In order to eventually get rid of SystemJS and start using native `import`s instead, we'll need to provide "complete" file identifiers since otherwise there'll be MIME type errors when attempting to use `import`.
This patch makes the follow changes:
- Remove no longer necessary inline `// eslint-disable-...` comments.
- Fix `// eslint-disable-...` comments that Prettier moved down, thus causing new linting errors.
- Concatenate strings which now fit on just one line.
- Fix comments that are now too long.
- Finally, and most importantly, adjust comments that Prettier moved down, since the new positions often is confusing or outright wrong.
Note that Prettier, purposely, has only limited [configuration options](https://prettier.io/docs/en/options.html). The configuration file is based on [the one in `mozilla central`](https://searchfox.org/mozilla-central/source/.prettierrc) with just a few additions (to avoid future breakage if the defaults ever changes).
Prettier is being used for a couple of reasons:
- To be consistent with `mozilla-central`, where Prettier is already in use across the tree.
- To ensure a *consistent* coding style everywhere, which is automatically enforced during linting (since Prettier is used as an ESLint plugin). This thus ends "all" formatting disussions once and for all, removing the need for review comments on most stylistic matters.
Many ESLint options are now redundant, and I've tried my best to remove all the now unnecessary options (but I may have missed some).
Note also that since Prettier considers the `printWidth` option as a guide, rather than a hard rule, this patch resorts to a small hack in the ESLint config to ensure that *comments* won't become too long.
*Please note:* This patch is generated automatically, by appending the `--fix` argument to the ESLint call used in the `gulp lint` task. It will thus require some additional clean-up, which will be done in a *separate* commit.
(On a more personal note, I'll readily admit that some of the changes Prettier makes are *extremely* ugly. However, in the name of consistency we'll probably have to live with that.)
This will allow us to attempt to recover as much as possible of a page, rather than immediately failing, when a broken/unsupported ColorSpace is encountered. This patch thus extends the framework added in PRs such as e.g. 8240 and 8922, to also cover parsing of ColorSpaces.
I completely overlooked this in PR 11281, but you obviously need to make similar changes in `PartialEvaluator.hasBlendModes` since it will otherwise ignore valid Blend Modes.
Sometimes we also used `@return`, but `@returns` is what the JSDoc
documentation recommends. Even though `@return` works as an alias, it's
good to use the recommended syntax and to be consistent within the
project.
For badly generated PDF documents, with issue 6961 being one example, there's well over one hundred thousand function calls being made in total for just the *two* pages.
This handles the two different ways that fonts can be loaded, either by Name (which is the common case) or by Reference.
Furthermore, this also takes the `ignoreErrors` option into account when deciding whether to fallback or Error.
Finally, by creating a minimal but valid Font dictionary, there's no special-cases necessary in any of the font parsing code.
Co-authored-by: huzjakd <huzjakd@gmail.com>
Co-Authored-By: Jonas Jenwald <jonas.jenwald@gmail.com>
*Please note:* I've been thinking about possible ways of addressing this issue for a while now, but all of the solutions I came up with became too complicated and thus hurt readability of the code.
However, it occured to me that we're essentially trying to add a heuristic *on top* of another heuristic, and that it shouldn't matter how efficient the code is as long as it works.
In the PDF file in the issue the Encoding contains glyphNames of the `Cdd` format, which our existing heuristics will treat as base 10 values. However, in this particular file they actually contain base 16 values, which we thus attempt to detect and fix such that text-selection works.
It recently occurred to me that the CMap data should be an excellent candidate for transfering.
This will help reduce peak memory usage for PDF documents using CMaps, since transfering of data avoids duplicating it on both the main- and worker-threads.
Unfortunately it's not possible to actually transfer data when *returning* data through `sendWithPromise`, and another solution had to be used.
Initially I looked at using one message for requesting the data, and another message for returning the actual CMap data. While that should have worked, it would have meant adding a lot more complexity particularly on the worker-thread.
Hence the simplest solution, at least in my opinion, is to utilize `sendWithStream` since that makes it *really* easy to transfer the CMap data. (This required PR 11115 to land first, since otherwise CMap fetch errors won't propagate correctly to the worker-thread.)
Please note that the patch *purposely* only changes the API to Worker communication, and not the API *itself* since changing the interface of `CMapReaderFactory` would be a breaking change.
