translate statcmp.py to javascript

This commit is contained in:
fkaelberer 2014-05-29 16:46:23 +02:00
parent 6f39d7849f
commit d7aba7b98b

197
test/stats/statcmp.js Normal file
View File

@ -0,0 +1,197 @@
/*jslint node: true */
'use strict';
var fs = require('fs');
try {
var ttest = require('ttest');
} catch (e) {
console.log('\nttest is not installed -- to intall, run "npm install ttest"');
console.log('Continuing without significance test...\n');
}
var VALID_GROUP_BYS = ['browser', 'pdf', 'page', 'round', 'stat'];
function parseOptions() {
var yargs = require('yargs')
.usage('Compare the results of two stats files.\n' +
'Usage:\n $0 <BASELINE> <CURRENT> [options]')
.demand(2)
.string(['groupBy'])
.describe('groupBy', 'How statistics should grouped. Valid options: ' +
VALID_GROUP_BYS.join(' '))
.default('groupBy', 'browser,stat');
var result = yargs.argv;
result.baseline = result._[0];
result.current = result._[1];
if (result.groupBy) {
result.groupBy = result.groupBy.split(/[;, ]+/);
}
return result;
}
function group(stats, groupBy) {
var vals = [];
for (var i = 0; i < stats.length; i++) {
var stat = stats[i];
var keyArr = [];
for (var j = 0; j < groupBy.length; j++) {
keyArr.push(stat[groupBy[j]]);
}
var key = keyArr.join(',');
if (vals[key] === undefined) {
vals[key] = [];
}
vals[key].push(stat['time']);
}
return vals;
}
/*
* Flatten the stats so that there's one row per stats entry.
* Also, if results are not grouped by 'stat', keep only 'Overall' results.
*/
function flatten(stats) {
var rows = [];
stats.forEach(function(stat) {
stat['stats'].forEach(function(s) {
rows.push({
browser: stat['browser'],
page: stat['page'],
pdf: stat['pdf'],
round: stat['round'],
stat: s['name'],
time: s['end'] - s['start']
});
});
});
// Use only overall results if not grouped by 'stat'
if (options.groupBy.indexOf('stat') < 0) {
rows = rows.filter(function(s) { return s.stat === 'Overall'; });
}
return rows;
}
function pad(s, length, dir /* default: 'right' */) {
s = '' + s;
var spaces = new Array(Math.max(0, length - s.length + 1)).join(' ');
return dir === 'left' ? spaces + s : s + spaces;
}
function mean(array) {
function add(a, b) {
return a + b;
}
return array.reduce(add, 0) / array.length;
}
/* Comparator for row key sorting. */
function compareRow(a, b) {
a = a.split(',');
b = b.split(',');
for (var i = 0; i < Math.min(a.length, b.length); i++) {
var intA = parseInt(a[i], 10);
var intB = parseInt(b[i], 10);
var ai = isNaN(intA) ? a[i] : intA;
var bi = isNaN(intB) ? b[i] : intB;
if (ai < bi) {
return -1;
}
if (ai > bi) {
return 1;
}
}
return 0;
}
/*
* Dump various stats in a table to compare the baseline and current results.
* T-test Refresher:
* If I understand t-test correctly, p is the probability that we'll observe
* another test that is as extreme as the current result assuming the null
* hypothesis is true. P is NOT the probability of the null hypothesis. The null
* hypothesis in this case is that the baseline and current results will be the
* same. It is generally accepted that you can reject the null hypothesis if the
* p-value is less than 0.05. So if p < 0.05 we can reject the results are the
* same which doesn't necessarily mean the results are faster/slower but it can
* be implied.
*/
function stat(baseline, current) {
var baselineGroup = group(baseline, options.groupBy);
var currentGroup = group(current, options.groupBy);
var keys = Object.keys(baselineGroup);
keys.sort(compareRow);
var labels = options.groupBy.slice(0);
labels.push('Count', 'Baseline(ms)', 'Current(ms)', '+/-', '% ');
if (ttest) {
labels.push('Result(P<.05)');
}
var i, row, rows = [];
// collect rows and measure column widths
var width = labels.map(function(s) { return s.length; });
rows.push(labels);
for (var k = 0; k < keys.length; k++) {
var key = keys[k];
var baselineMean = mean(baselineGroup[key]);
var currentMean = mean(currentGroup[key]);
row = key.split(',');
row.push('' + baselineGroup[key].length,
'' + Math.round(baselineMean),
'' + Math.round(currentMean),
'' + Math.round(currentMean - baselineMean),
(100 * (currentMean - baselineMean) / baselineMean).toFixed(2));
if (ttest) {
var p = (baselineGroup[key].length < 2) ? 1 :
ttest(baselineGroup[key], currentGroup[key]).pValue();
if (p < 0.05) {
row.push(currentMean < baselineMean ? 'faster' : 'slower');
} else {
row.push('');
}
}
for (i = 0; i < row.length; i++) {
width[i] = Math.max(width[i], row[i].length);
}
rows.push(row);
}
// add horizontal line
var hline = width.map(function(w) { return new Array(w+1).join('-'); });
rows.splice(1, 0, hline);
// print output
console.log('-- Grouped By ' + options.groupBy.join(', ') + ' --');
var groupCount = options.groupBy.length;
for (var r = 0; r < rows.length; r++) {
row = rows[r];
for (i = 0; i < row.length; i++) {
row[i] = pad(row[i], width[i], (i < groupCount) ? 'right' : 'left');
}
console.log(row.join(' | '));
}
}
function main() {
var baseline, current;
try {
var baselineFile = fs.readFileSync(options.baseline).toString();
baseline = flatten(JSON.parse(baselineFile));
} catch(e) {
console.log('Error reading file "' + options.baseline + '": ' + e);
process.exit(0);
}
try {
var currentFile = fs.readFileSync(options.current).toString();
current = flatten(JSON.parse(currentFile));
} catch(e) {
console.log('Error reading file "' + options.current + '": ' + e);
process.exit(0);
}
stat(baseline, current);
}
var options = parseOptions();
main();