diff --git a/src/core/jpx.js b/src/core/jpx.js index e62ff0552..5a6544b28 100644 --- a/src/core/jpx.js +++ b/src/core/jpx.js @@ -13,7 +13,7 @@ * limitations under the License. */ -import { BaseException, info, warn } from "../shared/util.js"; +import { BaseException, info, unreachable, warn } from "../shared/util.js"; import { log2, readUint16, readUint32 } from "./core_utils.js"; import { ArithmeticDecoder } from "./arithmetic_decoder.js"; @@ -23,1739 +23,1738 @@ class JpxError extends BaseException { } } -const JpxImage = (function JpxImageClosure() { - // Table E.1 - const SubbandsGainLog2 = { - LL: 0, - LH: 1, - HL: 1, - HH: 2, - }; +// Table E.1 +const SubbandsGainLog2 = { + LL: 0, + LH: 1, + HL: 1, + HH: 2, +}; - // eslint-disable-next-line no-shadow - function JpxImage() { +class JpxImage { + constructor() { this.failOnCorruptedImage = false; } - JpxImage.prototype = { - parse: function JpxImage_parse(data) { - const head = readUint16(data, 0); - // No box header, immediate start of codestream (SOC) - if (head === 0xff4f) { - this.parseCodestream(data, 0, data.length); + + parse(data) { + const head = readUint16(data, 0); + // No box header, immediate start of codestream (SOC) + if (head === 0xff4f) { + this.parseCodestream(data, 0, data.length); + return; + } + + const length = data.length; + let position = 0; + while (position < length) { + let headerSize = 8; + let lbox = readUint32(data, position); + const tbox = readUint32(data, position + 4); + position += headerSize; + if (lbox === 1) { + // XLBox: read UInt64 according to spec. + // JavaScript's int precision of 53 bit should be sufficient here. + lbox = + readUint32(data, position) * 4294967296 + + readUint32(data, position + 4); + position += 8; + headerSize += 8; + } + if (lbox === 0) { + lbox = length - position + headerSize; + } + if (lbox < headerSize) { + throw new JpxError("Invalid box field size"); + } + const dataLength = lbox - headerSize; + let jumpDataLength = true; + switch (tbox) { + case 0x6a703268: // 'jp2h' + jumpDataLength = false; // parsing child boxes + break; + case 0x636f6c72: // 'colr' + // Colorspaces are not used, the CS from the PDF is used. + const method = data[position]; + if (method === 1) { + // enumerated colorspace + const colorspace = readUint32(data, position + 3); + switch (colorspace) { + case 16: // this indicates a sRGB colorspace + case 17: // this indicates a grayscale colorspace + case 18: // this indicates a YUV colorspace + break; + default: + warn("Unknown colorspace " + colorspace); + break; + } + } else if (method === 2) { + info("ICC profile not supported"); + } + break; + case 0x6a703263: // 'jp2c' + this.parseCodestream(data, position, position + dataLength); + break; + case 0x6a502020: // 'jP\024\024' + if (readUint32(data, position) !== 0x0d0a870a) { + warn("Invalid JP2 signature"); + } + break; + // The following header types are valid but currently not used: + case 0x6a501a1a: // 'jP\032\032' + case 0x66747970: // 'ftyp' + case 0x72726571: // 'rreq' + case 0x72657320: // 'res ' + case 0x69686472: // 'ihdr' + break; + default: + const headerType = String.fromCharCode( + (tbox >> 24) & 0xff, + (tbox >> 16) & 0xff, + (tbox >> 8) & 0xff, + tbox & 0xff + ); + warn(`Unsupported header type ${tbox} (${headerType}).`); + break; + } + if (jumpDataLength) { + position += dataLength; + } + } + } + + parseImageProperties(stream) { + let newByte = stream.getByte(); + while (newByte >= 0) { + const oldByte = newByte; + newByte = stream.getByte(); + const code = (oldByte << 8) | newByte; + // Image and tile size (SIZ) + if (code === 0xff51) { + stream.skip(4); + const Xsiz = stream.getInt32() >>> 0; // Byte 4 + const Ysiz = stream.getInt32() >>> 0; // Byte 8 + const XOsiz = stream.getInt32() >>> 0; // Byte 12 + const YOsiz = stream.getInt32() >>> 0; // Byte 16 + stream.skip(16); + const Csiz = stream.getUint16(); // Byte 36 + this.width = Xsiz - XOsiz; + this.height = Ysiz - YOsiz; + this.componentsCount = Csiz; + // Results are always returned as `Uint8ClampedArray`s. + this.bitsPerComponent = 8; return; } + } + throw new JpxError("No size marker found in JPX stream"); + } - const length = data.length; - let position = 0; - while (position < length) { - let headerSize = 8; - let lbox = readUint32(data, position); - const tbox = readUint32(data, position + 4); - position += headerSize; - if (lbox === 1) { - // XLBox: read UInt64 according to spec. - // JavaScript's int precision of 53 bit should be sufficient here. - lbox = - readUint32(data, position) * 4294967296 + - readUint32(data, position + 4); - position += 8; - headerSize += 8; - } - if (lbox === 0) { - lbox = length - position + headerSize; - } - if (lbox < headerSize) { - throw new JpxError("Invalid box field size"); - } - const dataLength = lbox - headerSize; - let jumpDataLength = true; - switch (tbox) { - case 0x6a703268: // 'jp2h' - jumpDataLength = false; // parsing child boxes - break; - case 0x636f6c72: // 'colr' - // Colorspaces are not used, the CS from the PDF is used. - const method = data[position]; - if (method === 1) { - // enumerated colorspace - const colorspace = readUint32(data, position + 3); - switch (colorspace) { - case 16: // this indicates a sRGB colorspace - case 17: // this indicates a grayscale colorspace - case 18: // this indicates a YUV colorspace - break; - default: - warn("Unknown colorspace " + colorspace); - break; - } - } else if (method === 2) { - info("ICC profile not supported"); - } - break; - case 0x6a703263: // 'jp2c' - this.parseCodestream(data, position, position + dataLength); - break; - case 0x6a502020: // 'jP\024\024' - if (readUint32(data, position) !== 0x0d0a870a) { - warn("Invalid JP2 signature"); - } - break; - // The following header types are valid but currently not used: - case 0x6a501a1a: // 'jP\032\032' - case 0x66747970: // 'ftyp' - case 0x72726571: // 'rreq' - case 0x72657320: // 'res ' - case 0x69686472: // 'ihdr' - break; - default: - const headerType = String.fromCharCode( - (tbox >> 24) & 0xff, - (tbox >> 16) & 0xff, - (tbox >> 8) & 0xff, - tbox & 0xff - ); - warn("Unsupported header type " + tbox + " (" + headerType + ")"); - break; - } - if (jumpDataLength) { - position += dataLength; - } - } - }, - parseImageProperties: function JpxImage_parseImageProperties(stream) { - let newByte = stream.getByte(); - while (newByte >= 0) { - const oldByte = newByte; - newByte = stream.getByte(); - const code = (oldByte << 8) | newByte; - // Image and tile size (SIZ) - if (code === 0xff51) { - stream.skip(4); - const Xsiz = stream.getInt32() >>> 0; // Byte 4 - const Ysiz = stream.getInt32() >>> 0; // Byte 8 - const XOsiz = stream.getInt32() >>> 0; // Byte 12 - const YOsiz = stream.getInt32() >>> 0; // Byte 16 - stream.skip(16); - const Csiz = stream.getUint16(); // Byte 36 - this.width = Xsiz - XOsiz; - this.height = Ysiz - YOsiz; - this.componentsCount = Csiz; - // Results are always returned as `Uint8ClampedArray`s. - this.bitsPerComponent = 8; - return; - } - } - throw new JpxError("No size marker found in JPX stream"); - }, - parseCodestream: function JpxImage_parseCodestream(data, start, end) { - const context = {}; - let doNotRecover = false; - try { - let position = start; - while (position + 1 < end) { - const code = readUint16(data, position); - position += 2; + parseCodestream(data, start, end) { + const context = {}; + let doNotRecover = false; + try { + let position = start; + while (position + 1 < end) { + const code = readUint16(data, position); + position += 2; - let length = 0, - j, - sqcd, - spqcds, - spqcdSize, - scalarExpounded, - tile; - switch (code) { - case 0xff4f: // Start of codestream (SOC) - context.mainHeader = true; - break; - case 0xffd9: // End of codestream (EOC) - break; - case 0xff51: // Image and tile size (SIZ) - length = readUint16(data, position); - const siz = {}; - siz.Xsiz = readUint32(data, position + 4); - siz.Ysiz = readUint32(data, position + 8); - siz.XOsiz = readUint32(data, position + 12); - siz.YOsiz = readUint32(data, position + 16); - siz.XTsiz = readUint32(data, position + 20); - siz.YTsiz = readUint32(data, position + 24); - siz.XTOsiz = readUint32(data, position + 28); - siz.YTOsiz = readUint32(data, position + 32); - const componentsCount = readUint16(data, position + 36); - siz.Csiz = componentsCount; - const components = []; - j = position + 38; - for (let i = 0; i < componentsCount; i++) { - const component = { - precision: (data[j] & 0x7f) + 1, - isSigned: !!(data[j] & 0x80), - XRsiz: data[j + 1], - YRsiz: data[j + 2], - }; - j += 3; - calculateComponentDimensions(component, siz); - components.push(component); - } - context.SIZ = siz; - context.components = components; - calculateTileGrids(context, components); - context.QCC = []; - context.COC = []; - break; - case 0xff5c: // Quantization default (QCD) - length = readUint16(data, position); - const qcd = {}; - j = position + 2; - sqcd = data[j++]; - switch (sqcd & 0x1f) { - case 0: - spqcdSize = 8; - scalarExpounded = true; - break; - case 1: - spqcdSize = 16; - scalarExpounded = false; - break; - case 2: - spqcdSize = 16; - scalarExpounded = true; - break; - default: - throw new Error("Invalid SQcd value " + sqcd); - } - qcd.noQuantization = spqcdSize === 8; - qcd.scalarExpounded = scalarExpounded; - qcd.guardBits = sqcd >> 5; - spqcds = []; - while (j < length + position) { - const spqcd = {}; - if (spqcdSize === 8) { - spqcd.epsilon = data[j++] >> 3; - spqcd.mu = 0; - } else { - spqcd.epsilon = data[j] >> 3; - spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1]; - j += 2; - } - spqcds.push(spqcd); - } - qcd.SPqcds = spqcds; - if (context.mainHeader) { - context.QCD = qcd; + let length = 0, + j, + sqcd, + spqcds, + spqcdSize, + scalarExpounded, + tile; + switch (code) { + case 0xff4f: // Start of codestream (SOC) + context.mainHeader = true; + break; + case 0xffd9: // End of codestream (EOC) + break; + case 0xff51: // Image and tile size (SIZ) + length = readUint16(data, position); + const siz = {}; + siz.Xsiz = readUint32(data, position + 4); + siz.Ysiz = readUint32(data, position + 8); + siz.XOsiz = readUint32(data, position + 12); + siz.YOsiz = readUint32(data, position + 16); + siz.XTsiz = readUint32(data, position + 20); + siz.YTsiz = readUint32(data, position + 24); + siz.XTOsiz = readUint32(data, position + 28); + siz.YTOsiz = readUint32(data, position + 32); + const componentsCount = readUint16(data, position + 36); + siz.Csiz = componentsCount; + const components = []; + j = position + 38; + for (let i = 0; i < componentsCount; i++) { + const component = { + precision: (data[j] & 0x7f) + 1, + isSigned: !!(data[j] & 0x80), + XRsiz: data[j + 1], + YRsiz: data[j + 2], + }; + j += 3; + calculateComponentDimensions(component, siz); + components.push(component); + } + context.SIZ = siz; + context.components = components; + calculateTileGrids(context, components); + context.QCC = []; + context.COC = []; + break; + case 0xff5c: // Quantization default (QCD) + length = readUint16(data, position); + const qcd = {}; + j = position + 2; + sqcd = data[j++]; + switch (sqcd & 0x1f) { + case 0: + spqcdSize = 8; + scalarExpounded = true; + break; + case 1: + spqcdSize = 16; + scalarExpounded = false; + break; + case 2: + spqcdSize = 16; + scalarExpounded = true; + break; + default: + throw new Error("Invalid SQcd value " + sqcd); + } + qcd.noQuantization = spqcdSize === 8; + qcd.scalarExpounded = scalarExpounded; + qcd.guardBits = sqcd >> 5; + spqcds = []; + while (j < length + position) { + const spqcd = {}; + if (spqcdSize === 8) { + spqcd.epsilon = data[j++] >> 3; + spqcd.mu = 0; } else { - context.currentTile.QCD = qcd; - context.currentTile.QCC = []; - } - break; - case 0xff5d: // Quantization component (QCC) - length = readUint16(data, position); - const qcc = {}; - j = position + 2; - let cqcc; - if (context.SIZ.Csiz < 257) { - cqcc = data[j++]; - } else { - cqcc = readUint16(data, j); + spqcd.epsilon = data[j] >> 3; + spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1]; j += 2; } - sqcd = data[j++]; - switch (sqcd & 0x1f) { - case 0: - spqcdSize = 8; - scalarExpounded = true; - break; - case 1: - spqcdSize = 16; - scalarExpounded = false; - break; - case 2: - spqcdSize = 16; - scalarExpounded = true; - break; - default: - throw new Error("Invalid SQcd value " + sqcd); - } - qcc.noQuantization = spqcdSize === 8; - qcc.scalarExpounded = scalarExpounded; - qcc.guardBits = sqcd >> 5; - spqcds = []; - while (j < length + position) { - const spqcd = {}; - if (spqcdSize === 8) { - spqcd.epsilon = data[j++] >> 3; - spqcd.mu = 0; - } else { - spqcd.epsilon = data[j] >> 3; - spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1]; - j += 2; - } - spqcds.push(spqcd); - } - qcc.SPqcds = spqcds; - if (context.mainHeader) { - context.QCC[cqcc] = qcc; - } else { - context.currentTile.QCC[cqcc] = qcc; - } - break; - case 0xff52: // Coding style default (COD) - length = readUint16(data, position); - const cod = {}; - j = position + 2; - const scod = data[j++]; - cod.entropyCoderWithCustomPrecincts = !!(scod & 1); - cod.sopMarkerUsed = !!(scod & 2); - cod.ephMarkerUsed = !!(scod & 4); - cod.progressionOrder = data[j++]; - cod.layersCount = readUint16(data, j); + spqcds.push(spqcd); + } + qcd.SPqcds = spqcds; + if (context.mainHeader) { + context.QCD = qcd; + } else { + context.currentTile.QCD = qcd; + context.currentTile.QCC = []; + } + break; + case 0xff5d: // Quantization component (QCC) + length = readUint16(data, position); + const qcc = {}; + j = position + 2; + let cqcc; + if (context.SIZ.Csiz < 257) { + cqcc = data[j++]; + } else { + cqcc = readUint16(data, j); j += 2; - cod.multipleComponentTransform = data[j++]; - - cod.decompositionLevelsCount = data[j++]; - cod.xcb = (data[j++] & 0xf) + 2; - cod.ycb = (data[j++] & 0xf) + 2; - const blockStyle = data[j++]; - cod.selectiveArithmeticCodingBypass = !!(blockStyle & 1); - cod.resetContextProbabilities = !!(blockStyle & 2); - cod.terminationOnEachCodingPass = !!(blockStyle & 4); - cod.verticallyStripe = !!(blockStyle & 8); - cod.predictableTermination = !!(blockStyle & 16); - cod.segmentationSymbolUsed = !!(blockStyle & 32); - cod.reversibleTransformation = data[j++]; - if (cod.entropyCoderWithCustomPrecincts) { - const precinctsSizes = []; - while (j < length + position) { - const precinctsSize = data[j++]; - precinctsSizes.push({ - PPx: precinctsSize & 0xf, - PPy: precinctsSize >> 4, - }); - } - cod.precinctsSizes = precinctsSizes; - } - const unsupported = []; - if (cod.selectiveArithmeticCodingBypass) { - unsupported.push("selectiveArithmeticCodingBypass"); - } - if (cod.resetContextProbabilities) { - unsupported.push("resetContextProbabilities"); - } - if (cod.terminationOnEachCodingPass) { - unsupported.push("terminationOnEachCodingPass"); - } - if (cod.verticallyStripe) { - unsupported.push("verticallyStripe"); - } - if (cod.predictableTermination) { - unsupported.push("predictableTermination"); - } - if (unsupported.length > 0) { - doNotRecover = true; - warn( - `JPX: Unsupported COD options (${unsupported.join(", ")}).` - ); - } - if (context.mainHeader) { - context.COD = cod; + } + sqcd = data[j++]; + switch (sqcd & 0x1f) { + case 0: + spqcdSize = 8; + scalarExpounded = true; + break; + case 1: + spqcdSize = 16; + scalarExpounded = false; + break; + case 2: + spqcdSize = 16; + scalarExpounded = true; + break; + default: + throw new Error("Invalid SQcd value " + sqcd); + } + qcc.noQuantization = spqcdSize === 8; + qcc.scalarExpounded = scalarExpounded; + qcc.guardBits = sqcd >> 5; + spqcds = []; + while (j < length + position) { + const spqcd = {}; + if (spqcdSize === 8) { + spqcd.epsilon = data[j++] >> 3; + spqcd.mu = 0; } else { - context.currentTile.COD = cod; - context.currentTile.COC = []; + spqcd.epsilon = data[j] >> 3; + spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1]; + j += 2; } - break; - case 0xff90: // Start of tile-part (SOT) - length = readUint16(data, position); - tile = {}; - tile.index = readUint16(data, position + 2); - tile.length = readUint32(data, position + 4); - tile.dataEnd = tile.length + position - 2; - tile.partIndex = data[position + 8]; - tile.partsCount = data[position + 9]; + spqcds.push(spqcd); + } + qcc.SPqcds = spqcds; + if (context.mainHeader) { + context.QCC[cqcc] = qcc; + } else { + context.currentTile.QCC[cqcc] = qcc; + } + break; + case 0xff52: // Coding style default (COD) + length = readUint16(data, position); + const cod = {}; + j = position + 2; + const scod = data[j++]; + cod.entropyCoderWithCustomPrecincts = !!