases, we've had to implement a fallback to the PDF.js JPEG decoder if there's any issues during the native decoding. This also means that it's no longer possible to simply send the JPEG image to the main-thread and continue parsing, but you now need to actually wait for the main-thread to indicate success/failure first.
In practice this means that there's a code-path where the worker-thread is forced to wait for the main-thread, while the reverse should *always* be the case.
- The native decoding, for anything except the *simplest* of JPEG images, result in increased peak memory usage because there's a handful of short-lived copies of the JPEG data (see PR 11707).
Furthermore this also leads to data being *parsed* on the main-thread, rather than the worker-thread, which you usually want to avoid for e.g. performance and UI-reponsiveness reasons.
- Not all environments, e.g. Node.js, fully support native JPEG decoding. This has, historically, lead to some issues and support requests.
- Different browsers may use different JPEG decoders, possibly leading to images being rendered slightly differently depending on the platform/browser where the PDF.js library is used.
Originally the implementation in `src/core/jpg.js` were unable to handle all of the JPEG images in the test-suite, but over the last couple of years I've fixed (hopefully) all of those issues.
At this point in time, there's two kinds of failure with this patch:
- Changes which are basically imperceivable to the naked eye, where some pixels in the images are essentially off-by-one (in all components), which could probably be attributed to things such as different rounding behaviour in the browser/PDF.js JPEG decoder.
This type of "failure" accounts for the *vast* majority of the total number of changes in the reference tests.
- Changes where the JPEG images now looks *ever so slightly* blurrier than with the native browser decoder. For quite some time I've just assumed that this pointed to a general deficiency in the `src/core/jpg.js` implementation, however I've discovered when comparing two viewers side-by-side that the differences vanish at higher zoom levels (usually around 200% is enough).
Basically if you disable [this downscaling in canvas.js](8fb82e939c/src/display/canvas.js (L2356-L2395)), which is what happens when zooming in, the differences simply vanish!
Hence I'm pretty satisfied that there's no significant problems with the `src/core/jpg.js` implementation, and the problems are rather tied to the general quality of the downscaling algorithm used. It could even be seen as a positive that *all* images now share the same downscaling behaviour, since this actually fixes one old bug; see issue 7041.
Please note that these changes were done automatically, using `gulp lint --fix`.
Given that the major version number was increased, there's a fair number of (primarily whitespace) changes; please see https://prettier.io/blog/2020/03/21/2.0.0.html
In order to reduce the size of these changes somewhat, this patch maintains the old "arrowParens" style for now (once mozilla-central updates Prettier we can simply choose the same formatting, assuming it will differ here).
Given the way that "classes" were previously implemented in PDF.js, using regular functions and closures, there's a fair number of false positives when the `no-shadow` ESLint rule was enabled.
Note that while *some* of these `eslint-disable` statements can be removed if/when the relevant code is converted to proper `class`es, we'll probably never be able to get rid of all of them given our naming/coding conventions (however I don't really see this being a problem).
Please find additional details about the ESLint rule at https://eslint.org/docs/rules/prefer-const
With the recent introduction of Prettier this sort of mass enabling of ESLint rules becomes a lot easier, since the code will be automatically reformatted as necessary to account for e.g. changed line lengths.
Note that this patch is generated automatically, by using the ESLint `--fix` argument, and will thus require some additional clean-up (which is done separately).
This rule is already enabled in mozilla-central, and helps avoid some confusing formatting, see https://searchfox.org/mozilla-central/rev/9e45d74b956be046e5021a746b0c8912f1c27318/tools/lint/eslint/eslint-plugin-mozilla/lib/configs/recommended.js#209-210
With the recent introduction of Prettier some of the existing nested ternary statements became even more difficult to read, since any possibly helpful indentation was removed.
This particular ESLint rule wasn't entirely straightforward to enable, and I do recognize that there's a certain amount of subjectivity in the changes being made. Generally, the changes in this patch fall into three categories:
- Cases where a value is only clamped to a certain range (the easiest ones to update).
- Cases where the values involved are "simple", such as Numbers and Strings, which are re-factored to initialize the variable with the *default* value and only update it when necessary by using `if`/`else if` statements.
