This changes all occurrences of `var` to `let`/`const` in this code, and updates the signature of the constructor to use object destructuring for better readability (and self documentation).
Also, `useRequestAnimationFrame` is changed to a parameter and the `typeof window` check is now done *once* rather than at every `_scheduleNext` call.
This changes all occurrences of `var` to `let`/`const` in this code, and updates the signatures of a couple of methods to use object destructuring.
Finally, when creating `InternalRenderTask` instances *only* the necessary parameter are now provided, since passing through the `RenderParameters` as-is seems completely unnecessary.
First of all, note how there's currently *two* methods for checking if a certain object exists, which seems completely unwarranted.
Furthermore, the rarely used `getData` method was removed and its only callsite changed to use a combination of `PDFObjects.{has, get}` instead.
Finally, the methods were rearranged slightly, to bring the most important ones (for an API user) to the top of the class.
Note how nowhere in the code `canvasInRendering.get()` is ever called, and that this structure is really only used to store references to `<canvas>` DOM elements.
The reason for this being a `WeakMap` is probably because at the time we weren't using `core-js` polyfills yet, and since there already existed a manually implemented `WeakMap` polyfill it was probably simpler to use that.
Please note that, given the lack of a runnable example, I'm not totally sure if this first of all is enough to *completely* address the issue as filed and second of all if we actually want this new behaviour.
*Please note:* I'm totally fine with this patch being rejected, and the issue closed as WONTFIX; however these changes should address the issue if that's desired.
From a conceptual point of view, reporting loading progress doesn't really make a lot of sense for PDF files opened by passing raw binary data directly to `getDocument` (since obviously *all* data was loaded).
This is compared to PDF files loaded via e.g. `XMLHttpRequest` or the Fetch API, where the entire PDF file isn't available from the start and knowing the loading progress makes total sense.
However I can certainly see why the current API could be considered inconsistent, which isn't great, since a registered `onProgress` callback will never be called for certain `getDocument` calls.
The simplest solution to this inconsistency thus seem to be to ensure that `onProgress` is always called when handling the `DataLoaded` message, since that will *always* be dispatched[1] from the worker-thread.
---
[1] Note that this isn't guaranteed to happen, since setting `disableAutoFetch = true` often prevents the *entire* file from ever loading. However, this isn't relevant for the issue at hand, and is a well-known consequence of using `disableAutoFetch = true`; note how the default viewer even has a specialized code-path for hiding the loadingBar.
*This should have been part of PR 10139.*
In the event that a user has attempted to manually load the worker file on the main-thread, but somehow failed to do that correctly, there's a possibility that `getMainThreadWorkerMessageHandler` could throw. Considering how/where that helper function is being called, an error could still prevent `PDFDocumentLoadingTask` from completing (regardless if it's being resolved/rejected).
With the way that the `getWorkerSrc()` helper function is implemented now, there's no longer a particularly strong reason for keeping the global `pdfjsFilePath` variable around.
With this patch the fallback `workerSrc` will thus, assuming is wasn't already set, be set to the "pdfjsFilePath" which simplifies the `getWorkerSrc()` function and reduces the amount of global state.
Finally, the global `workerSrc` variable was renamed to prevent shadowing.
This should, hopefully, cover all the possible ways[1] in which "fake workers" are loaded. Given the different code-paths, adding unit-tests might not be that simple.
Note that in order to make this work, the various `fakeWorkerFilesLoader` functions were converted to return `Promises`.
---
[1] Unfortunately there's lots of them, for various build targets and configurations.
This moves/exposes the `URL` polyfill similarily to the existing `ReadableStream` polyfill, rather than exposing it globally, to avoid interfering with any "outside" code.
Both the `URL` and `ReadableStream` polyfills are now exposed on the `pdfjsLib` object, such that they are accessible to the viewer components.
Furthermore, the `no-restricted-globals` ESLint rule is also enabled to prevent accidental usage of the native `URL`/`ReadableStream` implementations directly in the `src/` and `web/` folders; see also https://eslint.org/docs/rules/no-restricted-globals
Addresses the remaining TODO in https://github.com/mozilla/pdf.js/projects/6
Currently if `RenderTask.cancel` is called *immediately* after rendering was started, then by the time that `InternalRenderTask.initializeGraphics` is called rendering will already have been cancelled.
However, we're still inserting the canvas into the `canvasInRendering` map, thus breaking any future attempts at re-rendering using the same canvas. Considering that `InternalRenderTask.cancel` always removes the canvas from the map, I cannot imagine that we'd ever want to re-add it *after* rendering was cancelled (it was likely just a simple oversight in PR 8519).
Fixes 9456.
This wasn't included in PR 9245, since all the API options were still global at that time.
Writing the unit-tests also uncovered an issue with `getOperatorList` not starting the "Page Request" timer.
Obviously it's still not possible to render non-embedded fonts as paths, but in this way the rest of the page will at least be allowed to continue rendering.
*Please note:* Including the 14 standard fonts in PDF.js probably wouldn't be *that* difficult to implement. (I'm not a lawyer, but the fonts from PDFium could probably be used given their BSD license.)