(scod & 1); + cod.sopMarkerUsed = !!(scod & 2); + cod.ephMarkerUsed = !!(scod & 4); + cod.progressionOrder = data[j++]; + cod.layersCount = readUint16(data, j); + j += 2; + cod.multipleComponentTransform = data[j++]; - context.mainHeader = false; - if (tile.partIndex === 0) { - // reset component specific settings - tile.COD = context.COD; - tile.COC = context.COC.slice(0); // clone of the global COC - tile.QCD = context.QCD; - tile.QCC = context.QCC.slice(0); // clone of the global COC - } - context.currentTile = tile; - break; - case 0xff93: // Start of data (SOD) - tile = context.currentTile; - if (tile.partIndex === 0) { - initializeTile(context, tile.index); - buildPackets(context); + cod.decompositionLevelsCount = data[j++]; + cod.xcb = (data[j++] & 0xf) + 2; + cod.ycb = (data[j++] & 0xf) + 2; + const blockStyle = data[j++]; + cod.selectiveArithmeticCodingBypass = !!(blockStyle & 1); + cod.resetContextProbabilities = !!(blockStyle & 2); + cod.terminationOnEachCodingPass = !!(blockStyle & 4); + cod.verticallyStripe = !!(blockStyle & 8); + cod.predictableTermination = !!(blockStyle & 16); + cod.segmentationSymbolUsed = !!(blockStyle & 32); + cod.reversibleTransformation = data[j++]; + if (cod.entropyCoderWithCustomPrecincts) { + const precinctsSizes = []; + while (j < length + position) { + const precinctsSize = data[j++]; + precinctsSizes.push({ + PPx: precinctsSize & 0xf, + PPy: precinctsSize >> 4, + }); } + cod.precinctsSizes = precinctsSizes; + } + const unsupported = []; + if (cod.selectiveArithmeticCodingBypass) { + unsupported.push("selectiveArithmeticCodingBypass"); + } + if (cod.resetContextProbabilities) { + unsupported.push("resetContextProbabilities"); + } + if (cod.terminationOnEachCodingPass) { + unsupported.push("terminationOnEachCodingPass"); + } + if (cod.verticallyStripe) { + unsupported.push("verticallyStripe"); + } + if (cod.predictableTermination) { + unsupported.push("predictableTermination"); + } + if (unsupported.length > 0) { + doNotRecover = true; + warn(`JPX: Unsupported COD options (${unsupported.join(", ")}).`); + } + if (context.mainHeader) { + context.COD = cod; + } else { + context.currentTile.COD = cod; + context.currentTile.COC = []; + } + break; + case 0xff90: // Start of tile-part (SOT) + length = readUint16(data, position); + tile = {}; + tile.index = readUint16(data, position + 2); + tile.length = readUint32(data, position + 4); + tile.dataEnd = tile.length + position - 2; + tile.partIndex = data[position + 8]; + tile.partsCount = data[position + 9]; - // moving to the end of the data - length = tile.dataEnd - position; - parseTilePackets(context, data, position, length); - break; - case 0xff53: // Coding style component (COC) - warn("JPX: Codestream code 0xFF53 (COC) is not implemented."); - /* falls through */ - case 0xff55: // Tile-part lengths, main header (TLM) - case 0xff57: // Packet length, main header (PLM) - case 0xff58: // Packet length, tile-part header (PLT) - case 0xff64: // Comment (COM) - length = readUint16(data, position); - // skipping content - break; - default: - throw new Error("Unknown codestream code: " + code.toString(16)); - } - position += length; - } - } catch (e) { - if (doNotRecover || this.failOnCorruptedImage) { - throw new JpxError(e.message); - } else { - warn(`JPX: Trying to recover from: "${e.message}".`); + context.mainHeader = false; + if (tile.partIndex === 0) { + // reset component specific settings + tile.COD = context.COD; + tile.COC = context.COC.slice(0); // clone of the global COC + tile.QCD = context.QCD; + tile.QCC = context.QCC.slice(0); // clone of the global COC + } + context.currentTile = tile; + break; + case 0xff93: // Start of data (SOD) + tile = context.currentTile; + if (tile.partIndex === 0) { + initializeTile(context, tile.index); + buildPackets(context); + } + + // moving to the end of the data + length = tile.dataEnd - position; + parseTilePackets(context, data, position, length); + break; + case 0xff53: // Coding style component (COC) + warn("JPX: Codestream code 0xFF53 (COC) is not implemented."); + /* falls through */ + case 0xff55: // Tile-part lengths, main header (TLM) + case 0xff57: // Packet length, main header (PLM) + case 0xff58: // Packet length, tile-part header (PLT) + case 0xff64: // Comment (COM) + length = readUint16(data, position); + // skipping content + break; + default: + throw new Error("Unknown codestream code: " + code.toString(16)); } + position += length; } - this.tiles = transformComponents(context); - this.width = context.SIZ.Xsiz - context.SIZ.XOsiz; - this.height = context.SIZ.Ysiz - context.SIZ.YOsiz; - this.componentsCount = context.SIZ.Csiz; - }, + } catch (e) { + if (doNotRecover || this.failOnCorruptedImage) { + throw new JpxError(e.message); + } else { + warn(`JPX: Trying to recover from: "${e.message}".`); + } + } + this.tiles = transformComponents(context); + this.width = context.SIZ.Xsiz - context.SIZ.XOsiz; + this.height = context.SIZ.Ysiz - context.SIZ.YOsiz; + this.componentsCount = context.SIZ.Csiz; + } +} + +function calculateComponentDimensions(component, siz) { + // Section B.2 Component mapping + component.x0 = Math.ceil(siz.XOsiz / component.XRsiz); + component.x1 = Math.ceil(siz.Xsiz / component.XRsiz); + component.y0 = Math.ceil(siz.YOsiz / component.YRsiz); + component.y1 = Math.ceil(siz.Ysiz / component.YRsiz); + component.width = component.x1 - component.x0; + component.height = component.y1 - component.y0; +} +function calculateTileGrids(context, components) { + const siz = context.SIZ; + // Section B.3 Division into tile and tile-components + const tiles = []; + let tile; + const numXtiles = Math.ceil((siz.Xsiz - siz.XTOsiz) / siz.XTsiz); + const numYtiles = Math.ceil((siz.Ysiz - siz.YTOsiz) / siz.YTsiz); + for (let q = 0; q < numYtiles; q++) { + for (let p = 0; p < numXtiles; p++) { + tile = {}; + tile.tx0 = Math.max(siz.XTOsiz + p * siz.XTsiz, siz.XOsiz); + tile.ty0 = Math.max(siz.YTOsiz + q * siz.YTsiz, siz.YOsiz); + tile.tx1 = Math.min(siz.XTOsiz + (p + 1) * siz.XTsiz, siz.Xsiz); + tile.ty1 = Math.min(siz.YTOsiz + (q + 1) * siz.YTsiz, siz.Ysiz); + tile.width = tile.tx1 - tile.tx0; + tile.height = tile.ty1 - tile.ty0; + tile.components = []; + tiles.push(tile); + } + } + context.tiles = tiles; + + const componentsCount = siz.Csiz; + for (let i = 0, ii = componentsCount; i < ii; i++) { + const component = components[i]; + for (let j = 0, jj = tiles.length; j < jj; j++) { + const tileComponent = {}; + tile = tiles[j]; + tileComponent.tcx0 = Math.ceil(tile.tx0 / component.XRsiz); + tileComponent.tcy0 = Math.ceil(tile.ty0 / component.YRsiz); + tileComponent.tcx1 = Math.ceil(tile.tx1 / component.XRsiz); + tileComponent.tcy1 = Math.ceil(tile.ty1 / component.YRsiz); + tileComponent.width = tileComponent.tcx1 - tileComponent.tcx0; + tileComponent.height = tileComponent.tcy1 - tileComponent.tcy0; + tile.components[i] = tileComponent; + } + } +} +function getBlocksDimensions(context, component, r) { + const codOrCoc = component.codingStyleParameters; + const result = {}; + if (!codOrCoc.entropyCoderWithCustomPrecincts) { + result.PPx = 15; + result.PPy = 15; + } else { + result.PPx = codOrCoc.precinctsSizes[r].PPx; + result.PPy = codOrCoc.precinctsSizes[r].PPy; + } + // calculate codeblock size as described in section B.7 + result.xcb_ = + r > 0 + ? Math.min(codOrCoc.xcb, result.PPx - 1) + : Math.min(codOrCoc.xcb, result.PPx); + result.ycb_ = + r > 0 + ? Math.min(codOrCoc.ycb, result.PPy - 1) + : Math.min(codOrCoc.ycb, result.PPy); + return result; +} +function buildPrecincts(context, resolution, dimensions) { + // Section B.6 Division resolution to precincts + const precinctWidth = 1 << dimensions.PPx; + const precinctHeight = 1 << dimensions.PPy; + // Jasper introduces codeblock groups for mapping each subband codeblocks + // to precincts. Precinct partition divides a resolution according to width + // and height parameters. The subband that belongs to the resolution level + // has a different size than the level, unless it is the zero resolution. + + // From Jasper documentation: jpeg2000.pdf, section K: Tier-2 coding: + // The precinct partitioning for a particular subband is derived from a + // partitioning of its parent LL band (i.e., the LL band at the next higher + // resolution level)... The LL band associated with each resolution level is + // divided into precincts... Each of the resulting precinct regions is then + // mapped into its child subbands (if any) at the next lower resolution + // level. This is accomplished by using the coordinate transformation + // (u, v) = (ceil(x/2), ceil(y/2)) where (x, y) and (u, v) are the + // coordinates of a point in the LL band and child subband, respectively. + const isZeroRes = resolution.resLevel === 0; + const precinctWidthInSubband = 1 << (dimensions.PPx + (isZeroRes ? 0 : -1)); + const precinctHeightInSubband = 1 << (dimensions.PPy + (isZeroRes ? 0 : -1)); + const numprecinctswide = + resolution.trx1 > resolution.trx0 + ? Math.ceil(resolution.trx1 / precinctWidth) - + Math.floor(resolution.trx0 / precinctWidth) + : 0; + const numprecinctshigh = + resolution.try1 > resolution.try0 + ? Math.ceil(resolution.try1 / precinctHeight) - + Math.floor(resolution.try0 / precinctHeight) + : 0; + const numprecincts = numprecinctswide * numprecinctshigh; + + resolution.precinctParameters = { + precinctWidth, + precinctHeight, + numprecinctswide, + numprecinctshigh, + numprecincts, + precinctWidthInSubband, + precinctHeightInSubband, }; - function calculateComponentDimensions(component, siz) { - // Section B.2 Component mapping - component.x0 = Math.ceil(siz.XOsiz / component.XRsiz); - component.x1 = Math.ceil(siz.Xsiz / component.XRsiz); - component.y0 = Math.ceil(siz.YOsiz / component.YRsiz); - component.y1 = Math.ceil(siz.Ysiz / component.YRsiz); - component.width = component.x1 - component.x0; - component.height = component.y1 - component.y0; - } - function calculateTileGrids(context, components) { - const siz = context.SIZ; - // Section B.3 Division into tile and tile-components - const tiles = []; - let tile; - const numXtiles = Math.ceil((siz.Xsiz - siz.XTOsiz) / siz.XTsiz); - const numYtiles = Math.ceil((siz.Ysiz - siz.YTOsiz) / siz.YTsiz); - for (let q = 0; q < numYtiles; q++) { - for (let p = 0; p < numXtiles; p++) { - tile = {}; - tile.tx0 = Math.max(siz.XTOsiz + p * siz.XTsiz, siz.XOsiz); - tile.ty0 = Math.max(siz.YTOsiz + q * siz.YTsiz, siz.YOsiz); - tile.tx1 = Math.min(siz.XTOsiz + (p + 1) * siz.XTsiz, siz.Xsiz); - tile.ty1 = Math.min(siz.YTOsiz + (q + 1) * siz.YTsiz, siz.Ysiz); - tile.width = tile.tx1 - tile.tx0; - tile.height = tile.ty1 - tile.ty0; - tile.components = []; - tiles.push(tile); +} +function buildCodeblocks(context, subband, dimensions) { + // Section B.7 Division sub-band into code-blocks + const xcb_ = dimensions.xcb_; + const ycb_ = dimensions.ycb_; + const codeblockWidth = 1 << xcb_; + const codeblockHeight = 1 << ycb_; + const cbx0 = subband.tbx0 >> xcb_; + const cby0 = subband.tby0 >> ycb_; + const cbx1 = (subband.tbx1 + codeblockWidth - 1) >> xcb_; + const cby1 = (subband.tby1 + codeblockHeight - 1) >> ycb_; + const precinctParameters = subband.resolution.precinctParameters; + const codeblocks = []; + const precincts = []; + let i, j, codeblock, precinctNumber; + for (j = cby0; j < cby1; j++) { + for (i = cbx0; i < cbx1; i++) { + codeblock = { + cbx: i, + cby: j, + tbx0: codeblockWidth * i, + tby0: codeblockHeight * j, + tbx1: codeblockWidth * (i + 1), + tby1: codeblockHeight * (j + 1), + }; + + codeblock.tbx0_ = Math.max(subband.tbx0, codeblock.tbx0); + codeblock.tby0_ = Math.max(subband.tby0, codeblock.tby0); + codeblock.tbx1_ = Math.min(subband.tbx1, codeblock.tbx1); + codeblock.tby1_ = Math.min(subband.tby1, codeblock.tby1); + + // Calculate precinct number for this codeblock, codeblock position + // should be relative to its subband, use actual dimension and position + // See comment about codeblock group width and height + const pi = Math.floor( + (codeblock.tbx0_ - subband.tbx0) / + precinctParameters.precinctWidthInSubband + ); + const pj = Math.floor( + (codeblock.tby0_ - subband.tby0) / + precinctParameters.precinctHeightInSubband + ); + precinctNumber = pi + pj * precinctParameters.numprecinctswide; + + codeblock.precinctNumber = precinctNumber; + codeblock.subbandType = subband.type; + codeblock.Lblock = 3; + + if ( + codeblock.tbx1_ <= codeblock.tbx0_ || + codeblock.tby1_ <= codeblock.tby0_ + ) { + continue; } - } - context.tiles = tiles; - - const componentsCount = siz.Csiz; - for (let i = 0, ii = componentsCount; i < ii; i++) { - const component = components[i]; - for (let j = 0, jj = tiles.length; j < jj; j++) { - const tileComponent = {}; - tile = tiles[j]; - tileComponent.tcx0 = Math.ceil(tile.tx0 / component.XRsiz); - tileComponent.tcy0 = Math.ceil(tile.ty0 / component.YRsiz); - tileComponent.tcx1 = Math.ceil(tile.tx1 / component.XRsiz); - tileComponent.tcy1 = Math.ceil(tile.ty1 / component.YRsiz); - tileComponent.width = tileComponent.tcx1 - tileComponent.tcx0; - tileComponent.height = tileComponent.tcy1 - tileComponent.tcy0; - tile.components[i] = tileComponent; - } - } - } - function getBlocksDimensions(context, component, r) { - const codOrCoc = component.codingStyleParameters; - const result = {}; - if (!codOrCoc.entropyCoderWithCustomPrecincts) { - result.PPx = 15; - result.PPy = 15; - } else { - result.PPx = codOrCoc.precinctsSizes[r].PPx; - result.PPy = codOrCoc.precinctsSizes[r].PPy; - } - // calculate codeblock size as described in section B.7 - result.xcb_ = - r > 0 - ? Math.min(codOrCoc.xcb, result.PPx - 1) - : Math.min(codOrCoc.xcb, result.PPx); - result.ycb_ = - r > 0 - ? Math.min(codOrCoc.ycb, result.PPy - 1) - : Math.min(codOrCoc.ycb, result.PPy); - return result; - } - function buildPrecincts(context, resolution, dimensions) { - // Section B.6 Division resolution to precincts - const precinctWidth = 1 << dimensions.PPx; - const precinctHeight = 1 << dimensions.PPy; - // Jasper introduces codeblock groups for mapping each subband codeblocks - // to precincts. Precinct partition divides a resolution according to width - // and height parameters. The subband that belongs to the resolution level - // has a different size than the level, unless it is the zero resolution. - - // From Jasper documentation: jpeg2000.pdf, section K: Tier-2 coding: - // The precinct partitioning for a particular subband is derived from a - // partitioning of its parent LL band (i.e., the LL band at the next higher - // resolution level)... The LL band associated with each resolution level is - // divided into precincts... Each of the resulting precinct regions is then - // mapped into its child subbands (if any) at the next lower resolution - // level. This is accomplished by using the coordinate transformation - // (u, v) = (ceil(x/2), ceil(y/2)) where (x, y) and (u, v) are the - // coordinates of a point in the LL band and child subband, respectively. - const isZeroRes = resolution.resLevel === 0; - const precinctWidthInSubband = 1 << (dimensions.PPx + (isZeroRes ? 0 : -1)); - const precinctHeightInSubband = - 1 << (dimensions.PPy + (isZeroRes ? 