- Cases with more complex and/or larger values, such as TypedArrays, which are re-factored to let the variable be (implicitly) undefined and where all values are then set through `if`/`else if`/`else` statements.
Please find additional details about the ESLint rule at https://eslint.org/docs/rules/no-nested-ternary
In order to eventually get rid of SystemJS and start using native `import`s instead, we'll need to provide "complete" file identifiers since otherwise there'll be MIME type errors when attempting to use `import`.
This patch makes the follow changes:
- Remove no longer necessary inline `// eslint-disable-...` comments.
- Fix `// eslint-disable-...` comments that Prettier moved down, thus causing new linting errors.
- Concatenate strings which now fit on just one line.
- Fix comments that are now too long.
- Finally, and most importantly, adjust comments that Prettier moved down, since the new positions often is confusing or outright wrong.
Note that Prettier, purposely, has only limited [configuration options](https://prettier.io/docs/en/options.html). The configuration file is based on [the one in `mozilla central`](https://searchfox.org/mozilla-central/source/.prettierrc) with just a few additions (to avoid future breakage if the defaults ever changes).
Prettier is being used for a couple of reasons:
- To be consistent with `mozilla-central`, where Prettier is already in use across the tree.
- To ensure a *consistent* coding style everywhere, which is automatically enforced during linting (since Prettier is used as an ESLint plugin). This thus ends "all" formatting disussions once and for all, removing the need for review comments on most stylistic matters.
Many ESLint options are now redundant, and I've tried my best to remove all the now unnecessary options (but I may have missed some).
Note also that since Prettier considers the `printWidth` option as a guide, rather than a hard rule, this patch resorts to a small hack in the ESLint config to ensure that *comments* won't become too long.
*Please note:* This patch is generated automatically, by appending the `--fix` argument to the ESLint call used in the `gulp lint` task. It will thus require some additional clean-up, which will be done in a *separate* commit.
(On a more personal note, I'll readily admit that some of the changes Prettier makes are *extremely* ugly. However, in the name of consistency we'll probably have to live with that.)
Fixes a stupid oversight on my part, since /Filter may (obviously) contain an Array, which resulted in unnecessary console warning spam in perfectly valid PDF files.
Note that it still makes sense to check that /Filter is actually a Name, before attempting to access its `name` property, but the warning should definitely be removed.
According to the PDF specification, see https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#page=45
> When using the JPXDecode filter with image XObjects, the following changes to and constraints on some entries in the image dictionary shall apply (see 8.9.5, "Image Dictionaries" for details on these entries):
>
> - Width and Height shall match the corresponding width and height values in the JPEG2000 data.
>
> - . . .
Hence it seems reasonable to use the Width/Height of the image data *itself*, rather than the image dictionary when there's a mismatch. Given that JPEG 2000 images are already being parsed, in order to obtain basic parameters, the actual Width/Height is readily available in the `PDFImage` constructor.
Given that the code is currently assuming that the /Filter entry is a `Name`, it cannot hurt to actually ensure that's the case.
Also fixes an error message, for JPEG 2000 images with unsupported ColorSpaces, since `this.numComps` hasn't been initialized when it's accessed during the `throw new Error()` invocation.
Since `ColorSpace` now depends on the native clamping of `Uint8ClampedArray`, this patch adds non-production/test-only `assert`s to enforce that the expected TypedArray is used for the output.
These `assert`s are purposely *not* included in PRODUCTION builds since that would break rendering completely, as opposed to "only" displaying some weird colours, when a `Uint8Array` was used. Furthermore, these are mostly added to help catch explicit developer errors when working with the `ColorSpace` and `PDFImage` code.
The built-in image decoders are already using `Uint8ClampedArray` when returning data, and this patch simply extends that to the rest of the image/colorspace code.
As far as I can tell, the only reason for using manual clamping/rounding in the first place was because TypedArrays used to be polyfilled (using regular arrays). And trying to polyfill the native clamping/rounding would probably have been had too much overhead, but given that TypedArray support is required in PDF.js version `2.0` that's no longer a concern.