Furthermore, given the relatively small size of the `.bcmap` files (the largest one is smaller than the default range-request size) streaming doesn't really seem necessary either.
*Please note:* The majority of this patch was written by Yury, and it's simply been rebased and slightly extended to prevent issues when dealing with `RenderingCancelledException`.
By leveraging streams this (finally) provides a simple way in which parsing can be aborted on the worker-thread, which will ultimately help save resources.
With this patch worker-thread parsing will *only* be aborted when the document is destroyed, and not when rendering is cancelled. There's a couple of reasons for this:
- The API currently expects the *entire* OperatorList to be extracted, or an Error to occur, once it's been started. Hence additional re-factoring/re-writing of the API code will be necessary to properly support cancelling and re-starting of OperatorList parsing in cases where the `lastChunk` hasn't yet been seen.
- Even with the above addressed, immediately cancelling when encountering a `RenderingCancelledException` will lead to worse performance in e.g. the default viewer. When zooming and/or rotation of the document occurs it's very likely that `cancel` will be (almost) immediately followed by a new `render` call. In that case you'd obviously *not* want to abort parsing on the worker-thread, since then you'd risk throwing away a partially parsed Page and thus be forced to re-parse it again which will regress perceived performance.
- This patch is already *somewhat* risky, given that it touches fundamentally important/critical code, and trying to keep it somewhat small should hopefully reduce the risk of regressions (and simplify reviewing as well).
Time permitting, once this has landed and been in Nightly for awhile, I'll try to work on the remaining points outlined above.
Co-Authored-By: Yury Delendik <ydelendik@mozilla.com>
Co-Authored-By: Jonas Jenwald <jonas.jenwald@gmail.com>
For very large and complex PDF files this will help performance slightly, since `EvaluatorPreprocessor.read` is called a lot during parsing in the worker.
This patch was tested using the PDF file from issue 2618, i.e. http://bugzilla-attachments.gnome.org/attachment.cgi?id=226471, using the following manifest file:
```
[
{ "id": "issue2618",
"file": "../web/pdfs/issue2618.pdf",
"md5": "",
"rounds": 200,
"type": "eq"
}
]
```
This gave the following results when comparing this patch against the `master` branch:
```
-- Grouped By browser, stat --
browser | stat | Count | Baseline(ms) | Current(ms) | +/- | % | Result(P<.05)
------- | ------------ | ----- | ------------ | ----------- | --- | ----- | -------------
Firefox | Overall | 200 | 3402 | 3358 | -43 | -1.28 | faster
Firefox | Page Request | 200 | 1 | 1 | 0 | 26.71 |
Firefox | Rendering | 200 | 3401 | 3357 | -44 | -1.28 | faster
```
A lot of the `new Parser()` call-sites look quite unwieldy/ugly as-is, with a bunch of somewhat randomly ordered arguments, which we can avoid by changing the constructor to accept an object instead. As an added bonus, this provides better documentation without having to add inline argument comments in the code.
Currently `handleColorN` will fallback to add a completely unparsed/unvalidated operator when no valid pattern was found. This is unfortunate, since it could very easily lead to a couple of different errors:
- `DataCloneError`s when attempting to send the data to the main-thread, e.g. when `args` is `Dict`/`Stream`.
- Errors in `getShadingPatternFromIR` on the main-thread, unless `args` just happens to have the expected format.
- Errors when actually attempting to render the pattern on the main-thread, since the `args` will most likely not have the expected format.
Hence it probably makes sense to error in `PartialEvaluator.handleColorN`, and having invalid patterns fail gracefully via the existing `ignoreErrors` code-paths instead.
First of all, while this simple approach appears to work OK in practice I'm not sure if it's the best way of addressing the problem (assuming that you even want to).
Second of all, while the solution implemented here only requires tracking/checking one new boolean in order for this to work, I'm nonetheless not entirely happy about this since it will add additional overhead (albeit *very* small) to the parsing of path operators in PDF documents just for a handful of *corrupt* ones.
This way we can avoid manually building a "document id" in multiple places in `evaluator.js`, and it also let's us avoid passing in an otherwise unnecessary `PDFManager` instance when creating a `PartialEvaluator`.