0 : -1)); - const numprecinctswide = - resolution.trx1 > resolution.trx0 - ? Math.ceil(resolution.trx1 / precinctWidth) - - Math.floor(resolution.trx0 / precinctWidth) - : 0; - const numprecinctshigh = - resolution.try1 > resolution.try0 - ? Math.ceil(resolution.try1 / precinctHeight) - - Math.floor(resolution.try0 / precinctHeight) - : 0; - const numprecincts = numprecinctswide * numprecinctshigh; - - resolution.precinctParameters = { - precinctWidth, - precinctHeight, - numprecinctswide, - numprecinctshigh, - numprecincts, - precinctWidthInSubband, - precinctHeightInSubband, - }; - } - function buildCodeblocks(context, subband, dimensions) { - // Section B.7 Division sub-band into code-blocks - const xcb_ = dimensions.xcb_; - const ycb_ = dimensions.ycb_; - const codeblockWidth = 1 << xcb_; - const codeblockHeight = 1 << ycb_; - const cbx0 = subband.tbx0 >> xcb_; - const cby0 = subband.tby0 >> ycb_; - const cbx1 = (subband.tbx1 + codeblockWidth - 1) >> xcb_; - const cby1 = (subband.tby1 + codeblockHeight - 1) >> ycb_; - const precinctParameters = subband.resolution.precinctParameters; - const codeblocks = []; - const precincts = []; - let i, j, codeblock, precinctNumber; - for (j = cby0; j < cby1; j++) { - for (i = cbx0; i < cbx1; i++) { - codeblock = { - cbx: i, - cby: j, - tbx0: codeblockWidth * i, - tby0: codeblockHeight * j, - tbx1: codeblockWidth * (i + 1), - tby1: codeblockHeight * (j + 1), + codeblocks.push(codeblock); + // building precinct for the sub-band + let precinct = precincts[precinctNumber]; + if (precinct !== undefined) { + if (i < precinct.cbxMin) { + precinct.cbxMin = i; + } else if (i > precinct.cbxMax) { + precinct.cbxMax = i; + } + if (j < precinct.cbyMin) { + precinct.cbxMin = j; + } else if (j > precinct.cbyMax) { + precinct.cbyMax = j; + } + } else { + precincts[precinctNumber] = precinct = { + cbxMin: i, + cbyMin: j, + cbxMax: i, + cbyMax: j, }; - - codeblock.tbx0_ = Math.max(subband.tbx0, codeblock.tbx0); - codeblock.tby0_ = Math.max(subband.tby0, codeblock.tby0); - codeblock.tbx1_ = Math.min(subband.tbx1, codeblock.tbx1); - codeblock.tby1_ = Math.min(subband.tby1, codeblock.tby1); - - // Calculate precinct number for this codeblock, codeblock position - // should be relative to its subband, use actual dimension and position - // See comment about codeblock group width and height - const pi = Math.floor( - (codeblock.tbx0_ - subband.tbx0) / - precinctParameters.precinctWidthInSubband - ); - const pj = Math.floor( - (codeblock.tby0_ - subband.tby0) / - precinctParameters.precinctHeightInSubband - ); - precinctNumber = pi + pj * precinctParameters.numprecinctswide; - - codeblock.precinctNumber = precinctNumber; - codeblock.subbandType = subband.type; - codeblock.Lblock = 3; - - if ( - codeblock.tbx1_ <= codeblock.tbx0_ || - codeblock.tby1_ <= codeblock.tby0_ - ) { - continue; - } - codeblocks.push(codeblock); - // building precinct for the sub-band - let precinct = precincts[precinctNumber]; - if (precinct !== undefined) { - if (i < precinct.cbxMin) { - precinct.cbxMin = i; - } else if (i > precinct.cbxMax) { - precinct.cbxMax = i; - } - if (j < precinct.cbyMin) { - precinct.cbxMin = j; - } else if (j > precinct.cbyMax) { - precinct.cbyMax = j; - } - } else { - precincts[precinctNumber] = precinct = { - cbxMin: i, - cbyMin: j, - cbxMax: i, - cbyMax: j, - }; - } - codeblock.precinct = precinct; } + codeblock.precinct = precinct; } - subband.codeblockParameters = { - codeblockWidth: xcb_, - codeblockHeight: ycb_, - numcodeblockwide: cbx1 - cbx0 + 1, - numcodeblockhigh: cby1 - cby0 + 1, - }; - subband.codeblocks = codeblocks; - subband.precincts = precincts; } - function createPacket(resolution, precinctNumber, layerNumber) { - const precinctCodeblocks = []; - // Section B.10.8 Order of info in packet - const subbands = resolution.subbands; - // sub-bands already ordered in 'LL', 'HL', 'LH', and 'HH' sequence - for (let i = 0, ii = subbands.length; i < ii; i++) { - const subband = subbands[i]; - const codeblocks = subband.codeblocks; - for (let j = 0, jj = codeblocks.length; j < jj; j++) { - const codeblock = codeblocks[j]; - if (codeblock.precinctNumber !== precinctNumber) { - continue; - } - precinctCodeblocks.push(codeblock); + subband.codeblockParameters = { + codeblockWidth: xcb_, + codeblockHeight: ycb_, + numcodeblockwide: cbx1 - cbx0 + 1, + numcodeblockhigh: cby1 - cby0 + 1, + }; + subband.codeblocks = codeblocks; + subband.precincts = precincts; +} +function createPacket(resolution, precinctNumber, layerNumber) { + const precinctCodeblocks = []; + // Section B.10.8 Order of info in packet + const subbands = resolution.subbands; + // sub-bands already ordered in 'LL', 'HL', 'LH', and 'HH' sequence + for (let i = 0, ii = subbands.length; i < ii; i++) { + const subband = subbands[i]; + const codeblocks = subband.codeblocks; + for (let j = 0, jj = codeblocks.length; j < jj; j++) { + const codeblock = codeblocks[j]; + if (codeblock.precinctNumber !== precinctNumber) { + continue; } + precinctCodeblocks.push(codeblock); } - return { - layerNumber, - codeblocks: precinctCodeblocks, - }; } - function LayerResolutionComponentPositionIterator(context) { - const siz = context.SIZ; - const tileIndex = context.currentTile.index; - const tile = context.tiles[tileIndex]; - const layersCount = tile.codingStyleDefaultParameters.layersCount; - const componentsCount = siz.Csiz; - let maxDecompositionLevelsCount = 0; - for (let q = 0; q < componentsCount; q++) { - maxDecompositionLevelsCount = Math.max( - maxDecompositionLevelsCount, - tile.components[q].codingStyleParameters.decompositionLevelsCount - ); - } - - let l = 0, - r = 0, - i = 0, - k = 0; - - this.nextPacket = function JpxImage_nextPacket() { - // Section B.12.1.1 Layer-resolution-component-position - for (; l < layersCount; l++) { - for (; r <= maxDecompositionLevelsCount; r++) { - for (; i < componentsCount; i++) { - const component = tile.components[i]; - if (r > component.codingStyleParameters.decompositionLevelsCount) { - continue; - } - - const resolution = component.resolutions[r]; - const numprecincts = resolution.precinctParameters.numprecincts; - for (; k < numprecincts; ) { - const packet = createPacket(resolution, k, l); - k++; - return packet; - } - k = 0; - } - i = 0; - } - r = 0; - } - throw new JpxError("Out of packets"); - }; - } - function ResolutionLayerComponentPositionIterator(context) { - const siz = context.SIZ; - const tileIndex = context.currentTile.index; - const tile = context.tiles[tileIndex]; - const layersCount = tile.codingStyleDefaultParameters.layersCount; - const componentsCount = siz.Csiz; - let maxDecompositionLevelsCount = 0; - for (let q = 0; q < componentsCount; q++) { - maxDecompositionLevelsCount = Math.max( - maxDecompositionLevelsCount, - tile.components[q].codingStyleParameters.decompositionLevelsCount - ); - } - - let r = 0, - l = 0, - i = 0, - k = 0; - - this.nextPacket = function JpxImage_nextPacket() { - // Section B.12.1.2 Resolution-layer-component-position - for (; r <= maxDecompositionLevelsCount; r++) { - for (; l < layersCount; l++) { - for (; i < componentsCount; i++) { - const component = tile.components[i]; - if (r > component.codingStyleParameters.decompositionLevelsCount) { - continue; - } - - const resolution = component.resolutions[r]; - const numprecincts = resolution.precinctParameters.numprecincts; - for (; k < numprecincts; ) { - const packet = createPacket(resolution, k, l); - k++; - return packet; - } - k = 0; - } - i = 0; - } - l = 0; - } - throw new JpxError("Out of packets"); - }; - } - function ResolutionPositionComponentLayerIterator(context) { - const siz = context.SIZ; - const tileIndex = context.currentTile.index; - const tile = context.tiles[tileIndex]; - const layersCount = tile.codingStyleDefaultParameters.layersCount; - const componentsCount = siz.Csiz; - let l, r, c, p; - let maxDecompositionLevelsCount = 0; - for (c = 0; c < componentsCount; c++) { - const component = tile.components[c]; - maxDecompositionLevelsCount = Math.max( - maxDecompositionLevelsCount, - component.codingStyleParameters.decompositionLevelsCount - ); - } - const maxNumPrecinctsInLevel = new Int32Array( - maxDecompositionLevelsCount + 1 + return { + layerNumber, + codeblocks: precinctCodeblocks, + }; +} +function LayerResolutionComponentPositionIterator(context) { + const siz = context.SIZ; + const tileIndex = context.currentTile.index; + const tile = context.tiles[tileIndex]; + const layersCount = tile.codingStyleDefaultParameters.layersCount; + const componentsCount = siz.Csiz; + let maxDecompositionLevelsCount = 0; + for (let q = 0; q < componentsCount; q++) { + maxDecompositionLevelsCount = Math.max( + maxDecompositionLevelsCount, + tile.components[q].codingStyleParameters.decompositionLevelsCount ); - for (r = 0; r <= maxDecompositionLevelsCount; ++r) { - let maxNumPrecincts = 0; - for (c = 0; c < componentsCount; ++c) { - const resolutions = tile.components[c].resolutions; - if (r < resolutions.length) { - maxNumPrecincts = Math.max( - maxNumPrecincts, - resolutions[r].precinctParameters.numprecincts - ); - } - } - maxNumPrecinctsInLevel[r] = maxNumPrecincts; - } - l = 0; - r = 0; - c = 0; - p = 0; + } - this.nextPacket = function JpxImage_nextPacket() { - // Section B.12.1.3 Resolution-position-component-layer + let l = 0, + r = 0, + i = 0, + k = 0; + + this.nextPacket = function JpxImage_nextPacket() { + // Section B.12.1.1 Layer-resolution-component-position + for (; l < layersCount; l++) { for (; r <= maxDecompositionLevelsCount; r++) { - for (; p < maxNumPrecinctsInLevel[r]; p++) { - for (; c < componentsCount; c++) { - const component = tile.components[c]; - if (r > component.codingStyleParameters.decompositionLevelsCount) { - continue; - } + for (; i < componentsCount; i++) { + const component = tile.components[i]; + if (r > component.codingStyleParameters.decompositionLevelsCount) { + continue; + } + + const resolution = component.resolutions[r]; + const numprecincts = resolution.precinctParameters.numprecincts; + for (; k < numprecincts; ) { + const packet = createPacket(resolution, k, l); + k++; + return packet; + } + k = 0; + } + i = 0; + } + r = 0; + } + throw new JpxError("Out of packets"); + }; +} +function ResolutionLayerComponentPositionIterator(context) { + const siz = context.SIZ; + const tileIndex = context.currentTile.index; + const tile = context.tiles[tileIndex]; + const layersCount = tile.codingStyleDefaultParameters.layersCount; + const componentsCount = siz.Csiz; + let maxDecompositionLevelsCount = 0; + for (let q = 0; q < componentsCount; q++) { + maxDecompositionLevelsCount = Math.max( + maxDecompositionLevelsCount, + tile.components[q].codingStyleParameters.decompositionLevelsCount + ); + } + + let r = 0, + l = 0, + i = 0, + k = 0; + + this.nextPacket = function JpxImage_nextPacket() { + // Section B.12.1.2 Resolution-layer-component-position + for (; r <= maxDecompositionLevelsCount; r++) { + for (; l < layersCount; l++) { + for (; i < componentsCount; i++) { + const component = tile.components[i]; + if (r > component.codingStyleParameters.decompositionLevelsCount) { + continue; + } + + const resolution = component.resolutions[r]; + const numprecincts = resolution.precinctParameters.numprecincts; + for (; k < numprecincts; ) { + const packet = createPacket(resolution, k, l); + k++; + return packet; + } + k = 0; + } + i = 0; + } + l = 0; + } + throw new JpxError("Out of packets"); + }; +} +function ResolutionPositionComponentLayerIterator(context) { + const siz = context.SIZ; + const tileIndex = context.currentTile.index; + const tile = context.tiles[tileIndex]; + const layersCount = tile.codingStyleDefaultParameters.layersCount; + const componentsCount = siz.Csiz; + let l, r, c, p; + let maxDecompositionLevelsCount = 0; + for (c = 0; c < componentsCount; c++) { + const component = tile.components[c]; + maxDecompositionLevelsCount = Math.max( + maxDecompositionLevelsCount, + component.codingStyleParameters.decompositionLevelsCount + ); + } + const maxNumPrecinctsInLevel = new Int32Array( + maxDecompositionLevelsCount + 1 + ); + for (r = 0; r <= maxDecompositionLevelsCount; ++r) { + let maxNumPrecincts = 0; + for (c = 0; c < componentsCount; ++c) { + const resolutions = tile.components[c].resolutions; + if (r < resolutions.length) { + maxNumPrecincts = Math.max( + maxNumPrecincts, + resolutions[r].precinctParameters.numprecincts + ); + } + } + maxNumPrecinctsInLevel[r] = maxNumPrecincts; + } + l = 0; + r = 0; + c = 0; + p = 0; + + this.nextPacket = function JpxImage_nextPacket() { + // Section B.12.1.3 Resolution-position-component-layer + for (; r <= maxDecompositionLevelsCount; r++) { + for (; p < maxNumPrecinctsInLevel[r]; p++) { + for (; c < componentsCount; c++) { + const component = tile.components[c]; + if (r > component.codingStyleParameters.decompositionLevelsCount) { + continue; + } + const resolution = component.resolutions[r]; + const numprecincts = resolution.precinctParameters.numprecincts; + if (p >= numprecincts) { + continue; + } + for (; l < layersCount; ) { + const packet = createPacket(resolution, p, l); + l++; + return packet; + } + l = 0; + } + c = 0; + } + p = 0; + } + throw new JpxError("Out of packets"); + }; +} +function PositionComponentResolutionLayerIterator(context) { + const siz = context.SIZ; + const tileIndex = context.currentTile.index; + const tile = context.tiles[tileIndex]; + const layersCount = tile.codingStyleDefaultParameters.layersCount; + const componentsCount = siz.Csiz; + const precinctsSizes = getPrecinctSizesInImageScale(tile); + const precinctsIterationSizes = precinctsSizes; + let l = 0, + r = 0, + c = 0, + px = 0, + py = 0; + + this.nextPacket = function JpxImage_nextPacket() { + // Section B.12.1.4 Position-component-resolution-layer + for (; py < precinctsIterationSizes.maxNumHigh; py++) { + for (; px < precinctsIterationSizes.maxNumWide; px++) { + for (; c < componentsCount; c++) { + const component = tile.components[c]; + const decompositionLevelsCount = + component.codingStyleParameters.decompositionLevelsCount; + for (; r <= decompositionLevelsCount; r++) { const resolution = component.resolutions[r]; - const numprecincts = resolution.precinctParameters.numprecincts; - if (p >= numprecincts) { + const sizeInImageScale = + precinctsSizes.components[c].resolutions[r]; + const k = getPrecinctIndexIfExist( + px, + py, + sizeInImageScale, + precinctsIterationSizes, + resolution + ); + if (k === null) { continue; } for (; l < layersCount; ) { - const packet = createPacket(resolution, p, l); + const packet = createPacket(resolution, k, l); l++; return packet; } l = 0; } - c = 0; + r = 0; } - p = 0; + c = 0; } - throw new JpxError("Out of packets"); - }; - } - function PositionComponentResolutionLayerIterator(context) { - const siz = context.SIZ; - const tileIndex = context.currentTile.index; - const tile = context.tiles[tileIndex]; - const layersCount = tile.codingStyleDefaultParameters.layersCount; - const componentsCount = siz.Csiz; - const precinctsSizes = getPrecinctSizesInImageScale(tile); - const precinctsIterationSizes = precinctsSizes; - let l = 0, - r = 0, - c = 0, - px = 0, - py = 0; + px = 0; + } + throw new JpxError("Out of packets"); + }; +} +function ComponentPositionResolutionLayerIterator(context) { + const siz = context.SIZ; + const tileIndex = context.currentTile.index; + const tile = context.tiles[tileIndex]; + const layersCount = tile.codingStyleDefaultParameters.layersCount; + const componentsCount = siz.Csiz; + const precinctsSizes = getPrecinctSizesInImageScale(tile); + let l = 0, + r = 0, + c = 0, + px = 0, + py = 0; - this.nextPacket = function JpxImage_nextPacket() { - // Section B.12.1.4 Position-component-resolution-layer + this.nextPacket = function JpxImage_nextPacket() { + // Section B.12.1.5 Component-position-resolution-layer + for (; c < componentsCount; ++c) { + const component = tile.components[c]; + const precinctsIterationSizes = precinctsSizes.components[c]; + const decompositionLevelsCount = + component.codingStyleParameters.decompositionLevelsCount; for (; py < precinctsIterationSizes.maxNumHigh; py++) { for (; px < precinctsIterationSizes.maxNumWide; px++) { - for (; c < componentsCount; c++) { - const component = tile.components[c]; - const decompositionLevelsCount = - component.codingStyleParameters.decompositionLevelsCount; - for (; r <= decompositionLevelsCount; r++) { - const resolution = component.resolutions[r]; - const sizeInImageScale = - precinctsSizes.components[c].resolutions[r]; - const k = getPrecinctIndexIfExist( - px, - py, - sizeInImageScale, - precinctsIterationSizes, - resolution - ); - if (k === null) { - continue; - } - for (; l < layersCount; ) { - const packet = createPacket(resolution, k, l); - l++; - return packet; - } - l = 0; + for (; r <= decompositionLevelsCount; r++) { + const resolution = component.resolutions[r]; + const sizeInImageScale = precinctsIterationSizes.resolutions[r]; + const k = getPrecinctIndexIfExist( + px, + py, + sizeInImageScale, + precinctsIterationSizes, + resolution + ); + if (k === null) { + continue; } - r = 0; + for (; l < layersCount; ) { + const packet = createPacket(resolution, k, l); + l++; + return packet; + } + l = 0; } - c = 0; + r = 0; } px = 0; } - throw new JpxError("Out of packets"); - }; - } - function ComponentPositionResolutionLayerIterator(context) { - const siz = context.SIZ; - const tileIndex = context.currentTile.index; - const tile = context.tiles[tileIndex]; - const layersCount = tile.codingStyleDefaultParameters.layersCount; - const componentsCount = siz.Csiz; - const precinctsSizes = getPrecinctSizesInImageScale(tile); - let l = 0, - r = 0, - c = 0, - px = 0, py = 0; - - this.nextPacket = function JpxImage_nextPacket() { - // Section B.12.1.5 Component-position-resolution-layer - for (; c < componentsCount; ++c) { - const component = tile.components[c]; - const precinctsIterationSizes = precinctsSizes.components[c]; - const decompositionLevelsCount = - component.codingStyleParameters.decompositionLevelsCount; - for (; py < precinctsIterationSizes.maxNumHigh; py++) { - for (; px < precinctsIterationSizes.maxNumWide; px++) { - for (; r <= decompositionLevelsCount; r++) { - const resolution = component.resolutions[r]; - const sizeInImageScale = precinctsIterationSizes.resolutions[r]; - const k = getPrecinctIndexIfExist( - px, - py, - sizeInImageScale, - precinctsIterationSizes, - resolution - ); - if (k === null) { - continue; - } - for (; l < layersCount; ) { - const packet = createPacket(resolution, k, l); - l++; - return packet; - } - l = 0; - } - r = 0; - } - px = 0; - } - py = 0; - } - throw new JpxError("Out of packets"); - }; - } - function getPrecinctIndexIfExist( - pxIndex, - pyIndex, - sizeInImageScale, - precinctIterationSizes, - resolution + } + throw new JpxError("Out of packets"); + }; +} +function getPrecinctIndexIfExist( + pxIndex, + pyIndex, + sizeInImageScale, + precinctIterationSizes, + resolution +) { + const posX = pxIndex * precinctIterationSizes.minWidth; + const posY = pyIndex * precinctIterationSizes.minHeight; + if ( + posX % sizeInImageScale.width !== 0 || + posY % sizeInImageScale.height !== 0 ) { - const posX = pxIndex * precinctIterationSizes.minWidth; - const posY = pyIndex * precinctIterationSizes.minHeight; - if ( - posX % sizeInImageScale.width !== 0 || - posY % sizeInImageScale.height !== 0 - ) { - return null; - } - const startPrecinctRowIndex = - (posY / sizeInImageScale.width) * - resolution.precinctParameters.numprecinctswide; - return posX / sizeInImageScale.height + startPrecinctRowIndex; + return null; } - function getPrecinctSizesInImageScale(tile) { - const componentsCount = tile.components.length; - let minWidth = Number.MAX_VALUE; - let minHeight = Number.MAX_VALUE; - let maxNumWide = 0; - let maxNumHigh = 0; - const sizePerComponent = new Array(componentsCount); - for (let c = 0; c < componentsCount; c++) { - const component = tile.components[c]; - const decompositionLevelsCount = - component.codingStyleParameters.decompositionLevelsCount; - const sizePerResolution = new Array(decompositionLevelsCount + 1); - let minWidthCurrentComponent = Number.MAX_VALUE; - let minHeightCurrentComponent = Number.MAX_VALUE; - let maxNumWideCurrentComponent = 0; - let maxNumHighCurrentComponent = 0; - let scale = 1; - for (let r = decompositionLevelsCount; r >= 0; --r) { - const resolution = component.resolutions[r]; - const widthCurrentResolution = - scale * resolution.precinctParameters.precinctWidth; - const heightCurrentResolution = - scale * resolution.precinctParameters.precinctHeight; - minWidthCurrentComponent = Math.min( - minWidthCurrentComponent, - widthCurrentResolution - ); - minHeightCurrentComponent = Math.min( - minHeightCurrentComponent, - heightCurrentResolution - ); - maxNumWideCurrentComponent = Math.max( - maxNumWideCurrentComponent, - resolution.precinctParameters.numprecinctswide - ); - maxNumHighCurrentComponent = Math.max( - maxNumHighCurrentComponent, - resolution.precinctParameters.numprecinctshigh - ); - sizePerResolution[r] = { - width: widthCurrentResolution, - height: heightCurrentResolution, - }; - scale <<= 1; - } - minWidth = Math.min(minWidth, minWidthCurrentComponent); - minHeight = Math.min(minHeight, minHeightCurrentComponent); - maxNumWide = Math.max(maxNumWide, maxNumWideCurrentComponent); - maxNumHigh = Math.max(maxNumHigh, maxNumHighCurrentComponent); - sizePerComponent[c] = { - resolutions: sizePerResolution, - minWidth: minWidthCurrentComponent, - minHeight: minHeightCurrentComponent, - maxNumWide: maxNumWideCurrentComponent, - maxNumHigh: maxNumHighCurrentComponent, + const startPrecinctRowIndex = + (posY / sizeInImageScale.width) * + resolution.precinctParameters.numprecinctswide; + return posX / sizeInImageScale.height + startPrecinctRowIndex; +} +function getPrecinctSizesInImageScale(tile) { + const componentsCount = tile.components.length; + let minWidth = Number.MAX_VALUE; + let minHeight = Number.MAX_VALUE; + let maxNumWide = 0; + let maxNumHigh = 0; + const sizePerComponent = new Array(componentsCount); + for (let c = 0; c < componentsCount; c++) { + const component = tile.components[c]; + const decompositionLevelsCount = + component.codingStyleParameters.decompositionLevelsCount; + const sizePerResolution = new Array(decompositionLevelsCount + 1); + let minWidthCurrentComponent = Number.MAX_VALUE; + let minHeightCurrentComponent = Number.MAX_VALUE; + let maxNumWideCurrentComponent = 0; + let maxNumHighCurrentComponent = 0; + let scale = 1; + for (let r = decompositionLevelsCount; r >= 0; --r) { + const resolution = component.resolutions[r]; + const widthCurrentResolution = + scale * resolution.precinctParameters.precinctWidth; + const heightCurrentResolution = + scale * resolution.precinctParameters.precinctHeight; + minWidthCurrentComponent = Math.min( + minWidthCurrentComponent, + widthCurrentResolution + ); + minHeightCurrentComponent = Math.min( + minHeightCurrentComponent, + heightCurrentResolution + ); + maxNumWideCurrentComponent = Math.max( + maxNumWideCurrentComponent, + resolution.precinctParameters.numprecinctswide + ); + maxNumHighCurrentComponent = Math.max( + maxNumHighCurrentComponent, + resolution.precinctParameters.numprecinctshigh + ); + sizePerResolution[r] = { + width: widthCurrentResolution, + height: heightCurrentResolution, }; + scale <<= 1; } - return { - components: sizePerComponent, - minWidth, - minHeight, - maxNumWide, - maxNumHigh, + minWidth = Math.min(minWidth, minWidthCurrentComponent); + minHeight = Math.min(minHeight, minHeightCurrentComponent); + maxNumWide = Math.max(maxNumWide, maxNumWideCurrentComponent); + maxNumHigh = Math.max(maxNumHigh, maxNumHighCurrentComponent); + sizePerComponent[c] = { + resolutions: sizePerResolution, + minWidth: minWidthCurrentComponent, + minHeight: minHeightCurrentComponent, + maxNumWide: maxNumWideCurrentComponent, + maxNumHigh: maxNumHighCurrentComponent, }; } - function buildPackets(context) { - const siz = context.SIZ; - const tileIndex = context.currentTile.index; - const tile = context.tiles[tileIndex]; - const componentsCount = siz.Csiz; - // Creating resolutions and sub-bands for each component - for (let c = 0; c < componentsCount; c++) { - const component = tile.components[c]; - const decompositionLevelsCount = - component.codingStyleParameters.decompositionLevelsCount; - // Section B.5 Resolution levels and sub-bands - const resolutions = []; - const subbands = []; - for (let r = 0; r <= decompositionLevelsCount; r++) { - const blocksDimensions = getBlocksDimensions(context, component, r); - const resolution = {}; - const scale = 1 << (decompositionLevelsCount - r); - resolution.trx0 = Math.ceil(component.tcx0 / scale); - resolution.try0 = Math.ceil(component.tcy0 / scale); - resolution.trx1 = Math.ceil(component.tcx1 / scale); - resolution.try1 = Math.ceil(component.tcy1 / scale); - resolution.resLevel = r; - buildPrecincts(context, resolution, blocksDimensions); - resolutions.push(resolution); + return { + components: sizePerComponent, + minWidth, + minHeight, + maxNumWide, + maxNumHigh, + }; +} +function buildPackets(context) { + const siz = context.SIZ; + const tileIndex = context.currentTile.index; + const tile = context.tiles[tileIndex]; + const componentsCount = siz.Csiz; + // Creating resolutions and sub-bands for each component + for (let c = 0; c < componentsCount; c++) { + const component = tile.components[c]; + const decompositionLevelsCount = + component.codingStyleParameters.decompositionLevelsCount; + // Section B.5 Resolution levels and sub-bands + const resolutions = []; + const subbands = []; + for (let r = 0; r <= decompositionLevelsCount; r++) { + const blocksDimensions = getBlocksDimensions(context, component, r); + const resolution = {}; + const scale = 1 << (decompositionLevelsCount - r); + resolution.trx0 = Math.ceil(component.tcx0 / scale); + resolution.try0 = Math.ceil(component.tcy0 / scale); + resolution.trx1 = Math.ceil(component.tcx1 / scale); + resolution.try1 = Math.ceil(component.tcy1 / scale); + resolution.resLevel = r; + buildPrecincts(context, resolution, blocksDimensions); + resolutions.push(resolution); - let subband; - if (r === 0) { - // one sub-band (LL) with last decomposition - subband = {}; - subband.type = "LL"; - subband.tbx0 = Math.ceil(component.tcx0 / scale); - subband.tby0 = Math.ceil(component.tcy0 / scale); - subband.tbx1 = Math.ceil(component.tcx1 / scale); - subband.tby1 = Math.ceil(component.tcy1 / scale); - subband.resolution = resolution; - buildCodeblocks(context, subband, blocksDimensions); - subbands.push(subband); - resolution.subbands = [subband]; - } else { - const bscale = 1 << (decompositionLevelsCount - r + 1); - const resolutionSubbands = []; - // three sub-bands (HL, LH and HH) with rest of decompositions - subband = {}; - subband.type = "HL"; - subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5); - subband.tby0 = Math.ceil(component.tcy0 / bscale); - subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5); - subband.tby1 = Math.ceil(component.tcy1 / bscale); - subband.resolution = resolution; - buildCodeblocks(context, subband, blocksDimensions); - subbands.push(subband); - resolutionSubbands.push(subband); + let subband; + if (r === 0) { + // one sub-band (LL) with last decomposition + subband = {}; + subband.type = "LL"; + subband.tbx0 = Math.ceil(component.tcx0 / scale); + subband.tby0 = Math.ceil(component.tcy0 / scale); + subband.tbx1 = Math.ceil(component.tcx1 / scale); + subband.tby1 = Math.ceil(component.tcy1 / scale); + subband.resolution = resolution; + buildCodeblocks(context, subband, blocksDimensions); + subbands.push(subband); + resolution.subbands = [subband]; + } else { + const bscale = 1 << (decompositionLevelsCount - r + 1); + const resolutionSubbands = []; + // three sub-bands (HL, LH and HH) with rest of decompositions + subband = {}; + subband.type = "HL"; + subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5); + subband.tby0 = Math.ceil(component.tcy0 / bscale); + subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5); + subband.tby1 = Math.ceil(component.tcy1 / bscale); + subband.resolution = resolution; + buildCodeblocks(context, subband, blocksDimensions); + subbands.push(subband); + resolutionSubbands.push(subband); - subband = {}; - subband.type = "LH"; - subband.tbx0 = Math.ceil(component.tcx0 / bscale); - subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5); - subband.tbx1 = Math.ceil(component.tcx1 / bscale); - subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5); - subband.resolution = resolution; - buildCodeblocks(context, subband, blocksDimensions); - subbands.push(subband); - resolutionSubbands.push(subband); + subband = {}; + subband.type = "LH"; + subband.tbx0 = Math.ceil(component.tcx0 / bscale); + subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5); + subband.tbx1 = Math.ceil(component.tcx1 / bscale); + subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5); + subband.resolution = resolution; + buildCodeblocks(context, subband, blocksDimensions); + subbands.push(subband); + resolutionSubbands.push(subband); - subband = {}; - subband.type = "HH"; - subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5); - subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5); - subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5); - subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5); - subband.resolution = resolution; - buildCodeblocks(context, subband, blocksDimensions); - subbands.push(subband); - resolutionSubbands.push(subband); + subband = {}; + subband.type = "HH"; + subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5); + subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5); + subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5); + subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5); + subband.resolution = resolution; + buildCodeblocks(context, subband, blocksDimensions); + subbands.push(subband); + resolutionSubbands.push(subband); - resolution.subbands = resolutionSubbands; - } + resolution.subbands = resolutionSubbands; } - component.resolutions = resolutions; - component.subbands = subbands; } - // Generate the packets sequence - const progressionOrder = tile.codingStyleDefaultParameters.progressionOrder; - switch (progressionOrder) { - case 0: - tile.packetsIterator = new LayerResolutionComponentPositionIterator( - context - ); - break; - case 1: - tile.packetsIterator = new ResolutionLayerComponentPositionIterator( - context - ); - break; - case 2: - tile.packetsIterator = new ResolutionPositionComponentLayerIterator( - context - ); - break; - case 3: - tile.packetsIterator = new PositionComponentResolutionLayerIterator( - context - ); - break; - case 4: - tile.packetsIterator = new ComponentPositionResolutionLayerIterator( - context - ); - break; - default: - throw new JpxError(`Unsupported progression order ${progressionOrder}`); + component.resolutions = resolutions; + component.subbands = subbands; + } + // Generate the packets sequence + const progressionOrder = tile.codingStyleDefaultParameters.progressionOrder; + switch (progressionOrder) { + case 0: + tile.packetsIterator = new LayerResolutionComponentPositionIterator( + context + ); + break; + case 1: + tile.packetsIterator = new ResolutionLayerComponentPositionIterator( + context + ); + break; + case 2: + tile.packetsIterator = new ResolutionPositionComponentLayerIterator( + context + ); + break; + case 3: + tile.packetsIterator = new PositionComponentResolutionLayerIterator( + context + ); + break; + case 4: + tile.packetsIterator = new ComponentPositionResolutionLayerIterator( + context + ); + break; + default: + throw new JpxError(`Unsupported progression order ${progressionOrder}`); + } +} +function parseTilePackets(context, data, offset, dataLength) { + let position = 0; + let buffer, + bufferSize = 0, + skipNextBit = false; + function readBits(count) { + while (bufferSize < count) { + const b = data[offset + position]; + position++; + if (skipNextBit) { + buffer = (buffer << 7) | b; + bufferSize += 7; + skipNextBit = false; + } else { + buffer = (buffer << 8) | b; + bufferSize += 8; + } + if (b === 0xff) { + skipNextBit = true; + } + } + bufferSize -= count; + return (buffer >>> bufferSize) & ((1 << count) - 1); + } + function skipMarkerIfEqual(value) { + if ( + data[offset + position - 1] === 0xff && + data[offset + position] === value + ) { + skipBytes(1); + return true; + } else if ( + data[offset + position] === 0xff && + data[offset + position + 1] === value + ) { + skipBytes(2); + return true; + } + return false; + } + function skipBytes(count) { + position += count; + } + function alignToByte() { + bufferSize = 0; + if (skipNextBit) { + position++; + skipNextBit = false; } } - function parseTilePackets(context, data, offset, dataLength) { - let position = 0; - let buffer, - bufferSize = 0, - skipNextBit = false; - function readBits(count) { - while (bufferSize < count) { - const b = data[offset + position]; - position++; - if (skipNextBit) { - buffer = (buffer << 7) | b; - bufferSize += 7; - skipNextBit = false; + function readCodingpasses() { + if (readBits(1) === 0) { + return 1; + } + if (readBits(1) === 0) { + return 2; + } + let value = readBits(2); + if (value < 3) { + return value + 3; + } + value = readBits(5); + if (value < 31) { + return value + 6; + } + value = readBits(7); + return value + 37; + } + const tileIndex = context.currentTile.index; + const tile = context.tiles[tileIndex]; + const sopMarkerUsed = context.COD.sopMarkerUsed; + const ephMarkerUsed = context.COD.ephMarkerUsed; + const packetsIterator = tile.packetsIterator; + while (position < dataLength) { + alignToByte(); + if (sopMarkerUsed && skipMarkerIfEqual(0x91)) { + // Skip also marker segment length and packet sequence ID + skipBytes(4); + } + const packet = packetsIterator.nextPacket(); + if (!readBits(1)) { + continue; + } + const layerNumber = packet.layerNumber, + queue = []; + let codeblock; + for (let i = 0, ii = packet.codeblocks.length; i < ii; i++) { + codeblock = packet.codeblocks[i]; + let precinct = codeblock.precinct; + const codeblockColumn = codeblock.cbx - precinct.cbxMin; + const codeblockRow = codeblock.cby - precinct.cbyMin; + let codeblockIncluded = false; + let firstTimeInclusion = false; + let valueReady, zeroBitPlanesTree; + if (codeblock.included !