pdf.js/src/core/jpg.js

1416 lines
43 KiB
JavaScript
Raw Normal View History

/* Copyright 2014 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the 'License');
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an 'AS IS' BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import { assert, BaseException, warn } from "../shared/util.js";
import { readUint16 } from "./core_utils.js";
2017-06-29 05:51:31 +09:00
class JpegError extends BaseException {
constructor(msg) {
super(`JPEG error: ${msg}`, "JpegError");
2017-06-29 05:51:31 +09:00
}
}
2017-06-29 05:51:31 +09:00
class DNLMarkerError extends BaseException {
constructor(message, scanLines) {
super(message, "DNLMarkerError");
this.scanLines = scanLines;
}
}
class EOIMarkerError extends BaseException {
constructor(msg) {
super(msg, "EOIMarkerError");
}
}
/**
* This code was forked from https://github.com/notmasteryet/jpgjs.
* The original version was created by GitHub user notmasteryet.
*
* - The JPEG specification can be found in the ITU CCITT Recommendation T.81
* (www.w3.org/Graphics/JPEG/itu-t81.pdf)
* - The JFIF specification can be found in the JPEG File Interchange Format
* (www.w3.org/Graphics/JPEG/jfif3.pdf)
* - The Adobe Application-Specific JPEG markers in the
* Supporting the DCT Filters in PostScript Level 2, Technical Note #5116
* (partners.adobe.com/public/developer/en/ps/sdk/5116.DCT_Filter.pdf)
*/
2011-11-16 08:08:13 +09:00
// prettier-ignore
const dctZigZag = new Uint8Array([
0,
1, 8,
16, 9, 2,
3, 10, 17, 24,
32, 25, 18, 11, 4,
5, 12, 19, 26, 33, 40,
48, 41, 34, 27, 20, 13, 6,
7, 14, 21, 28, 35, 42, 49, 56,
57, 50, 43, 36, 29, 22, 15,
23, 30, 37, 44, 51, 58,
59, 52, 45, 38, 31,
39, 46, 53, 60,
61, 54, 47,
55, 62,
63
]);
const dctCos1 = 4017; // cos(pi/16)
const dctSin1 = 799; // sin(pi/16)
const dctCos3 = 3406; // cos(3*pi/16)
const dctSin3 = 2276; // sin(3*pi/16)
const dctCos6 = 1567; // cos(6*pi/16)
const dctSin6 = 3784; // sin(6*pi/16)
const dctSqrt2 = 5793; // sqrt(2)
const dctSqrt1d2 = 2896; // sqrt(2) / 2
function buildHuffmanTable(codeLengths, values) {
let k = 0,
i,
j,
length = 16;
while (length > 0 && !codeLengths[length - 1]) {
length--;
2011-11-16 08:08:13 +09:00
}
const code = [{ children: [], index: 0 }];
let p = code[0],
q;
for (i = 0; i < length; i++) {
for (j = 0; j < codeLengths[i]; j++) {
p = code.pop();
p.children[p.index] = values[k];
while (p.index > 0) {
2011-11-16 08:08:13 +09:00
p = code.pop();
}
p.index++;
code.push(p);
while (code.length <= i) {
Enable auto-formatting of the entire code-base using Prettier (issue 11444) Note that Prettier, purposely, has only limited [configuration options](https://prettier.io/docs/en/options.html). The configuration file is based on [the one in `mozilla central`](https://searchfox.org/mozilla-central/source/.prettierrc) with just a few additions (to avoid future breakage if the defaults ever changes). Prettier is being used for a couple of reasons: - To be consistent with `mozilla-central`, where Prettier is already in use across the tree. - To ensure a *consistent* coding style everywhere, which is automatically enforced during linting (since Prettier is used as an ESLint plugin). This thus ends "all" formatting disussions once and for all, removing the need for review comments on most stylistic matters. Many ESLint options are now redundant, and I've tried my best to remove all the now unnecessary options (but I may have missed some). Note also that since Prettier considers the `printWidth` option as a guide, rather than a hard rule, this patch resorts to a small hack in the ESLint config to ensure that *comments* won't become too long. *Please note:* This patch is generated automatically, by appending the `--fix` argument to the ESLint call used in the `gulp lint` task. It will thus require some additional clean-up, which will be done in a *separate* commit. (On a more personal note, I'll readily admit that some of the changes Prettier makes are *extremely* ugly. However, in the name of consistency we'll probably have to live with that.)