Without this some fonts may incorrectly end up with matching `hash`es, thus breaking rendering since we'll not actually try to load/parse some of the fonts.
Note that `PartialEvaluator.preEvaluateFont` will return an empty string when no hash was computed. This will complete short-circuit the `fontAlias` comparison in `PartialEvaluator.loadFont`, since fonts which are totally different will then match if their `hash`es are empty.
By transfering `ArrayBuffer`s you can avoid having two copies of the same data, i.e. one copy on each of the worker/main-thread, for data that's used only *once* on the worker-thread.
Note how the code in [`PDFImage.createMask`](80135378ca/src/core/image.js (L284-L285)) goes to great lengths to actually enable tranfering of the image data. However in [`PartialEvaluator.buildPaintImageXObject`](80135378ca/src/core/evaluator.js (L336)) the `cached` property is always set to `true`, which disqualifies the image data from being transfered; see [`getTransfers`](80135378ca/src/core/operator_list.js (L552-L554)).
For most ImageMask data this patch won't matter, since images found in the `/Resources -> /XObject` dictionary will always be indexed by name. However for *inline* images which contains ImageMask data, where only "small" images are cached (in both `parser.js` and `evaluator.js`), the current code will result in some unnecessary memory usage.
For Type3 fonts text-selection is often not that great, and there's a couple of heuristics used to try and improve things. This patch simple extends those heuristics a bit, and fixes a pre-existing "naive" array comparison, but this all feels a bit brittle to say the least.
The existing Type3 test-coverage isn't that great in general, and in particular Type3 `text` tests are few and far between, hence why this patch adds *two* different new `text` tests.
The `src/shared/util.js` file is being bundled into both the `pdf.js` and `pdf.worker.js` files, meaning that its code is by definition duplicated.
Some main-thread only utility functions have already been moved to a separate `src/display/display_utils.js` file, and this patch simply extends that concept to utility functions which are used *only* on the worker-thread.
Note in particular the `getInheritableProperty` function, which expects a `Dict` as input and thus *cannot* possibly ever be used on the main-thread.
After PR 9340 all glyphs are now re-mapped to a Private Use Area (PUA) which means that if a font fails to load, for whatever reason[1], all glyphs in the font will now render as Unicode glyph outlines.
This obviously doesn't look good, to say the least, and might be seen as a "regression" since previously many glyphs were left in their original positions which provided a slightly better fallback[2].
Hence this patch, which implements a *general* fallback to the PDF.js built-in font renderer for fonts that fail to load (i.e. are rejected by the sanitizer). One caveat here is that this only works for the Font Loading API, since it's easy to handle errors in that case[3].
The solution implemented in this patch does *not* in any way delay the loading of valid fonts, which was the problem with my previous attempt at a solution, and will only require a bit of extra work/waiting for those fonts that actually fail to load.
*Please note:* This patch doesn't fix any of the underlying PDF.js font conversion bugs that's responsible for creating corrupt font files, however it does *improve* rendering in a number of cases; refer to this possibly incomplete list:
[Bug 1524888](https://bugzilla.mozilla.org/show_bug.cgi?id=1524888)
Issue 10175
Issue 10232
---
[1] Usually because the PDF.js font conversion code wasn't able to parse the font file correctly.
[2] Glyphs fell back to some default font, which while not accurate was more useful than the current state.
[3] Furthermore I'm not sure how to implement this generally, assuming that's even possible, and don't really have time/interest to look into it either.
pdf.js had a problem when copying characters on supplementary planes
(0xPPXXXX where PP is nonzero). This is because certain methods of
PartialEvaluator use classic String.fromCharCode instead of ES6's
String.fromCodePoint.
Despite the fact that readToUnicode method *tried* to parse out-of-UCS2
code points by parsing UTF-16BE, it was inadequate because
String.fromCharCode only supports UCS-2 range of Unicode.
In many cases in the code you don't actually care about the index itself, but rather just want to know if something exists in a String/Array or if a String starts in a particular way. With modern JavaScript functionality, it's thus possible to remove a number of existing `indexOf` cases.
For proof-of-concept, this patch converts a couple of `Promise` returning methods to use `async` instead.
Please note that the `generic` build, based on this patch, has been successfully testing in IE11 (i.e. the viewer loads and nothing is obviously broken).