== undefined) { + codeblockIncluded = !!readBits(1); + } else { + // reading inclusion tree + precinct = codeblock.precinct; + let inclusionTree; + if (precinct.inclusionTree !== undefined) { + inclusionTree = precinct.inclusionTree; } else { - buffer = (buffer << 8) | b; - bufferSize += 8; + // building inclusion and zero bit-planes trees + const width = precinct.cbxMax - precinct.cbxMin + 1; + const height = precinct.cbyMax - precinct.cbyMin + 1; + inclusionTree = new InclusionTree(width, height, layerNumber); + zeroBitPlanesTree = new TagTree(width, height); + precinct.inclusionTree = inclusionTree; + precinct.zeroBitPlanesTree = zeroBitPlanesTree; } - if (b === 0xff) { - skipNextBit = true; - } - } - bufferSize -= count; - return (buffer >>> bufferSize) & ((1 << count) - 1); - } - function skipMarkerIfEqual(value) { - if ( - data[offset + position - 1] === 0xff && - data[offset + position] === value - ) { - skipBytes(1); - return true; - } else if ( - data[offset + position] === 0xff && - data[offset + position + 1] === value - ) { - skipBytes(2); - return true; - } - return false; - } - function skipBytes(count) { - position += count; - } - function alignToByte() { - bufferSize = 0; - if (skipNextBit) { - position++; - skipNextBit = false; - } - } - function readCodingpasses() { - if (readBits(1) === 0) { - return 1; - } - if (readBits(1) === 0) { - return 2; - } - let value = readBits(2); - if (value < 3) { - return value + 3; - } - value = readBits(5); - if (value < 31) { - return value + 6; - } - value = readBits(7); - return value + 37; - } - const tileIndex = context.currentTile.index; - const tile = context.tiles[tileIndex]; - const sopMarkerUsed = context.COD.sopMarkerUsed; - const ephMarkerUsed = context.COD.ephMarkerUsed; - const packetsIterator = tile.packetsIterator; - while (position < dataLength) { - alignToByte(); - if (sopMarkerUsed && skipMarkerIfEqual(0x91)) { - // Skip also marker segment length and packet sequence ID - skipBytes(4); - } - const packet = packetsIterator.nextPacket(); - if (!readBits(1)) { - continue; - } - const layerNumber = packet.layerNumber, - queue = []; - let codeblock; - for (let i = 0, ii = packet.codeblocks.length; i < ii; i++) { - codeblock = packet.codeblocks[i]; - let precinct = codeblock.precinct; - const codeblockColumn = codeblock.cbx - precinct.cbxMin; - const codeblockRow = codeblock.cby - precinct.cbyMin; - let codeblockIncluded = false; - let firstTimeInclusion = false; - let valueReady, zeroBitPlanesTree; - if (codeblock.included !== undefined) { - codeblockIncluded = !!readBits(1); - } else { - // reading inclusion tree - precinct = codeblock.precinct; - let inclusionTree; - if (precinct.inclusionTree !== undefined) { - inclusionTree = precinct.inclusionTree; - } else { - // building inclusion and zero bit-planes trees - const width = precinct.cbxMax - precinct.cbxMin + 1; - const height = precinct.cbyMax - precinct.cbyMin + 1; - inclusionTree = new InclusionTree(width, height, layerNumber); - zeroBitPlanesTree = new TagTree(width, height); - precinct.inclusionTree = inclusionTree; - precinct.zeroBitPlanesTree = zeroBitPlanesTree; - } - if (inclusionTree.reset(codeblockColumn, codeblockRow, layerNumber)) { - while (true) { - if (readBits(1)) { - valueReady = !inclusionTree.nextLevel(); - if (valueReady) { - codeblock.included = true; - codeblockIncluded = firstTimeInclusion = true; - break; - } - } else { - inclusionTree.incrementValue(layerNumber); - break; - } - } - } - } - if (!codeblockIncluded) { - continue; - } - if (firstTimeInclusion) { - zeroBitPlanesTree = precinct.zeroBitPlanesTree; - zeroBitPlanesTree.reset(codeblockColumn, codeblockRow); + if (inclusionTree.reset(codeblockColumn, codeblockRow, layerNumber)) { while (true) { if (readBits(1)) { - valueReady = !zeroBitPlanesTree.nextLevel(); + valueReady = !inclusionTree.nextLevel(); if (valueReady) { + codeblock.included = true; + codeblockIncluded = firstTimeInclusion = true; break; } } else { - zeroBitPlanesTree.incrementValue(); + inclusionTree.incrementValue(layerNumber); + break; } } - codeblock.zeroBitPlanes = zeroBitPlanesTree.value; } - const codingpasses = readCodingpasses(); - while (readBits(1)) { - codeblock.Lblock++; - } - const codingpassesLog2 = log2(codingpasses); - // rounding down log2 - const bits = - (codingpasses < 1 << codingpassesLog2 - ? codingpassesLog2 - 1 - : codingpassesLog2) + codeblock.Lblock; - const codedDataLength = readBits(bits); - queue.push({ - codeblock, - codingpasses, - dataLength: codedDataLength, - }); } - alignToByte(); - if (ephMarkerUsed) { - skipMarkerIfEqual(0x92); - } - while (queue.length > 0) { - const packetItem = queue.shift(); - codeblock = packetItem.codeblock; - if (codeblock.data === undefined) { - codeblock.data = []; - } - codeblock.data.push({ - data, - start: offset + position, - end: offset + position + packetItem.dataLength, - codingpasses: packetItem.codingpasses, - }); - position += packetItem.dataLength; - } - } - return position; - } - function copyCoefficients( - coefficients, - levelWidth, - levelHeight, - subband, - delta, - mb, - reversible, - segmentationSymbolUsed - ) { - const x0 = subband.tbx0; - const y0 = subband.tby0; - const width = subband.tbx1 - subband.tbx0; - const codeblocks = subband.codeblocks; - const right = subband.type.charAt(0) === "H" ? 1 : 0; - const bottom = subband.type.charAt(1) === "H" ? levelWidth : 0; - - for (let i = 0, ii = codeblocks.length; i < ii; ++i) { - const codeblock = codeblocks[i]; - const blockWidth = codeblock.tbx1_ - codeblock.tbx0_; - const blockHeight = codeblock.tby1_ - codeblock.tby0_; - if (blockWidth === 0 || blockHeight === 0) { + if (!codeblockIncluded) { continue; } - if (codeblock.data === undefined) { - continue; - } - - const bitModel = new BitModel( - blockWidth, - blockHeight, - codeblock.subbandType, - codeblock.zeroBitPlanes, - mb - ); - let currentCodingpassType = 2; // first bit plane starts from cleanup - - // collect data - const data = codeblock.data; - let totalLength = 0, - codingpasses = 0; - let j, jj, dataItem; - for (j = 0, jj = data.length; j < jj; j++) { - dataItem = data[j]; - totalLength += dataItem.end - dataItem.start; - codingpasses += dataItem.codingpasses; - } - const encodedData = new Uint8Array(totalLength); - let position = 0; - for (j = 0, jj = data.length; j < jj; j++) { - dataItem = data[j]; - const chunk = dataItem.data.subarray(dataItem.start, dataItem.end); - encodedData.set(chunk, position); - position += chunk.length; - } - // decoding the item - const decoder = new ArithmeticDecoder(encodedData, 0, totalLength); - bitModel.setDecoder(decoder); - - for (j = 0; j < codingpasses; j++) { - switch (currentCodingpassType) { - case 0: - bitModel.runSignificancePropagationPass(); - break; - case 1: - bitModel.runMagnitudeRefinementPass(); - break; - case 2: - bitModel.runCleanupPass(); - if (segmentationSymbolUsed) { - bitModel.checkSegmentationSymbol(); - } - break; - } - currentCodingpassType = (currentCodingpassType + 1) % 3; - } - - let offset = codeblock.tbx0_ - x0 + (codeblock.tby0_ - y0) * width; - const sign = bitModel.coefficentsSign; - const magnitude = bitModel.coefficentsMagnitude; - const bitsDecoded = bitModel.bitsDecoded; - const magnitudeCorrection = reversible ? 0 : 0.5; - let k, n, nb; - position = 0; - // Do the interleaving of Section F.3.3 here, so we do not need - // to copy later. LL level is not interleaved, just copied. - const interleave = subband.type !== "LL"; - for (j = 0; j < blockHeight; j++) { - const row = (offset / width) | 0; // row in the non-interleaved subband - const levelOffset = 2 * row * (levelWidth - width) + right + bottom; - for (k = 0; k < blockWidth; k++) { - n = magnitude[position]; - if (n !== 0) { - n = (n + magnitudeCorrection) * delta; - if (sign[position] !== 0) { - n = -n; - } - nb = bitsDecoded[position]; - const pos = interleave ? levelOffset + (offset << 1) : offset; - if (reversible && nb >= mb) { - coefficients[pos] = n; - } else { - coefficients[pos] = n * (1 << (mb - nb)); + if (firstTimeInclusion) { + zeroBitPlanesTree = precinct.zeroBitPlanesTree; + zeroBitPlanesTree.reset(codeblockColumn, codeblockRow); + while (true) { + if (readBits(1)) { + valueReady = !zeroBitPlanesTree.nextLevel(); + if (valueReady) { + break; } + } else { + zeroBitPlanesTree.incrementValue(); } - offset++; - position++; } - offset += width - blockWidth; + codeblock.zeroBitPlanes = zeroBitPlanesTree.value; } - } - } - function transformTile(context, tile, c) { - const component = tile.components[c]; - const codingStyleParameters = component.codingStyleParameters; - const quantizationParameters = component.quantizationParameters; - const decompositionLevelsCount = - codingStyleParameters.decompositionLevelsCount; - const spqcds = quantizationParameters.SPqcds; - const scalarExpounded = quantizationParameters.scalarExpounded; - const guardBits = quantizationParameters.guardBits; - const segmentationSymbolUsed = codingStyleParameters.segmentationSymbolUsed; - const precision = context.components[c].precision; - - const reversible = codingStyleParameters.reversibleTransformation; - const transform = reversible - ? new ReversibleTransform() - : new IrreversibleTransform(); - - const subbandCoefficients = []; - let b = 0; - for (let i = 0; i <= decompositionLevelsCount; i++) { - const resolution = component.resolutions[i]; - - const width = resolution.trx1 - resolution.trx0; - const height = resolution.try1 - resolution.try0; - // Allocate space for the whole sublevel. - const coefficients = new Float32Array(width * height); - - for (let j = 0, jj = resolution.subbands.length; j < jj; j++) { - let mu, epsilon; - if (!scalarExpounded) { - // formula E-5 - mu = spqcds[0].mu; - epsilon = spqcds[0].epsilon + (i > 0 ? 1 - i : 0); - } else { - mu = spqcds[b].mu; - epsilon = spqcds[b].epsilon; - b++; - } - - const subband = resolution.subbands[j]; - const gainLog2 = SubbandsGainLog2[subband.type]; - - // calculate quantization coefficient (Section E.1.1.1) - const delta = reversible - ? 1 - : 2 ** (precision + gainLog2 - epsilon) * (1 + mu / 2048); - const mb = guardBits + epsilon - 1; - - // In the first resolution level, copyCoefficients will fill the - // whole array with coefficients. In the succeeding passes, - // copyCoefficients will consecutively fill in the values that belong - // to the interleaved positions of the HL, LH, and HH coefficients. - // The LL coefficients will then be interleaved in Transform.iterate(). - copyCoefficients( - coefficients, - width, - height, - subband, - delta, - mb, - reversible, - segmentationSymbolUsed - ); + const codingpasses = readCodingpasses(); + while (readBits(1)) { + codeblock.Lblock++; } - subbandCoefficients.push({ - width, - height, - items: coefficients, + const codingpassesLog2 = log2(codingpasses); + // rounding down log2 + const bits = + (codingpasses < 1 << codingpassesLog2 + ? codingpassesLog2 - 1 + : codingpassesLog2) + codeblock.Lblock; + const codedDataLength = readBits(bits); + queue.push({ + codeblock, + codingpasses, + dataLength: codedDataLength, }); } - - const result = transform.calculate( - subbandCoefficients, - component.tcx0, - component.tcy0 - ); - return { - left: component.tcx0, - top: component.tcy0, - width: result.width, - height: result.height, - items: result.items, - }; - } - function transformComponents(context) { - const siz = context.SIZ; - const components = context.components; - const componentsCount = siz.Csiz; - const resultImages = []; - for (let i = 0, ii = context.tiles.length; i < ii; i++) { - const tile = context.tiles[i]; - const transformedTiles = []; - for (let c = 0; c < componentsCount; c++) { - transformedTiles[c] = transformTile(context, tile, c); + alignToByte(); + if (ephMarkerUsed) { + skipMarkerIfEqual(0x92); + } + while (queue.length > 0) { + const packetItem = queue.shift(); + codeblock = packetItem.codeblock; + if (codeblock.data === undefined) { + codeblock.data = []; } - const tile0 = transformedTiles[0]; - const out = new Uint8ClampedArray(tile0.items.length * componentsCount); - const result = { - left: tile0.left, - top: tile0.top, - width: tile0.width, - height: tile0.height, - items: out, - }; + codeblock.data.push({ + data, + start: offset + position, + end: offset + position + packetItem.dataLength, + codingpasses: packetItem.codingpasses, + }); + position += packetItem.dataLength; + } + } + return position; +} +function copyCoefficients( + coefficients, + levelWidth, + levelHeight, + subband, + delta, + mb, + reversible, + segmentationSymbolUsed +) { + const x0 = subband.tbx0; + const y0 = subband.tby0; + const width = subband.tbx1 - subband.tbx0; + const codeblocks = subband.codeblocks; + const right = subband.type.charAt(0) === "H" ? 