pdf.js/test/stats/statcmp.py

199 lines
7.7 KiB
Python
Raw Normal View History

2012-12-11 03:19:02 +09:00
from numpy import *
from scipy import stats
import json, locale
from optparse import OptionParser
VALID_GROUP_BYS = ['browser', 'pdf', 'page', 'round', 'stat']
USAGE_EXAMPLE = "%prog BASELINE CURRENT"
class TestOptions(OptionParser):
def __init__(self, **kwargs):
OptionParser.__init__(self, **kwargs)
self.add_option("--groupBy", action="append", dest="groupBy", type="string",
help="How the statistics should grouped. Valid options: " + ', '.join(VALID_GROUP_BYS) + '.', default=[])
self.set_usage(USAGE_EXAMPLE)
def verifyOptions(self, options, args):
if len(args) < 2:
self.error('There must be two comparison files arguments.')
# Veryify the group by options.
groupBy = []
if not options.groupBy:
options.groupBy = ['browser,stat', 'browser,pdf,stat']
for group in options.groupBy:
group = group.split(',')
for column in group:
if column not in VALID_GROUP_BYS:
self.error('Invalid group by option of "' + column + '"')
groupBy.append(group)
options.groupBy = groupBy
return options
## {{{ http://code.activestate.com/recipes/267662/ (r7)
import cStringIO,operator
def indent(rows, hasHeader=False, headerChar='-', delim=' | ', justify='left',
separateRows=False, prefix='', postfix='', wrapfunc=lambda x:x):
"""Indents a table by column.
- rows: A sequence of sequences of items, one sequence per row.
- hasHeader: True if the first row consists of the columns' names.
- headerChar: Character to be used for the row separator line
(if hasHeader==True or separateRows==True).
- delim: The column delimiter.
- justify: Determines how are data justified in their column.
Valid values are 'left','right' and 'center'.
- separateRows: True if rows are to be separated by a line
of 'headerChar's.
- prefix: A string prepended to each printed row.
- postfix: A string appended to each printed row.
- wrapfunc: A function f(text) for wrapping text; each element in
the table is first wrapped by this function."""
# closure for breaking logical rows to physical, using wrapfunc
def rowWrapper(row):
newRows = [wrapfunc(str(item)).split('\n') for item in row]
return [[substr or '' for substr in item] for item in map(None,*newRows)]
# break each logical row into one or more physical ones
logicalRows = [rowWrapper(row) for row in rows]
# columns of physical rows
columns = map(None,*reduce(operator.add,logicalRows))
# get the maximum of each column by the string length of its items
maxWidths = [max([len(str(item)) for item in column]) for column in columns]
rowSeparator = headerChar * (len(prefix) + len(postfix) + sum(maxWidths) + \
len(delim)*(len(maxWidths)-1))
# select the appropriate justify method
justify = {'center':str.center, 'right':str.rjust, 'left':str.ljust}[justify.lower()]
output=cStringIO.StringIO()
if separateRows: print >> output, rowSeparator
for physicalRows in logicalRows:
for row in physicalRows:
print >> output, \
prefix \
+ delim.join([justify(str(item),width) for (item,width) in zip(row,maxWidths)]) \
+ postfix
if separateRows or hasHeader: print >> output, rowSeparator; hasHeader=False
return output.getvalue()
# written by Mike Brown
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/148061
def wrap_onspace(text, width):
"""
A word-wrap function that preserves existing line breaks
and most spaces in the text. Expects that existing line
breaks are posix newlines (\n).
"""
return reduce(lambda line, word, width=width: '%s%s%s' %
(line,
' \n'[(len(line[line.rfind('\n')+1:])
+ len(word.split('\n',1)[0]
) >= width)],
word),
text.split(' ')
)
import re
def wrap_onspace_strict(text, width):
"""Similar to wrap_onspace, but enforces the width constraint:
words longer than width are split."""
wordRegex = re.compile(r'\S{'+str(width)+r',}')
return wrap_onspace(wordRegex.sub(lambda m: wrap_always(m.group(),width),text),width)
import math
def wrap_always(text, width):
"""A simple word-wrap function that wraps text on exactly width characters.
It doesn't split the text in words."""
return '\n'.join([ text[width*i:width*(i+1)] \
for i in xrange(int(math.ceil(1.*len(text)/width))) ])
def formatTime(time):
return locale.format("%.*f", (0, time), True)
# Group the stats by keys. We should really just stick these in a SQL database
# so we aren't reiventing the wheel.
def group(stats, groupBy):
vals = {}
for stat in stats:
key = []
for group in groupBy:
key.append(stat[group])
key = tuple(key)
if key not in vals:
vals[key] = []
vals[key].append(stat['time'])
return vals;
def mean(l):
return array(l).mean()
# Take the somewhat normalized stats file and flatten it so there is a row for
# every recorded stat.
def flatten(stats):
rows = []
for stat in stats:
for s in stat['stats']:
rows.append({
'browser': stat['browser'],
'page': stat['page'],
'pdf': stat['pdf'],
'round': stat['round'],
'stat': s['name'],
'time': int(s['end']) - int(s['start'])
})
return rows
# Dump various stats in a table to compare the baseline and current results.
# T-test Refresher:
# If I understand t-test correctly, p is the probability that we'll observe
# another test that is as extreme as the current result assuming the null
# hypothesis is true. P is NOT the probability of the null hypothesis.
# The null hypothesis in this case is that the baseline and current results will
# be the same. It is generally accepted that you can reject the null hypothesis
# if the p-value is less than 0.05. So if p < 0.05 we can reject the results
# are the same which doesn't necessarily mean the results are faster/slower but
# it can be implied.
def stat(baseline, current, groupBy):
labels = groupBy + ['Baseline(ms)', 'Current(ms)', '+/-', '%', 'Result(P<.05)']
baselineGroup = group(baseline, groupBy)
currentGroup = group(current, groupBy)
rows = []
for key in baselineGroup:
t, p = stats.ttest_ind(baselineGroup[key], currentGroup[key], equal_var = False)
baseline = mean(baselineGroup[key])
current = mean(currentGroup[key])
speed = ''
if p < 0.05:
speed = 'faster' if current < baseline else 'slower'
row = list(key)
row += [
formatTime(baseline),
formatTime(current),
formatTime(baseline - current),
round(100 * (1.0 * baseline - current) / baseline, 2),
speed
]
rows.append(row)
rows.sort(key=lambda row: tuple(row[0:len(groupBy)]))
print indent([labels] + rows, hasHeader=True)
def main():
optionParser = TestOptions()
options, args = optionParser.parse_args()
options = optionParser.verifyOptions(options, args)
if options == None:
sys.exit(1)
with open(args[0]) as baselineFile:
baseline = flatten(json.load(baselineFile))
with open(args[1]) as currentFile:
current = flatten(json.load(currentFile))
for groupBy in options.groupBy:
print "-- Grouped By " + ', '.join(groupBy) + ' -- '
stat(baseline, current, groupBy)
if __name__ == '__main__':
main()