Being able to use modern JavaScript features like `async`/`await` is a huge plus, but there's one (obvious) side-effect: The size of the built files will increase slightly (unless `SKIP_BABEL == true`). That's unavoidable, but seems like a small price to pay in the grand scheme of things.
Finally, note that the `chromium` build target was changed to no longer skip Babel translation, since the Chrome extension still supports version `49` of the browser (where native `async` support isn't available).
Please note that while this *improves* issue 9984 slightly (and likely others too), it's not a complete solution.
The remaining issues are related to the, more general, problems with the existing heuristics related to attempting to combine separate text items.
With the `builtInCMapCache` being a simple Object, it unfortunately means that the `Catalog.cleanup` method isn't resetting it as intended.
By just replacing the `builtInCMapCache` with an empty Object, existing references to it will not actually be updated. The result is that e.g. `Page` instances still keeps references to, what should have been removed, CMap data.
To fix these problems, the `builtInCMapCache` is converted into a `Map` instead (since it can be easily reset).
Incomplete path operators, in particular, can result in fairly chaotic rendering artifacts, as can be observed on page four of the referenced PDF file.
The initial (naive) solution that was attempted, was to simply throw a `FormatError` as soon as any invalid (i.e. too short) operator was found and rely on the existing `ignoreErrors` code-paths. However, doing so would have caused regressions in some files; see the existing `issue2391-1` test-case, which was promoted to an `eq` test to help prevent future bugs.
Hence this patch, which adds special handling for invalid path operators since those may cause quite bad rendering artifacts.
You could, in all fairness, argue that the patch is a handwavy solution and I wouldn't object. However, given that this only concerns *corrupt* PDF files, the way that PDF viewers (PDF.js included) try to gracefully deal with those could probably be described as a best-effort solution anyway.
This patch also adjusts the existing `warn`/`info` messages to print the command name according to the PDF specification, rather than an internal PDF.js enumeration value. The former should be much more useful for debugging purposes.
Fixes https://bugzilla.mozilla.org/show_bug.cgi?id=1443140.
The built-in image decoders are already using `Uint8ClampedArray` when returning data, and this patch simply extends that to the rest of the image/colorspace code.
As far as I can tell, the only reason for using manual clamping/rounding in the first place was because TypedArrays used to be polyfilled (using regular arrays). And trying to polyfill the native clamping/rounding would probably have been had too much overhead, but given that TypedArray support is required in PDF.js version `2.0` that's no longer a concern.
*Please note:* Because of different rounding behaviour, basically `Math.round` in `Uint8ClampedArray` respectively `Math.floor` in the old code, there will be very slight movement in quite a few existing test-cases. However, the changes should be imperceivable to the naked eye, given that the absolute difference is *at most* `1` for each RGB component when comparing `master` and this patch (see also the updated expectation values in the unit-tests).
This works by making `PartialEvaluator.buildPaintImageXObject` wait for the success/failure of `loadJpegStream` on the API side *before* parsing continues.
Please note that in practice, it should be quite rare for the browser to fail loading/decoding of a JPEG image. In the general case, it should thus not be completely surprising if even `src/core/jpg.js` will fail to decode the image.
This method currently requires a fair number of parameters, which creates quite unwieldy call-sites. When invoking `buildPaintImageXObject`, you have to remember not only which arguments to supply, but also the correct order, to prevent run-time errors.
Please refer to the PDF specification, in particular http://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#G7.3801570
> A colour space shall be specified in one of two ways:
> - Within a content stream, the CS or cs operator establishes the current colour space parameter in the graphics state. The operand shall always be name object, which either identifies one of the colour spaces that need no additional parameters (DeviceGray, DeviceRGB, DeviceCMYK, or some cases of Pattern) or shall be used as a key in the ColorSpace subdictionary of the current resource dictionary (see 7.8.3, "Resource Dictionaries"). In the latter case, the value of the dictionary entry in turn shall be a colour space array or name. A colour space array shall never be inline within a content stream.
>
> - Outside a content stream, certain objects, such as image XObjects, shall specify a colour space as an explicit parameter, often associated with the key ColorSpace. In this case, the colour space array or name shall always be defined directly as a PDF object, not by an entry in the ColorSpace resource subdictionary. This convention also applies when colour spaces are defined in terms of other colour spaces.