1 : 0; + const bottom = subband.type.charAt(1) === "H" ? levelWidth : 0; - // Section G.2.2 Inverse multi component transform - let shift, offset; - let pos = 0, - j, - jj, - y0, - y1, - y2; - if (tile.codingStyleDefaultParameters.multipleComponentTransform) { - const fourComponents = componentsCount === 4; - const y0items = transformedTiles[0].items; - const y1items = transformedTiles[1].items; - const y2items = transformedTiles[2].items; - const y3items = fourComponents ? transformedTiles[3].items : null; + for (let i = 0, ii = codeblocks.length; i < ii; ++i) { + const codeblock = codeblocks[i]; + const blockWidth = codeblock.tbx1_ - codeblock.tbx0_; + const blockHeight = codeblock.tby1_ - codeblock.tby0_; + if (blockWidth === 0 || blockHeight === 0) { + continue; + } + if (codeblock.data === undefined) { + continue; + } - // HACK: The multiple component transform formulas below assume that - // all components have the same precision. With this in mind, we - // compute shift and offset only once. - shift = components[0].precision - 8; - offset = (128 << shift) + 0.5; + const bitModel = new BitModel( + blockWidth, + blockHeight, + codeblock.subbandType, + codeblock.zeroBitPlanes, + mb + ); + let currentCodingpassType = 2; // first bit plane starts from cleanup - const component0 = tile.components[0]; - const alpha01 = componentsCount - 3; - jj = y0items.length; - if (!component0.codingStyleParameters.reversibleTransformation) { - // inverse irreversible multiple component transform - for (j = 0; j < jj; j++, pos += alpha01) { - y0 = y0items[j] + offset; - y1 = y1items[j]; - y2 = y2items[j]; - out[pos++] = (y0 + 1.402 * y2) >> shift; - out[pos++] = (y0 - 0.34413 * y1 - 0.71414 * y2) >> shift; - out[pos++] = (y0 + 1.772 * y1) >> shift; + // collect data + const data = codeblock.data; + let totalLength = 0, + codingpasses = 0; + let j, jj, dataItem; + for (j = 0, jj = data.length; j < jj; j++) { + dataItem = data[j]; + totalLength += dataItem.end - dataItem.start; + codingpasses += dataItem.codingpasses; + } + const encodedData = new Uint8Array(totalLength); + let position = 0; + for (j = 0, jj = data.length; j < jj; j++) { + dataItem = data[j]; + const chunk = dataItem.data.subarray(dataItem.start, dataItem.end); + encodedData.set(chunk, position); + position += chunk.length; + } + // decoding the item + const decoder = new ArithmeticDecoder(encodedData, 0, totalLength); + bitModel.setDecoder(decoder); + + for (j = 0; j < codingpasses; j++) { + switch (currentCodingpassType) { + case 0: + bitModel.runSignificancePropagationPass(); + break; + case 1: + bitModel.runMagnitudeRefinementPass(); + break; + case 2: + bitModel.runCleanupPass(); + if (segmentationSymbolUsed) { + bitModel.checkSegmentationSymbol(); } - } else { - // inverse reversible multiple component transform - for (j = 0; j < jj; j++, pos += alpha01) { - y0 = y0items[j] + offset; - y1 = y1items[j]; - y2 = y2items[j]; - const g = y0 - ((y2 + y1) >> 2); + break; + } + currentCodingpassType = (currentCodingpassType + 1) % 3; + } - out[pos++] = (g + y2) >> shift; - out[pos++] = g >> shift; - out[pos++] = (g + y1) >> shift; + let offset = codeblock.tbx0_ - x0 + (codeblock.tby0_ - y0) * width; + const sign = bitModel.coefficentsSign; + const magnitude = bitModel.coefficentsMagnitude; + const bitsDecoded = bitModel.bitsDecoded; + const magnitudeCorrection = reversible ? 0 : 0.5; + let k, n, nb; + position = 0; + // Do the interleaving of Section F.3.3 here, so we do not need + // to copy later. LL level is not interleaved, just copied. + const interleave = subband.type !== "LL"; + for (j = 0; j < blockHeight; j++) { + const row = (offset / width) | 0; // row in the non-interleaved subband + const levelOffset = 2 * row * (levelWidth - width) + right + bottom; + for (k = 0; k < blockWidth; k++) { + n = magnitude[position]; + if (n !== 0) { + n = (n + magnitudeCorrection) * delta; + if (sign[position] !== 0) { + n = -n; + } + nb = bitsDecoded[position]; + const pos = interleave ? levelOffset + (offset << 1) : offset; + if (reversible && nb >= mb) { + coefficients[pos] = n; + } else { + coefficients[pos] = n * (1 << (mb - nb)); } } - if (fourComponents) { - for (j = 0, pos = 3; j < jj; j++, pos += 4) { - out[pos] = (y3items[j] + offset) >> shift; - } + offset++; + position++; + } + offset += width - blockWidth; + } + } +} +function transformTile(context, tile, c) { + const component = tile.components[c]; + const codingStyleParameters = component.codingStyleParameters; + const quantizationParameters = component.quantizationParameters; + const decompositionLevelsCount = + codingStyleParameters.decompositionLevelsCount; + const spqcds = quantizationParameters.SPqcds; + const scalarExpounded = quantizationParameters.scalarExpounded; + const guardBits = quantizationParameters.guardBits; + const segmentationSymbolUsed = codingStyleParameters.segmentationSymbolUsed; + const precision = context.components[c].precision; + + const reversible = codingStyleParameters.reversibleTransformation; + const transform = reversible + ? new ReversibleTransform() + : new IrreversibleTransform(); + + const subbandCoefficients = []; + let b = 0; + for (let i = 0; i <= decompositionLevelsCount; i++) { + const resolution = component.resolutions[i]; + + const width = resolution.trx1 - resolution.trx0; + const height = resolution.try1 - resolution.try0; + // Allocate space for the whole sublevel. + const coefficients = new Float32Array(width * height); + + for (let j = 0, jj = resolution.subbands.length; j < jj; j++) { + let mu, epsilon; + if (!scalarExpounded) { + // formula E-5 + mu = spqcds[0].mu; + epsilon = spqcds[0].epsilon + (i > 0 ? 1 - i : 0); + } else { + mu = spqcds[b].mu; + epsilon = spqcds[b].epsilon; + b++; + } + + const subband = resolution.subbands[j]; + const gainLog2 = SubbandsGainLog2[subband.type]; + + // calculate quantization coefficient (Section E.1.1.1) + const delta = reversible + ? 1 + : 2 ** (precision + gainLog2 - epsilon) * (1 + mu / 2048); + const mb = guardBits + epsilon - 1; + + // In the first resolution level, copyCoefficients will fill the + // whole array with coefficients. In the succeeding passes, + // copyCoefficients will consecutively fill in the values that belong + // to the interleaved positions of the HL, LH, and HH coefficients. + // The LL coefficients will then be interleaved in Transform.iterate(). + copyCoefficients( + coefficients, + width, + height, + subband, + delta, + mb, + reversible, + segmentationSymbolUsed + ); + } + subbandCoefficients.push({ + width, + height, + items: coefficients, + }); + } + + const result = transform.calculate( + subbandCoefficients, + component.tcx0, + component.tcy0 + ); + return { + left: component.tcx0, + top: component.tcy0, + width: result.width, + height: result.height, + items: result.items, + }; +} +function transformComponents(context) { + const siz = context.SIZ; + const components = context.components; + const componentsCount = siz.Csiz; + const resultImages = []; + for (let i = 0, ii = context.tiles.length; i < ii; i++) { + const tile = context.tiles[i]; + const transformedTiles = []; + for (let c = 0; c < componentsCount; c++) { + transformedTiles[c] = transformTile(context, tile, c); + } + const tile0 = transformedTiles[0]; + const out = new Uint8ClampedArray(tile0.items.length * componentsCount); + const result = { + left: tile0.left, + top: tile0.top, + width: tile0.width, + height: tile0.height, + items: out, + }; + + // Section G.2.2 Inverse multi component transform + let shift, offset; + let pos = 0, + j, + jj, + y0, + y1, + y2; + if (tile.codingStyleDefaultParameters.multipleComponentTransform) { + const fourComponents = componentsCount === 4; + const y0items = transformedTiles[0].items; + const y1items = transformedTiles[1].items; + const y2items = transformedTiles[2].items; + const y3items = fourComponents ? transformedTiles[3].items : null; + + // HACK: The multiple component transform formulas below assume that + // all components have the same precision. With this in mind, we + // compute shift and offset only once. + shift = components[0].precision - 8; + offset = (128 << shift) + 0.5; + + const component0 = tile.components[0]; + const alpha01 = componentsCount - 3; + jj = y0items.length; + if (!component0.codingStyleParameters.reversibleTransformation) { + // inverse irreversible multiple component transform + for (j = 0; j < jj; j++, pos += alpha01) { + y0 = y0items[j] + offset; + y1 = y1items[j]; + y2 = y2items[j]; + out[pos++] = (y0 + 1.402 * y2) >> shift; + out[pos++] = (y0 - 0.34413 * y1 - 0.71414 * y2) >> shift; + out[pos++] = (y0 + 1.772 * y1) >> shift; } } else { - // no multi-component transform - for (let c = 0; c < componentsCount; c++) { - const items = transformedTiles[c].items; - shift = components[c].precision - 8; - offset = (128 << shift) + 0.5; - for (pos = c, j = 0, jj = items.length; j < jj; j++) { - out[pos] = (items[j] + offset) >> shift; - pos += componentsCount; - } + // inverse reversible multiple component transform + for (j = 0; j < jj; j++, pos += alpha01) { + y0 = y0items[j] + offset; + y1 = y1items[j]; + y2 = y2items[j]; + const g = y0 - ((y2 + y1) >> 2); + + out[pos++] = (g + y2) >> shift; + out[pos++] = g >> shift; + out[pos++] = (g + y1) >> shift; + } + } + if (fourComponents) { + for (j = 0, pos = 3; j < jj; j++, pos += 4) { + out[pos] = (y3items[j] + offset) >> shift; + } + } + } else { + // no multi-component transform + for (let c = 0; c < componentsCount; c++) { + const items = transformedTiles[c].items; + shift = components[c].precision - 8; + offset = (128 << shift) + 0.5; + for (pos = c, j = 0, jj = items.length; j < jj; j++) { + out[pos] = (items[j] + offset) >> shift; + pos += componentsCount; } } - resultImages.push(result); } - return resultImages; + resultImages.push(result); } - function initializeTile(context, tileIndex) { - const siz = context.SIZ; - const componentsCount = siz.Csiz; - const tile = context.tiles[tileIndex]; - for (let c = 0; c < componentsCount; c++) { - const component = tile.components[c]; - const qcdOrQcc = - context.currentTile.QCC[c] !== undefined - ? context.currentTile.QCC[c] - : context.currentTile.QCD; - component.quantizationParameters = qcdOrQcc; - const codOrCoc = - context.currentTile.COC[c] !== undefined - ? context.currentTile.COC[c] - : context.currentTile.COD; - component.codingStyleParameters = codOrCoc; + return resultImages; +} +function initializeTile(context, tileIndex) { + const siz = context.SIZ; + const componentsCount = siz.Csiz; + const tile = context.tiles[tileIndex]; + for (let c = 0; c < componentsCount; c++) { + const component = tile.components[c]; + const qcdOrQcc = + context.currentTile.QCC[c] !== undefined + ? context.currentTile.QCC[c] + : context.currentTile.QCD; + component.quantizationParameters = qcdOrQcc; + const codOrCoc = + context.currentTile.COC[c] !== undefined + ? context.currentTile.COC[c] + : context.currentTile.COD; + component.codingStyleParameters = codOrCoc; + } + tile.codingStyleDefaultParameters = context.currentTile.COD; +} + +// Section B.10.2 Tag trees +class TagTree { + constructor(width, height) { + const levelsLength = log2(Math.max(width, height)) + 1; + this.levels = []; + for (let i = 0; i < levelsLength; i++) { + const level = { + width, + height, + items: [], + }; + this.levels.push(level); + width = Math.ceil(width / 2); + height = Math.ceil(height / 2); } - tile.codingStyleDefaultParameters = context.currentTile.COD; } - // Section B.10.2 Tag trees - const TagTree = (function TagTreeClosure() { - // eslint-disable-next-line no-shadow - function TagTree(width, height) { - const levelsLength = log2(Math.max(width, height)) + 1; - this.levels = []; - for (let i = 0; i < levelsLength; i++) { - const level = { - width, - height, - items: [], - }; - this.levels.push(level); - width = Math.ceil(width / 2); - height = Math.ceil(height / 2); + reset(i, j) { + let currentLevel = 0, + value = 0, + level; + while (currentLevel < this.levels.length) { + level = this.levels[currentLevel]; + const index = i + j * level.width; + if (level.items[index] !== undefined) { + value = level.items[index]; + break; } + level.index = index; + i >>= 1; + j >>= 1; + currentLevel++; } - TagTree.prototype = { - reset: function TagTree_reset(i, j) { - let currentLevel = 0, - value = 0, - level; - while (currentLevel < this.levels.length) { - level = this.levels[currentLevel]; - const index = i + j * level.width; - if (level.items[index] !== undefined) { - value = level.items[index]; - break; - } - level.index = index; - i >>= 1; - j >>= 1; - currentLevel++; - } - currentLevel--; - level = this.levels[currentLevel]; - level.items[level.index] = value; - this.currentLevel = currentLevel; - delete this.value; - }, - incrementValue: function TagTree_incrementValue() { - const level = this.levels[this.currentLevel]; - level.items[level.index]++; - }, - nextLevel: function TagTree_nextLevel() { - let currentLevel = this.currentLevel; - let level = this.levels[currentLevel]; - const value = level.items[level.index]; - currentLevel--; - if (currentLevel < 0) { - this.value = value; - return false; - } + currentLevel--; + level = this.levels[currentLevel]; + level.items[level.index] = value; + this.currentLevel = currentLevel; + delete this.value; + } - this.currentLevel = currentLevel; - level = this.levels[currentLevel]; - level.items[level.index] = value; - return true; - }, - }; - return TagTree; - })(); + incrementValue() { + const level = this.levels[this.currentLevel]; + level.items[level.index]++; + } - const InclusionTree = (function InclusionTreeClosure() { - // eslint-disable-next-line no-shadow - function InclusionTree(width, height, defaultValue) { - const levelsLength = log2(Math.max(width, height)) + 1; - this.levels = []; - for (let i = 0; i < levelsLength; i++) { - const items = new Uint8Array(width * height); - for (let j = 0, jj = items.length; j < jj; j++) { - items[j] = defaultValue; - } + nextLevel() { + let currentLevel = this.currentLevel; + let level = this.levels[currentLevel]; + const value = level.items[level.index]; + currentLevel--; + if (currentLevel < 0) { + this.value = value; + return false; + } - const level = { - width, - height, - items, - }; - this.levels.push(level); + this.currentLevel = currentLevel; + level = this.levels[currentLevel]; + level.items[level.index] = value; + return true; + } +} - width = Math.ceil(width / 2); - height = Math.ceil(height / 2); +class InclusionTree { + constructor(width, height, defaultValue) { + const levelsLength = log2(Math.max(width, height)) + 1; + this.levels = []; + for (let i = 0; i < levelsLength; i++) { + const items = new Uint8Array(width * height); + for (let j = 0, jj = items.length; j < jj; j++) { + items[j] = defaultValue; } + + const level = { + width, + height, + items, + }; + this.levels.push(level); + + width = Math.ceil(width / 2); + height = Math.ceil(height / 2); } - InclusionTree.prototype = { - reset: function InclusionTree_reset(i, j, stopValue) { - let currentLevel = 0; - while (currentLevel < this.levels.length) { - const level = this.levels[currentLevel]; - const index = i + j * level.width; - level.index = index; - const value = level.items[index]; + } - if (value === 0xff) { - break; - } + reset(i, j, stopValue) { + let currentLevel = 0; + while (currentLevel < this.levels.length) { + const level = this.levels[currentLevel]; + const index = i + j * level.width; + level.index = index; + const value = level.items[index]; - if (value > stopValue) { - this.currentLevel = currentLevel; - // already know about this one, propagating the value to top levels - this.propagateValues(); - return false; - } + if (value === 0xff) { + break; + } - i >>= 1; - j >>= 1; - currentLevel++; - } - this.currentLevel = currentLevel - 1; - return true; - }, - incrementValue: function InclusionTree_incrementValue(stopValue) { - const level = this.levels[this.currentLevel]; - level.items[level.index] = stopValue + 1; + if (value > stopValue) { + this.currentLevel = currentLevel; + // already know about this one, propagating the value to top levels this.propagateValues(); - }, - propagateValues: function InclusionTree_propagateValues() { - let levelIndex = this.currentLevel; - let level = this.levels[levelIndex]; - const currentValue = level.items[level.index]; - while (--levelIndex >= 0) { - level = this.levels[levelIndex]; - level.items[level.index] = currentValue; - } - }, - nextLevel: function InclusionTree_nextLevel() { - let currentLevel = this.currentLevel; - let level = this.levels[currentLevel]; - const value = level.items[level.index]; - level.items[level.index] = 0xff; - currentLevel--; - if (currentLevel < 0) { - return false; - } + return false; + } - this.currentLevel = currentLevel; - level = this.levels[currentLevel]; - level.items[level.index] = value; - return true; - }, - }; - return InclusionTree; - })(); + i >>= 1; + j >>= 1; + currentLevel++; + } + this.currentLevel = currentLevel - 1; + return true; + } - // Section D. Coefficient bit modeling - const BitModel = (function BitModelClosure() { - const UNIFORM_CONTEXT = 17; - const RUNLENGTH_CONTEXT = 18; - // Table D-1 - // The index is binary presentation: 0dddvvhh, ddd - sum of Di (0..4), - // vv - sum of Vi (0..2), and hh - sum of Hi (0..2) - // prettier-ignore - const LLAndLHContextsLabel = new Uint8Array([ + incrementValue(stopValue) { + const level = this.levels[this.currentLevel]; + level.items[level.index] = stopValue + 1; + this.propagateValues(); + } + + propagateValues() { + let levelIndex = this.currentLevel; + let level = this.levels[levelIndex]; + const currentValue = level.items[level.index]; + while (--levelIndex >= 0) { + level = this.levels[levelIndex]; + level.items[level.index] = currentValue; + } + } + + nextLevel() { + let currentLevel = this.currentLevel; + let level = this.levels[currentLevel]; + const value = level.items[level.index]; + level.items[level.index] = 0xff; + currentLevel--; + if (currentLevel < 0) { + return false; + } + + this.currentLevel = currentLevel; + level = this.levels[currentLevel]; + level.items[level.index] = value; + return true; + } +} + +// Section D. Coefficient bit modeling +const BitModel = (function BitModelClosure() { + const UNIFORM_CONTEXT = 17; + const RUNLENGTH_CONTEXT = 18; + // Table D-1 + // The index is binary presentation: 0dddvvhh, ddd - sum of Di (0..4), + // vv - sum of Vi (0..2), and hh - sum of Hi (0..2) + // prettier-ignore + const LLAndLHContextsLabel = new Uint8Array([ 0, 5, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 1, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8 ]); - // prettier-ignore - const HLContextLabel = new Uint8Array([ + // prettier-ignore + const HLContextLabel = new Uint8Array([ 0, 3, 4, 0, 5, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 1, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8 ]); - // prettier-ignore - const HHContextLabel = new Uint8Array([ + // prettier-ignore + const HHContextLabel = new Uint8Array([ 0, 1, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 4, 5, 0, 4, 5, 5, 0, 5, 5, 5, 0, 0, 0, 0, 0, 6, 7, 7, 0, 7, 7, 7, 0, 7, 7, 7, 0, 0, 0, 0, 0, 8, 8, 8, 0, 8, 8, 8, 0, 8, 8, 8, 0, 0, 0, 0, 0, 8, 8, 8, 0, 8, 8, 8, 0, 8, 8, 8 ]); - // eslint-disable-next-line no-shadow - function BitModel(width, height, subband, zeroBitPlanes, mb) { + // eslint-disable-next-line no-shadow + class BitModel { + constructor(width, height, subband, zeroBitPlanes, mb) { this.width = width; this.height = height; @@ -1797,587 +1796,551 @@ const JpxImage = (function JpxImageClosure() { this.reset(); } - BitModel.prototype = { - setDecoder: function BitModel_setDecoder(decoder) { - this.decoder = decoder; - }, - reset: function BitModel_reset() { - // We have 17 contexts that are accessed via context labels, - // plus the uniform and runlength context. - this.contexts = new Int8Array(19); + setDecoder(decoder) { + this.decoder = decoder; + } - // Contexts are packed into 1 byte: - // highest 7 bits carry the index, lowest bit carries mps - this.contexts[0] = (4 << 1) | 0; - this.contexts[UNIFORM_CONTEXT] = (46 << 1) | 0; - this.contexts[RUNLENGTH_CONTEXT] = (3 << 1) | 0; - }, - setNeighborsSignificance: function BitModel_setNeighborsSignificance( - row, - column, - index - ) { - const neighborsSignificance = this.neighborsSignificance; - const width = this.width, - height = this.height; - const left = column > 0; - const right = column + 1 < width; - let i; + reset() { + // We have 17 contexts that are accessed via context labels, + // plus the uniform and runlength context. + this.contexts = new Int8Array(19); - if (row > 0) { - i = index - width; - if (left) { - neighborsSignificance[i - 1] += 0x10; - } - if (right) { - neighborsSignificance[i + 1] += 0x10; - } - neighborsSignificance[i] += 0x04; - } + // Contexts are packed into 1 byte: + // highest 7 bits carry the index, lowest bit carries mps + this.contexts[0] = (4 << 1) | 0; + this.contexts[UNIFORM_CONTEXT] = (46 << 1) | 0; + this.contexts[RUNLENGTH_CONTEXT] = (3 << 1) | 0; + } - if (row + 1 < height) { - i = index + width; - if (left) { - neighborsSignificance[i - 1] += 0x10; - } - if (right) { - neighborsSignificance[i + 1] += 0x10; - } - neighborsSignificance[i] += 0x04; - } + setNeighborsSignificance(row, column, index) { + const neighborsSignificance = this.neighborsSignificance; + const width = this.width, + height = this.height; + const left = column > 0; + const right = column + 1 < width; + let i; + if (row > 0) { + i = index - width; if (left) { - neighborsSignificance[index - 1] += 0x01; + neighborsSignificance[i - 1] += 0x10; } if (right) { - neighborsSignificance[index + 1] += 0x01; + neighborsSignificance[i + 1] += 0x10; } - neighborsSignificance[index] |= 0x80; - }, - runSignificancePropagationPass: function BitModel_runSignificancePropagationPass() { - const decoder = this.decoder; - const width = this.width, - height = this.height; - const coefficentsMagnitude = this.coefficentsMagnitude; - const coefficentsSign = this.coefficentsSign; - const neighborsSignificance = this.neighborsSignificance; - const processingFlags = this.processingFlags; - const contexts = this.contexts; - const labels = this.contextLabelTable; - const bitsDecoded = this.bitsDecoded; - const processedInverseMask = ~1; - const processedMask = 1; - const firstMagnitudeBitMask = 2; + neighborsSignificance[i] += 0x04; + } - for (let i0 = 0; i0 < height; i0 += 4) { - for (let j = 0; j < width; j++) { - let index = i0 * width + j; - for (let i1 = 0; i1 < 4; i1++, index += width) { - const i = i0 + i1; - if (i >= height) { - break; - } - // clear processed flag first - processingFlags[index] &= processedInverseMask; + if (row + 1 < height) { + i = index + width; + if (left) { + neighborsSignificance[i - 1] += 0x10; + } + if (right) { + neighborsSignificance[i + 1] += 0x10; + } + neighborsSignificance[i] += 0x04; + } - if ( - coefficentsMagnitude[index] || - !neighborsSignificance[index] - ) { - continue; - } + if (left) { + neighborsSignificance[index - 1] += 0x01; + } + if (right) { + neighborsSignificance[index + 1] += 0x01; + } + neighborsSignificance[index] |= 0x80; + } - const contextLabel = labels[neighborsSignificance[index]]; - const decision = decoder.readBit(contexts, contextLabel); - if (decision) { - const sign = this.decodeSignBit(i, j, index); - coefficentsSign[index] = sign; - coefficentsMagnitude[index] = 1; - this.setNeighborsSignificance(i, j, index); - processingFlags[index] |= firstMagnitudeBitMask; - } - bitsDecoded[index]++; - processingFlags[index] |= processedMask; + runSignificancePropagationPass() { + const decoder = this.decoder; + const width = this.width, + height = this.height; + const coefficentsMagnitude = this.coefficentsMagnitude; + const coefficentsSign = this.coefficentsSign; + const neighborsSignificance = this.neighborsSignificance; + const processingFlags = this.processingFlags; + const contexts = this.contexts; + const labels = this.contextLabelTable; + const bitsDecoded = this.bitsDecoded; + const processedInverseMask = ~1; + const processedMask = 1; + const firstMagnitudeBitMask = 2; + + for (let i0 = 0; i0 < height; i0 += 4) { + for (let j = 0; j < width; j++) { + let index = i0 * width + j; + for (let i1 = 0; i1 < 4; i1++, index += width) { + const i = i0 + i1; + if (i >= height) { + break; } + // clear processed flag first + processingFlags[index] &= processedInverseMask; + + if (coefficentsMagnitude[index] || !neighborsSignificance[index]) { + continue; + } + + const contextLabel = labels[neighborsSignificance[index]]; + const decision = decoder.readBit(contexts, contextLabel); + if (decision) { + const sign = this.decodeSignBit(i, j, index); + coefficentsSign[index] = sign; + coefficentsMagnitude[index] = 1; + this.setNeighborsSignificance(i, j, index); + processingFlags[index] |= firstMagnitudeBitMask; + } + bitsDecoded[index]++; + processingFlags[index] |= processedMask; } } - }, - decodeSignBit: function BitModel_decodeSignBit(row, column, index) { - const width = this.width, - height = this.height; - const coefficentsMagnitude = this.coefficentsMagnitude; - const coefficentsSign = this.coefficentsSign; - let contribution, sign0, sign1, significance1; - let contextLabel, decoded; + } + } - // calculate horizontal contribution - significance1 = column > 0 && coefficentsMagnitude[index - 1] !== 0; - if (column + 1 < width && coefficentsMagnitude[index + 1] !== 0) { - sign1 = coefficentsSign[index + 1]; - if (significance1) { - sign0 = coefficentsSign[index - 1]; - contribution = 1 - sign1 - sign0; - } else { - contribution = 1 - sign1 - sign1; - } - } else if (significance1) { + decodeSignBit(row, column, index) { + const width = this.width, + height = this.height; + const coefficentsMagnitude = this.coefficentsMagnitude; + const coefficentsSign = this.coefficentsSign; + let contribution, sign0, sign1, significance1; + let contextLabel, decoded; + + // calculate horizontal contribution + significance1 = column > 0 && coefficentsMagnitude[index - 1] !== 0; + if (column + 1 < width && coefficentsMagnitude[index + 1] !== 0) { + sign1 = coefficentsSign[index + 1]; + if (significance1) { sign0 = coefficentsSign[index - 1]; - contribution = 1 - sign0 - sign0; + contribution = 1 - sign1 - sign0; } else { - contribution = 0; + contribution = 1 - sign1 - sign1; } - const horizontalContribution = 3 * contribution; + } else if (significance1) { + sign0 = coefficentsSign[index - 1]; + contribution = 1 - sign0 - sign0; + } else { + contribution = 0; + } + const horizontalContribution = 3 * contribution; - // calculate vertical contribution and combine with the horizontal - significance1 = row > 0 && coefficentsMagnitude[index - width] !== 0; - if (row + 1 < height && coefficentsMagnitude[index + width] !== 0) { - sign1 = coefficentsSign[index + width]; - if (significance1) { - sign0 = coefficentsSign[index - width]; - contribution = 1 - sign1 - sign0 + horizontalContribution; - } else { - contribution = 1 - sign1 - sign1 + horizontalContribution; - } - } else if (significance1) { + // calculate vertical contribution and combine with the horizontal + significance1 = row > 0 && coefficentsMagnitude[index - width] !== 0; + if (row + 1 < height && coefficentsMagnitude[index + width] !== 0) { + sign1 = coefficentsSign[index + width]; + if (significance1) { sign0 = coefficentsSign[index - width]; - contribution = 1 - sign0 - sign0 + horizontalContribution; + contribution = 1 - sign1 - sign0 + horizontalContribution; } else { - contribution = horizontalContribution; + contribution = 1 - sign1 - sign1 + horizontalContribution; } + } else if (significance1) { + sign0 = coefficentsSign[index - width]; + contribution = 1 - sign0 - sign0 + horizontalContribution; + } else { + contribution = horizontalContribution; + } - if (contribution >= 0) { - contextLabel = 9 + contribution; - decoded = this.decoder.readBit(this.contexts, contextLabel); - } else { - contextLabel = 9 - contribution; - decoded = this.decoder.readBit(this.contexts, contextLabel) ^ 1; - } - return decoded; - }, - runMagnitudeRefinementPass: function BitModel_runMagnitudeRefinementPass() { - const decoder = this.decoder; - const width = this.width, - height = this.height; - const coefficentsMagnitude = this.coefficentsMagnitude; - const neighborsSignificance = this.neighborsSignificance; - const contexts = this.contexts; - const bitsDecoded = this.bitsDecoded; - const processingFlags = this.processingFlags; - const processedMask = 1; - const firstMagnitudeBitMask = 2; - const length = width * height; - const width4 = width * 4; + if (contribution >= 0) { + contextLabel = 9 + contribution; + decoded = this.decoder.readBit(this.contexts, contextLabel); + } else { + contextLabel = 9 - contribution; + decoded = this.decoder.readBit(this.contexts, contextLabel) ^ 1; + } + return decoded; + } - for (let index0 = 0, indexNext; index0 < length; index0 = indexNext) { - indexNext = Math.min(length, index0 + width4); - for (let j = 0; j < width; j++) { - for (let index = index0 + j; index < indexNext; index += width) { - // significant but not those that have just become - if ( - !coefficentsMagnitude[index] || - (processingFlags[index] & processedMask) !== 0 - ) { - continue; - } + runMagnitudeRefinementPass() { + const decoder = this.decoder; + const width = this.width, + height = this.height; + const coefficentsMagnitude = this.coefficentsMagnitude; + const neighborsSignificance = this.neighborsSignificance; + const contexts = this.contexts; + const bitsDecoded = this.bitsDecoded; + const processingFlags = this.processingFlags; + const processedMask = 1; + const firstMagnitudeBitMask = 2; + const length = width * height; + const width4 = width * 4; - let contextLabel = 16; - if ((processingFlags[index] & firstMagnitudeBitMask) !== 0) { - processingFlags[index] ^= firstMagnitudeBitMask; - // first refinement - const significance = neighborsSignificance[index] & 127; - contextLabel = significance === 0 ? 15 : 14; - } - - const bit = decoder.readBit(contexts, contextLabel); - coefficentsMagnitude[index] = - (coefficentsMagnitude[index] << 1) | bit; - bitsDecoded[index]++; - processingFlags[index] |= processedMask; + for (let index0 = 0, indexNext; index0 < length; index0 = indexNext) { + indexNext = Math.min(length, index0 + width4); + for (let j = 0; j < width; j++) { + for (let index = index0 + j; index < indexNext; index += width) { + // significant but not those that have just become + if ( + !coefficentsMagnitude[index] || + (processingFlags[index] & processedMask) !== 0 + ) { + continue; } + + let contextLabel = 16; + if ((processingFlags[index] & firstMagnitudeBitMask) !== 0) { + processingFlags[index] ^= firstMagnitudeBitMask; + // first refinement + const significance = neighborsSignificance[index] & 127; + contextLabel = significance === 0 ? 15 : 14; + } + + const bit = decoder.readBit(contexts, contextLabel); + coefficentsMagnitude[index] = + (coefficentsMagnitude[index] << 1) | bit; + bitsDecoded[index]++; + processingFlags[index] |= processedMask; } } - }, - runCleanupPass: function BitModel_runCleanupPass() { - const decoder = this.decoder; - const width = this.width, - height = this.height; - const neighborsSignificance = this.neighborsSignificance; - const coefficentsMagnitude = this.coefficentsMagnitude; - const coefficentsSign = this.coefficentsSign; - const contexts = this.contexts; - const labels = this.contextLabelTable; - const bitsDecoded = this.bitsDecoded; - const processingFlags = this.processingFlags; - const processedMask = 1; - const firstMagnitudeBitMask = 2; - const oneRowDown = width; - const twoRowsDown = width * 2; - const threeRowsDown = width * 3; - let iNext; - for (let i0 = 0; i0 < height; i0 = iNext) { - iNext = Math.min(i0 + 4, height); - const indexBase = i0 * width; - const checkAllEmpty = i0 + 3 < height; - for (let j = 0; j < width; j++) { - const index0 = indexBase + j; - // using the property: labels[neighborsSignificance[index]] === 0 - // when neighborsSignificance[index] === 0 - const allEmpty = - checkAllEmpty && - processingFlags[index0] === 0 && - processingFlags[index0 + oneRowDown] === 0 && - processingFlags[index0 + twoRowsDown] === 0 && - processingFlags[index0 + threeRowsDown] === 0 && - neighborsSignificance[index0] === 0 && - neighborsSignificance[index0 + oneRowDown] === 0 && - neighborsSignificance[index0 + twoRowsDown] === 0 && - neighborsSignificance[index0 + threeRowsDown] === 0; - let i1 = 0, - index = index0; - let i = i0, - sign; - if (allEmpty) { - const hasSignificantCoefficent = decoder.readBit( - contexts, - RUNLENGTH_CONTEXT - ); - if (!hasSignificantCoefficent) { - bitsDecoded[index0]++; - bitsDecoded[index0 + oneRowDown]++; - bitsDecoded[index0 + twoRowsDown]++; - bitsDecoded[index0 + threeRowsDown]++; - continue; // next column - } - i1 = - (decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) | - decoder.readBit(contexts, UNIFORM_CONTEXT); - if (i1 !