2019-12-25 23:59:37 +09:00
code.push((q = { children: [], index: 0 }));
2011-11-16 08:08:13 +09:00
p.children[p.index] = q.children;
p = q;
}
k++;
}
if (i + 1 < length) {
// p here points to last code
code.push((q = { children: [], index: 0 }));
p.children[p.index] = q.children;
p = q;
2011-11-16 08:08:13 +09:00
}
}
return code[0].children;
}
2011-11-16 08:08:13 +09:00
function getBlockBufferOffset(component, row, col) {
return 64 * ((component.blocksPerLine + 1) * row + col);
}
function decodeScan(
data,
offset,
frame,
components,
resetInterval,
spectralStart,
spectralEnd,
successivePrev,
successive,
parseDNLMarker = false
) {
const mcusPerLine = frame.mcusPerLine;
const progressive = frame.progressive;
const startOffset = offset;
let bitsData = 0,
bitsCount = 0;
function readBit() {
if (bitsCount > 0) {
bitsCount--;
return (bitsData >> bitsCount) & 1;
}
bitsData = data[offset++];
if (bitsData === 0xff) {
const nextByte = data[offset++];
if (nextByte) {
if (nextByte === /* DNL = */ 0xdc && parseDNLMarker) {
offset += 2; // Skip marker length.
const scanLines = readUint16(data, offset);
offset += 2;
if (scanLines > 0 && scanLines !== frame.scanLines) {
throw new DNLMarkerError(
"Found DNL marker (0xFFDC) while parsing scan data",
scanLines
);
}
} else if (nextByte === /* EOI = */ 0xd9) {
if (parseDNLMarker) {
// NOTE: only 8-bit JPEG images are supported in this decoder.
const maybeScanLines = blockRow * (frame.precision === 8 ? 8 : 0);
// Heuristic to attempt to handle corrupt JPEG images with too
// large `scanLines` parameter, by falling back to the currently
// parsed number of scanLines when it's at least (approximately)
// one "half" order of magnitude smaller than expected (fixes
// issue10880.pdf, issue10989.pdf, issue15492.pdf).
if (
maybeScanLines > 0 &&
Math.round(frame.scanLines / maybeScanLines) >= 5
) {
throw new DNLMarkerError(
"Found EOI marker (0xFFD9) while parsing scan data, " +
"possibly caused by incorrect `scanLines` parameter",
maybeScanLines
Enable auto-formatting of the entire code-base using Prettier (issue 11444) Note that Prettier, purposely, has only limited [configuration options](https://prettier.io/docs/en/options.html). The configuration file is based on [the one in `mozilla central`](https://searchfox.org/mozilla-central/source/.prettierrc) with just a few additions (to avoid future breakage if the defaults ever changes). Prettier is being used for a couple of reasons: - To be consistent with `mozilla-central`, where Prettier is already in use across the tree. - To ensure a *consistent* coding style everywhere, which is automatically enforced during linting (since Prettier is used as an ESLint plugin). This thus ends "all" formatting disussions once and for all, removing the need for review comments on most stylistic matters. Many ESLint options are now redundant, and I've tried my best to remove all the now unnecessary options (but I may have missed some). Note also that since Prettier considers the `printWidth` option as a guide, rather than a hard rule, this patch resorts to a small hack in the ESLint config to ensure that *comments* won't become too long. *Please note:* This patch is generated automatically, by appending the `--fix` argument to the ESLint call used in the `gulp lint` task. It will thus require some additional clean-up, which will be done in a *separate* commit. (On a more personal note, I'll readily admit that some of the changes Prettier makes are *extremely* ugly. However, in the name of consistency we'll probably have to live with that.)
2019-12-25 23:59:37 +09:00
);
}
}
throw new EOIMarkerError(
"Found EOI marker (0xFFD9) while parsing scan data"
Enable auto-formatting of the entire code-base using Prettier (issue 11444) Note that Prettier, purposely, has only limited [configuration options](https://prettier.io/docs/en/options.html). The configuration file is based on [the one in `mozilla central`](https://searchfox.org/mozilla-central/source/.prettierrc) with just a few additions (to avoid future breakage if the defaults ever changes). Prettier is being used for a couple of reasons: - To be consistent with `mozilla-central`, where Prettier is already in use across the tree. - To ensure a *consistent* coding style everywhere, which is automatically enforced during linting (since Prettier is used as an ESLint plugin). This thus ends "all" formatting disussions once and for all, removing the need for review comments on most stylistic matters. Many ESLint options are now redundant, and I've tried my best to remove all the now unnecessary options (but I may have missed some). Note also that since Prettier considers the `printWidth` option as a guide, rather than a hard rule, this patch resorts to a small hack in the ESLint config to ensure that *comments* won't become too long. *Please note:* This patch is generated automatically, by appending the `--fix` argument to the ESLint call used in the `gulp lint` task. It will thus require some additional clean-up, which will be done in a *separate* commit. (On a more personal note, I'll readily admit that some of the changes Prettier makes are *extremely* ugly. However, in the name of consistency we'll probably have to live with that.)