*Please note:* Because of different rounding behaviour, basically `Math.round` in `Uint8ClampedArray` respectively `Math.floor` in the old code, there will be very slight movement in quite a few existing test-cases. However, the changes should be imperceivable to the naked eye, given that the absolute difference is *at most* `1` for each RGB component when comparing `master` and this patch (see also the updated expectation values in the unit-tests).
Please refer to the PDF specification, in particular http://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#G7.3801570
> A colour space shall be specified in one of two ways:
> - Within a content stream, the CS or cs operator establishes the current colour space parameter in the graphics state. The operand shall always be name object, which either identifies one of the colour spaces that need no additional parameters (DeviceGray, DeviceRGB, DeviceCMYK, or some cases of Pattern) or shall be used as a key in the ColorSpace subdictionary of the current resource dictionary (see 7.8.3, "Resource Dictionaries"). In the latter case, the value of the dictionary entry in turn shall be a colour space array or name. A colour space array shall never be inline within a content stream.
>
> - Outside a content stream, certain objects, such as image XObjects, shall specify a colour space as an explicit parameter, often associated with the key ColorSpace. In this case, the colour space array or name shall always be defined directly as a PDF object, not by an entry in the ColorSpace resource subdictionary. This convention also applies when colour spaces are defined in terms of other colour spaces.
The bug that this patch fixes is limited to the built-in JPEG decoder, and was unearthed by PR 9260. The underlying issue has existed since PR 6984, where the contents of this patch ought to have been included (if it weren't for the fact that we had no *easy* way to test `src/core/jpg.js` back then).
*Please note:* The slight movement in the reference test is a result of using the `src/core/jpg.js` decoder, rather than the native browser one.
*Follow-up to PR 8909.*
This requires us to pass around `pdfFunctionFactory` to quite a lot of existing code, however I don't see another way of handling this while still guaranteeing that we can access `PDFFunction` as freely as in the old code.
Please note that the patch passes all tests locally (unit, font, reference), and I *very* much hope that we have sufficient test-coverage for the code in question to catch any typos/mistakes in the re-factoring.
The `inline` parameter is passed to a number of methods/functions in `PDFImage`, despite not actually being used. Its value is never checked, nor is it ever assigned to the current `PDFImage` instance (i.e. no `this.inline = inline` exists).
Looking briefly at the history of this code, I was also unable to find a point in time where `inline` was being used.
As far as I'm concerned, `inline` does nothing more than add clutter to already very unwieldy method/function signatures, hence why I'm proposing that we just remove it.
To further simplify call-sites using `PDFImage`/`NativeImageDecoder`, a number of methods/functions are changed to take Objects rather than a bunch of (somewhat) randomly ordered parameters.
Please note that the `glyphlist.js` and `unicode.js` files are converted to CommonJS modules instead, since Babel cannot handle files that large and they are thus excluded from transpilation.
Please see http://eslint.org/docs/rules/object-shorthand.
For the most part, these changes are of the search-and-replace kind, and the previously enabled `no-undef` rule should complement the tests in helping ensure that no stupid errors crept into to the patch.
Using `else` after `return` is not necessary, and can often lead to unnecessarily cluttered code. By using the `no-else-return` rule in ESLint we can avoid this pattern, see http://eslint.org/docs/rules/no-else-return.
As evident from e.g. PRs 6485 and 7118, some bad PDF generators unfortunately create Arrays where *some* elements are indirect objects (i.e. `Ref`s). This seems to mostly affect Arrays that contain numbers, such as e.g. `Matrix/FontMatrix/BBox/FontBBox/Rect/Color/...`, and has manifested itself in PDF files that fail to render correctly (some elements are missing).
The problem in both the cases above, besides broken rendering, was that there were *no* errors/warnings that indicated what the problem was, making it difficult to pinpoint the issue.
Hence this patch, where I've audited all usages of `Dict_get` in `src/core/` files, and replaced it with `Dict_getArray` where appropriate to try and prevent unnecessary future bugs.
The scanned, black-and-white document at
https://bugzilla.mozilla.org/show_bug.cgi?id=835380 doesn't benefit from
the critical GRAYSCALE_1BPP optimization because the optimization is
skipped if `needsDecode` is set.
This change addresses that, and reduces both rendering time and memory
usage for that document by almost 10x.