== 0) { - i = i0 + i1; - index += i1 * width; - } + } + } + runCleanupPass() { + const decoder = this.decoder; + const width = this.width, + height = this.height; + const neighborsSignificance = this.neighborsSignificance; + const coefficentsMagnitude = this.coefficentsMagnitude; + const coefficentsSign = this.coefficentsSign; + const contexts = this.contexts; + const labels = this.contextLabelTable; + const bitsDecoded = this.bitsDecoded; + const processingFlags = this.processingFlags; + const processedMask = 1; + const firstMagnitudeBitMask = 2; + const oneRowDown = width; + const twoRowsDown = width * 2; + const threeRowsDown = width * 3; + let iNext; + for (let i0 = 0; i0 < height; i0 = iNext) { + iNext = Math.min(i0 + 4, height); + const indexBase = i0 * width; + const checkAllEmpty = i0 + 3 < height; + for (let j = 0; j < width; j++) { + const index0 = indexBase + j; + // using the property: labels[neighborsSignificance[index]] === 0 + // when neighborsSignificance[index] === 0 + const allEmpty = + checkAllEmpty && + processingFlags[index0] === 0 && + processingFlags[index0 + oneRowDown] === 0 && + processingFlags[index0 + twoRowsDown] === 0 && + processingFlags[index0 + threeRowsDown] === 0 && + neighborsSignificance[index0] === 0 && + neighborsSignificance[index0 + oneRowDown] === 0 && + neighborsSignificance[index0 + twoRowsDown] === 0 && + neighborsSignificance[index0 + threeRowsDown] === 0; + let i1 = 0, + index = index0; + let i = i0, + sign; + if (allEmpty) { + const hasSignificantCoefficent = decoder.readBit( + contexts, + RUNLENGTH_CONTEXT + ); + if (!hasSignificantCoefficent) { + bitsDecoded[index0]++; + bitsDecoded[index0 + oneRowDown]++; + bitsDecoded[index0 + twoRowsDown]++; + bitsDecoded[index0 + threeRowsDown]++; + continue; // next column + } + i1 = + (decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) | + decoder.readBit(contexts, UNIFORM_CONTEXT); + if (i1 !== 0) { + i = i0 + i1; + index += i1 * width; + } + + sign = this.decodeSignBit(i, j, index); + coefficentsSign[index] = sign; + coefficentsMagnitude[index] = 1; + this.setNeighborsSignificance(i, j, index); + processingFlags[index] |= firstMagnitudeBitMask; + + index = index0; + for (let i2 = i0; i2 <= i; i2++, index += width) { + bitsDecoded[index]++; + } + + i1++; + } + for (i = i0 + i1; i < iNext; i++, index += width) { + if ( + coefficentsMagnitude[index] || + (processingFlags[index] & processedMask) !== 0 + ) { + continue; + } + + const contextLabel = labels[neighborsSignificance[index]]; + const decision = decoder.readBit(contexts, contextLabel); + if (decision === 1) { sign = this.decodeSignBit(i, j, index); coefficentsSign[index] = sign; coefficentsMagnitude[index] = 1; this.setNeighborsSignificance(i, j, index); processingFlags[index] |= firstMagnitudeBitMask; - - index = index0; - for (let i2 = i0; i2 <= i; i2++, index += width) { - bitsDecoded[index]++; - } - - i1++; - } - for (i = i0 + i1; i < iNext; i++, index += width) { - if ( - coefficentsMagnitude[index] || - (processingFlags[index] & processedMask) !== 0 - ) { - continue; - } - - const contextLabel = labels[neighborsSignificance[index]]; - const decision = decoder.readBit(contexts, contextLabel); - if (decision === 1) { - sign = this.decodeSignBit(i, j, index); - coefficentsSign[index] = sign; - coefficentsMagnitude[index] = 1; - this.setNeighborsSignificance(i, j, index); - processingFlags[index] |= firstMagnitudeBitMask; - } - bitsDecoded[index]++; - } - } - } - }, - checkSegmentationSymbol: function BitModel_checkSegmentationSymbol() { - const decoder = this.decoder; - const contexts = this.contexts; - const symbol = - (decoder.readBit(contexts, UNIFORM_CONTEXT) << 3) | - (decoder.readBit(contexts, UNIFORM_CONTEXT) << 2) | - (decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) | - decoder.readBit(contexts, UNIFORM_CONTEXT); - if (symbol !== 0xa) { - throw new JpxError("Invalid segmentation symbol"); - } - }, - }; - - return BitModel; - })(); - - // Section F, Discrete wavelet transformation - const Transform = (function TransformClosure() { - // eslint-disable-next-line no-shadow - function Transform() {} - - Transform.prototype.calculate = function transformCalculate( - subbands, - u0, - v0 - ) { - let ll = subbands[0]; - for (let i = 1, ii = subbands.length; i < ii; i++) { - ll = this.iterate(ll, subbands[i], u0, v0); - } - return ll; - }; - Transform.prototype.extend = function extend(buffer, offset, size) { - // Section F.3.7 extending... using max extension of 4 - let i1 = offset - 1, - j1 = offset + 1; - let i2 = offset + size - 2, - j2 = offset + size; - buffer[i1--] = buffer[j1++]; - buffer[j2++] = buffer[i2--]; - buffer[i1--] = buffer[j1++]; - buffer[j2++] = buffer[i2--]; - buffer[i1--] = buffer[j1++]; - buffer[j2++] = buffer[i2--]; - buffer[i1] = buffer[j1]; - buffer[j2] = buffer[i2]; - }; - Transform.prototype.iterate = function Transform_iterate( - ll, - hl_lh_hh, - u0, - v0 - ) { - const llWidth = ll.width, - llHeight = ll.height; - let llItems = ll.items; - const width = hl_lh_hh.width; - const height = hl_lh_hh.height; - const items = hl_lh_hh.items; - let i, j, k, l, u, v; - - // Interleave LL according to Section F.3.3 - for (k = 0, i = 0; i < llHeight; i++) { - l = i * 2 * width; - for (j = 0; j < llWidth; j++, k++, l += 2) { - items[l] = llItems[k]; - } - } - // The LL band is not needed anymore. - llItems = ll.items = null; - - const bufferPadding = 4; - const rowBuffer = new Float32Array(width + 2 * bufferPadding); - - // Section F.3.4 HOR_SR - if (width === 1) { - // if width = 1, when u0 even keep items as is, when odd divide by 2 - if ((u0 & 1) !== 0) { - for (v = 0, k = 0; v < height; v++, k += width) { - items[k] *= 0.5; - } - } - } else { - for (v = 0, k = 0; v < height; v++, k += width) { - rowBuffer.set(items.subarray(k, k + width), bufferPadding); - - this.extend(rowBuffer, bufferPadding, width); - this.filter(rowBuffer, bufferPadding, width); - - items.set( - rowBuffer.subarray(bufferPadding, bufferPadding + width), - k - ); - } - } - - // Accesses to the items array can take long, because it may not fit into - // CPU cache and has to be fetched from main memory. Since subsequent - // accesses to the items array are not local when reading columns, we - // have a cache miss every time. To reduce cache misses, get up to - // 'numBuffers' items at a time and store them into the individual - // buffers. The colBuffers should be small enough to fit into CPU cache. - let numBuffers = 16; - const colBuffers = []; - for (i = 0; i < numBuffers; i++) { - colBuffers.push(new Float32Array(height + 2 * bufferPadding)); - } - let b, - currentBuffer = 0; - ll = bufferPadding + height; - - // Section F.3.5 VER_SR - if (height === 1) { - // if height = 1, when v0 even keep items as is, when odd divide by 2 - if ((v0 & 1) !== 0) { - for (u = 0; u < width; u++) { - items[u] *= 0.5; - } - } - } else { - for (u = 0; u < width; u++) { - // if we ran out of buffers, copy several image columns at once - if (currentBuffer === 0) { - numBuffers = Math.min(width - u, numBuffers); - for (k = u, l = bufferPadding; l < ll; k += width, l++) { - for (b = 0; b < numBuffers; b++) { - colBuffers[b][l] = items[k + b]; - } - } - currentBuffer = numBuffers; - } - - currentBuffer--; - const buffer = colBuffers[currentBuffer]; - this.extend(buffer, bufferPadding, height); - this.filter(buffer, bufferPadding, height); - - // If this is last buffer in this group of buffers, flush all buffers. - if (currentBuffer === 0) { - k = u - numBuffers + 1; - for (l = bufferPadding; l < ll; k += width, l++) { - for (b = 0; b < numBuffers; b++) { - items[k + b] = colBuffers[b][l]; - } } + bitsDecoded[index]++; } } } - - return { - width, - height, - items, - }; - }; - return Transform; - })(); - - // Section 3.8.2 Irreversible 9-7 filter - const IrreversibleTransform = (function IrreversibleTransformClosure() { - // eslint-disable-next-line no-shadow - function IrreversibleTransform() { - Transform.call(this); } - IrreversibleTransform.prototype = Object.create(Transform.prototype); - IrreversibleTransform.prototype.filter = function irreversibleTransformFilter( - x, - offset, - length - ) { - const len = length >> 1; - offset = offset | 0; - let j, n, current, next; - - const alpha = -1.586134342059924; - const beta = -0.052980118572961; - const gamma = 0.882911075530934; - const delta = 0.443506852043971; - const K = 1.230174104914001; - const K_ = 1 / K; - - // step 1 is combined with step 3 - - // step 2 - j = offset - 3; - for (n = len + 4; n--; j += 2) { - x[j] *= K_; + checkSegmentationSymbol() { + const decoder = this.decoder; + const contexts = this.contexts; + const symbol = + (decoder.readBit(contexts, UNIFORM_CONTEXT) << 3) | + (decoder.readBit(contexts, UNIFORM_CONTEXT) << 2) | + (decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) | + decoder.readBit(contexts, UNIFORM_CONTEXT); + if (symbol !== 0xa) { + throw new JpxError("Invalid segmentation symbol"); } - - // step 1 & 3 - j = offset - 2; - current = delta * x[j - 1]; - for (n = len + 3; n--; j += 2) { - next = delta * x[j + 1]; - x[j] = K * x[j] - current - next; - if (n--) { - j += 2; - current = delta * x[j + 1]; - x[j] = K * x[j] - current - next; - } else { - break; - } - } - - // step 4 - j = offset - 1; - current = gamma * x[j - 1]; - for (n = len + 2; n--; j += 2) { - next = gamma * x[j + 1]; - x[j] -= current + next; - if (n--) { - j += 2; - current = gamma * x[j + 1]; - x[j] -= current + next; - } else { - break; - } - } - - // step 5 - j = offset; - current = beta * x[j - 1]; - for (n = len + 1; n--; j += 2) { - next = beta * x[j + 1]; - x[j] -= current + next; - if (n--) { - j += 2; - current = beta * x[j + 1]; - x[j] -= current + next; - } else { - break; - } - } - - // step 6 - if (len !== 0) { - j = offset + 1; - current = alpha * x[j - 1]; - for (n = len; n--; j += 2) { - next = alpha * x[j + 1]; - x[j] -= current + next; - if (n--) { - j += 2; - current = alpha * x[j + 1]; - x[j] -= current + next; - } else { - break; - } - } - } - }; - - return IrreversibleTransform; - })(); - - // Section 3.8.1 Reversible 5-3 filter - const ReversibleTransform = (function ReversibleTransformClosure() { - // eslint-disable-next-line no-shadow - function ReversibleTransform() { - Transform.call(this); } + } - ReversibleTransform.prototype = Object.create(Transform.prototype); - ReversibleTransform.prototype.filter = function reversibleTransformFilter( - x, - offset, - length - ) { - const len = length >> 1; - offset = offset | 0; - let j, n; - - for (j = offset, n = len + 1; n--; j += 2) { - x[j] -= (x[j - 1] + x[j + 1] + 2) >> 2; - } - - for (j = offset + 1, n = len; n--; j += 2) { - x[j] += (x[j - 1] + x[j + 1]) >> 1; - } - }; - - return ReversibleTransform; - })(); - - return JpxImage; + return BitModel; })(); +// Section F, Discrete wavelet transformation +class Transform { + constructor() { + if (this.constructor === Transform) { + unreachable("Cannot initialize Transform."); + } + } + + calculate(subbands, u0, v0) { + let ll = subbands[0]; + for (let i = 1, ii = subbands.length; i < ii; i++) { + ll = this.iterate(ll, subbands[i], u0, v0); + } + return ll; + } + + extend(buffer, offset, size) { + // Section F.3.7 extending... using max extension of 4 + let i1 = offset - 1, + j1 = offset + 1; + let i2 = offset + size - 2, + j2 = offset + size; + buffer[i1--] = buffer[j1++]; + buffer[j2++] = buffer[i2--]; + buffer[i1--] = buffer[j1++]; + buffer[j2++] = buffer[i2--]; + buffer[i1--] = buffer[j1++]; + buffer[j2++] = buffer[i2--]; + buffer[i1] = buffer[j1]; + buffer[j2] = buffer[i2]; + } + + filter(x, offset, length) { + unreachable("Abstract method `filter` called"); + } + + iterate(ll, hl_lh_hh, u0, v0) { + const llWidth = ll.width, + llHeight = ll.height; + let llItems = ll.items; + const width = hl_lh_hh.width; + const height = hl_lh_hh.height; + const items = hl_lh_hh.items; + let i, j, k, l, u, v; + + // Interleave LL according to Section F.3.3 + for (k = 0, i = 0; i < llHeight; i++) { + l = i * 2 * width; + for (j = 0; j < llWidth; j++, k++, l += 2) { + items[l] = llItems[k]; + } + } + // The LL band is not needed anymore. + llItems = ll.items = null; + + const bufferPadding = 4; + const rowBuffer = new Float32Array(width + 2 * bufferPadding); + + // Section F.3.4 HOR_SR + if (width === 1) { + // if width = 1, when u0 even keep items as is, when odd divide by 2 + if ((u0 & 1) !== 0) { + for (v = 0, k = 0; v < height; v++, k += width) { + items[k] *= 0.5; + } + } + } else { + for (v = 0, k = 0; v < height; v++, k += width) { + rowBuffer.set(items.subarray(k, k + width), bufferPadding); + + this.extend(rowBuffer, bufferPadding, width); + this.filter(rowBuffer, bufferPadding, width); + + items.set(rowBuffer.subarray(bufferPadding, bufferPadding + width), k); + } + } + + // Accesses to the items array can take long, because it may not fit into + // CPU cache and has to be fetched from main memory. Since subsequent + // accesses to the items array are not local when reading columns, we + // have a cache miss every time. To reduce cache misses, get up to + // 'numBuffers' items at a time and store them into the individual + // buffers. The colBuffers should be small enough to fit into CPU cache. + let numBuffers = 16; + const colBuffers = []; + for (i = 0; i < numBuffers; i++) { + colBuffers.push(new Float32Array(height + 2 * bufferPadding)); + } + let b, + currentBuffer = 0; + ll = bufferPadding + height; + + // Section F.3.5 VER_SR + if (height === 1) { + // if height = 1, when v0 even keep items as is, when odd divide by 2 + if ((v0 & 1) !== 0) { + for (u = 0; u < width; u++) { + items[u] *= 0.5; + } + } + } else { + for (u = 0; u < width; u++) { + // if we ran out of buffers, copy several image columns at once + if (currentBuffer === 0) { + numBuffers = Math.min(width - u, numBuffers); + for (k = u, l = bufferPadding; l < ll; k += width, l++) { + for (b = 0; b < numBuffers; b++) { + colBuffers[b][l] = items[k + b]; + } + } + currentBuffer = numBuffers; + } + + currentBuffer--; + const buffer = colBuffers[currentBuffer]; + this.extend(buffer, bufferPadding, height); + this.filter(buffer, bufferPadding, height); + + // If this is last buffer in this group of buffers, flush all buffers. + if (currentBuffer === 0) { + k = u - numBuffers + 1; + for (l = bufferPadding; l < ll; k += width, l++) { + for (b = 0; b < numBuffers; b++) { + items[k + b] = colBuffers[b][l]; + } + } + } + } + } + + return { width, height, items }; + } +} + +// Section 3.8.2 Irreversible 9-7 filter +class IrreversibleTransform extends Transform { + filter(x, offset, length) { + const len = length >> 1; + offset = offset | 0; + let j, n, current, next; + + const alpha = -1.586134342059924; + const beta = -0.052980118572961; + const gamma = 0.882911075530934; + const delta = 0.443506852043971; + const K = 1.230174104914001; + const K_ = 1 / K; + + // step 1 is combined with step 3 + + // step 2 + j = offset - 3; + for (n = len + 4; n--; j += 2) { + x[j] *= K_; + } + + // step 1 & 3 + j = offset - 2; + current = delta * x[j - 1]; + for (n = len + 3; n--; j += 2) { + next = delta * x[j + 1]; + x[j] = K * x[j] - current - next; + if (n--) { + j += 2; + current = delta * x[j + 1]; + x[j] = K * x[j] - current - next; + } else { + break; + } + } + + // step 4 + j = offset - 1; + current = gamma * x[j - 1]; + for (n = len + 2; n--; j += 2) { + next = gamma * x[j + 1]; + x[j] -= current + next; + if (n--) { + j += 2; + current = gamma * x[j + 1]; + x[j] -= current + next; + } else { + break; + } + } + + // step 5 + j = offset; + current = beta * x[j - 1]; + for (n = len + 1; n--; j += 2) { + next = beta * x[j + 1]; + x[j] -= current + next; + if (n--) { + j += 2; + current = beta * x[j + 1]; + x[j] -= current + next; + } else { + break; + } + } + + // step 6 + if (len !== 0) { + j = offset + 1; + current = alpha * x[j - 1]; + for (n = len; n--; j += 2) { + next = alpha * x[j + 1]; + x[j] -= current + next; + if (n--) { + j += 2; + current = alpha * x[j + 1]; + x[j] -= current + next; + } else { + break; + } + } + } + } +} + +// Section 3.8.1 Reversible 5-3 filter +class ReversibleTransform extends Transform { + filter(x, offset, length) { + const len = length >> 1; + offset = offset | 0; + let j, n; + + for (j = offset, n = len + 1; n--; j += 2) { + x[j] -= (x[j - 1] + x[j + 1] + 2) >> 2; + } + + for (j = offset + 1, n = len; n--; j += 2) { + x[j] += (x[j - 1] + x[j + 1]) >> 1; + } + } +} + export { JpxImage };