2019-12-25 23:59:37 +09:00
);
2011-11-16 08:08:13 +09:00
}
throw new JpegError(
`unexpected marker ${((bitsData << 8) | nextByte).toString(16)}`
);
2011-11-16 08:08:13 +09:00
}
// unstuff 0
2011-11-16 08:08:13 +09:00
}
bitsCount = 7;
return bitsData >>> 7;
}
function decodeHuffman(tree) {
let node = tree;
while (true) {
node = node[readBit()];
switch (typeof node) {
case "number":
return node;
case "object":
continue;
2011-11-16 08:08:13 +09:00
}
throw new JpegError("invalid huffman sequence");
2011-11-16 08:08:13 +09:00
}
}
function receive(length) {
let n = 0;
while (length > 0) {
n = (n << 1) | readBit();
length--;
2011-11-16 08:08:13 +09:00
}
return n;
}
function receiveAndExtend(length) {
if (length === 1) {
return readBit() === 1 ? 1 : -1;
}
const n = receive(length);
if (n >= 1 << (length - 1)) {
return n;
2011-11-16 08:08:13 +09:00
}
return n + (-1 << length) + 1;
}
function decodeBaseline(component, blockOffset) {
const t = decodeHuffman(component.huffmanTableDC);
const diff = t === 0 ? 0 : receiveAndExtend(t);
component.blockData[blockOffset] = component.pred += diff;
let k = 1;
while (k < 64) {
const rs = decodeHuffman(component.huffmanTableAC);
const s = rs & 15,
r = rs >> 4;
if (s === 0) {
if (r < 15) {
break;
2011-11-16 08:08:13 +09:00
}
k += 16;
continue;
2011-11-16 08:08:13 +09:00
}
k += r;
const z = dctZigZag[k];
component.blockData[blockOffset + z] = receiveAndExtend(s);
k++;
2011-11-16 08:08:13 +09:00
}
}
function decodeDCFirst(component, blockOffset) {
const t = decodeHuffman(component.huffmanTableDC);
const diff = t === 0 ? 0 : receiveAndExtend(t) << successive;
component.blockData[blockOffset] = component.pred += diff;
}
function decodeDCSuccessive(component, blockOffset) {
component.blockData[blockOffset] |= readBit() << successive;
}
let eobrun = 0;
function decodeACFirst(component, blockOffset) {
if (eobrun > 0) {
eobrun--;
return;
}
let k = spectralStart;
const e = spectralEnd;
while (k <= e) {
const rs = decodeHuffman(component.huffmanTableAC);
const s = rs & 15,
r = rs >> 4;
if (s === 0) {
if (r < 15) {
eobrun = receive(r) + (1 << r) - 1;
break;
2011-11-16 08:08:13 +09:00
}
k += 16;
continue;
2011-11-16 08:08:13 +09:00
}
k += r;
const z = dctZigZag[k];
component.blockData[blockOffset + z] =
receiveAndExtend(s) * (1 << successive);
k++;
2011-11-16 08:08:13 +09:00
}
}
let successiveACState = 0,
successiveACNextValue;
function decodeACSuccessive(component, blockOffset) {
let k = spectralStart;
const e = spectralEnd;
let r = 0;
let s;
let rs;
while (k <= e) {
const offsetZ = blockOffset + dctZigZag[k];
const sign = component.blockData[offsetZ] < 0 ? -1 : 1;
switch (successiveACState) {
case 0: // initial state
rs = decodeHuffman(component.huffmanTableAC);
s = rs & 15;
r = rs >> 4;
if (s === 0) {
if (r < 15) {
eobrun = receive(r) + (1 << r);
successiveACState = 4;
} else {
r = 16;
successiveACState = 1;
}
} else {
if (s !== 1) {
throw new JpegError("invalid ACn encoding");
}
successiveACNextValue = receiveAndExtend(s);
successiveACState = r ? 2 : 3;
}
continue;
case 1: // skipping r zero items
case 2:
if (component.blockData[offsetZ]) {
component.blockData[offsetZ] += sign * (readBit() << successive);
} else {
r--;
if (r === 0) {
successiveACState = successiveACState === 2 ? 3 : 0;
}
}
break;