However, the main blocker ought to be the total size of the necessary font data, since I cannot imagine people being OK with shipping ~5 MB of (additional) font data with Firefox. (Based on the reactions when the CMap files were added, and those are only ~1 MB in size.)
The built-in image decoders are already using `Uint8ClampedArray` when returning data, and this patch simply extends that to the rest of the image/colorspace code.
As far as I can tell, the only reason for using manual clamping/rounding in the first place was because TypedArrays used to be polyfilled (using regular arrays). And trying to polyfill the native clamping/rounding would probably have been had too much overhead, but given that TypedArray support is required in PDF.js version `2.0` that's no longer a concern.
*Please note:* Because of different rounding behaviour, basically `Math.round` in `Uint8ClampedArray` respectively `Math.floor` in the old code, there will be very slight movement in quite a few existing test-cases. However, the changes should be imperceivable to the naked eye, given that the absolute difference is *at most* `1` for each RGB component when comparing `master` and this patch (see also the updated expectation values in the unit-tests).
Not only is the `Util.loadScript` helper function unused on the Worker side, even trying to use it there would throw an Error (since `document` isn't defined/available in Workers).
Hence this helper function is moved, and its code modernized slightly by having it return a Promise rather than needing a callback function.
Finally, to reduced code duplication, the "new" loadScript function is exported and used in the viewer.
This special handling was added in PR 8567, but was made redundant in PR 8721 which stopped sending everything but the kitchen sink to the Worker side.
Since `PDFPageProxy` already provide getters for all the data returned by `GetPage` (in the Worker), there isn't any compelling reason for accessing the `pageInfo` directly on `PDFPageProxy`.
The patch also changes the `GetPage` handler, in `src/core/worker.js`, to use modern JavaScript features.
Since `PDFDocumentProxy` already provide getters for all the data returned by `GetDoc` (in the Worker), there isn't any compelling reason for accessing the `pdfInfo` directly on `PDFDocumentProxy`.
After PR 8617 the `PDFManagerReady` message handler function, in `src/display/api.js`, is now a no-op. Hence it seems completely unnecessary to keep sending this message from `src/core/worker.js`.
With native typed array support now being mandatory in PDF.js, since version 2.0, this probably isn't a huge problem even though the current code seems wrong (it was changed in PR 6571).
Note how in the `!(data instanceof Uint8Array)` case we're currently attempting to send `handler.send('test', 'main', false);` to the main-thread, which doesn't really make any sense since the signature of the method reads `send(actionName, data, transfers) {`.
Hence the data that's *actually* being sent here is `'main'`, with `false` as the transferList, which just seems weird. On the main-thread, this means that we're in this case checking `data && data.supportTypedArray`, where `data` contains the string `'main'` rather than being falsy. Since a string doesn't have a `supportTypedArray` property, that check still fails as expected but it doesn't seem great nonetheless.
Since all the built-in PDF.js image decoders now return their data as `Uint8ClampedArray`, for consistency `JpegDecode` on the main-thread should be doing the same thing; follow-up to PR 8778.
The signature of the `PDFWorker.fromPort` method, in addition to the `PDFWorker` constructor, was changed in PR 9480.
Hence it's probably a good idea to add a bit more validation to `PDFWorker.fromPort`, to ensure that it won't fail silently for an API consumer that updates to version 2.0 of the PDF.js library.
With version 2.0, native support for typed arrays is now a requirement for using the PDF.js library; see PR 9094 where the old polyfills were removed.
Hence the `isTypedArraysPresent` check, when setting up fake workers, no longer serves any purpose here and can thus be removed.
There's no good reason, as far as I can tell, to duplicate the functionality of the `LoopbackPort` in the unit-tests. The only difference between the implementations is that `LoopbackPort` mimics the (native) structured cloning, however that shouldn't matter here since the tests are only sending "simple" data (strings respectively arrays with numbers).
Furthermore the patch also changes `LoopbackPort` to default to using "structured cloning" and deferred invocation of the listeners, since native typed array support is now a requirement for using the PDF.js library.
The `MessageHandler` itself, and its assorted helper functions, are currently the single largest[1] piece of code in the `src/shared/util.js` file. By moving this code into its own file, `src/shared/util.js` thus becomes smaller and more manageable.
Please note that while the current code works, both in the viewer and the unit-tests, it can leave the `WorkerTransport._passwordCapability` Promise in a pending state.
In the `PasswordRequest` handler, in src/display/api.js, we're returning the Promise from a `capability` object (rather than just a "plain" Promise). While an error thrown anywhere within this handler was fortunately enough to propagate it to the Worker side, it won't cause the Promise (in `WorkerTransport._passwordCapability`) to actually be rejected.
Finally note that while we're now catching errors in the `PasswordRequest` handler, those errors are still propagated to the Worker side via the (now) rejected Promise and the existing `return this._passwordCapability.promise;` line.
This prevents warnings about uncaught Promises, with messages such as "Error: Worker was destroyed during onPassword callback", when running the unit-tests both in browsers *and* in Node.js/Travis.