case 3: // set value for a zero item
if (component.blockData[offsetZ]) {
component.blockData[offsetZ] += sign * (readBit() << successive);
} else {
component.blockData[offsetZ] = successiveACNextValue << successive;
successiveACState = 0;
}
break;
case 4: // eob
if (component.blockData[offsetZ]) {
component.blockData[offsetZ] += sign * (readBit() << successive);
}
break;
2011-11-16 08:08:13 +09:00
}
k++;
}
if (successiveACState === 4) {
eobrun--;
if (eobrun === 0) {
successiveACState = 0;
2011-11-16 08:08:13 +09:00
}
}
}
let blockRow = 0;
function decodeMcu(component, decode, mcu, row, col) {
const mcuRow = (mcu / mcusPerLine) | 0;
const mcuCol = mcu % mcusPerLine;
blockRow = mcuRow * component.v + row;
const blockCol = mcuCol * component.h + col;
const blockOffset = getBlockBufferOffset(component, blockRow, blockCol);
decode(component, blockOffset);
}
function decodeBlock(component, decode, mcu) {
blockRow = (mcu / component.blocksPerLine) | 0;
const blockCol = mcu % component.blocksPerLine;
const blockOffset = getBlockBufferOffset(component, blockRow, blockCol);
decode(component, blockOffset);
}
2011-11-16 08:08:13 +09:00
const componentsLength = components.length;
let component, i, j, k, n;
let decodeFn;
if (progressive) {
if (spectralStart === 0) {
decodeFn = successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive;
2011-11-16 08:08:13 +09:00
} else {
decodeFn = successivePrev === 0 ? decodeACFirst : decodeACSuccessive;
2011-11-16 08:08:13 +09:00
}
} else {
decodeFn = decodeBaseline;
}
2011-11-16 08:08:13 +09:00
let mcu = 0,
fileMarker;
let mcuExpected;
if (componentsLength === 1) {
mcuExpected = components[0].blocksPerLine * components[0].blocksPerColumn;
} else {
mcuExpected = mcusPerLine * frame.mcusPerColumn;
}
2011-11-16 08:08:13 +09:00
let h, v;
while (mcu <= mcuExpected) {
// reset interval stuff
const mcuToRead = resetInterval
? Math.min(mcuExpected - mcu, resetInterval)
: mcuExpected;
// The `mcuToRead === 0` case should only occur when all of the expected
// MCU data has been already parsed, i.e. when `mcu === mcuExpected`, but
// some corrupt JPEG images contain more data than intended and we thus
// want to skip over any extra RSTx markers below (fixes issue11794.pdf).
if (mcuToRead > 0) {
for (i = 0; i < componentsLength; i++) {
components[i].pred = 0;
}
eobrun = 0;
if (componentsLength === 1) {
component = components[0];
for (n = 0; n < mcuToRead; n++) {
decodeBlock(component, decodeFn, mcu);
mcu++;
}
} else {
for (n = 0; n < mcuToRead; n++) {
for (i = 0; i < componentsLength; i++) {
component = components[i];
h = component.h;
v = component.v;
for (j = 0; j < v; j++) {
for (k = 0; k < h; k++) {
decodeMcu(component, decodeFn, mcu, j, k);
2011-11-16 08:08:13 +09:00
}
}
}
mcu++;
2011-11-16 08:08:13 +09:00
}
}
}
// find marker
bitsCount = 0;
fileMarker = findNextFileMarker(data, offset);
if (!fileMarker) {
break; // Reached the end of the image data without finding any marker.
}
if (fileMarker.invalid) {
// Some bad images seem to pad Scan blocks with e.g. zero bytes, skip
// past those to attempt to find a valid marker (fixes issue4090.pdf).
const partialMsg = mcuToRead > 0 ? "unexpected" : "excessive";
warn(
`decodeScan - ${partialMsg} MCU data, current marker is: ${fileMarker.invalid}`
);
offset = fileMarker.offset;
}
if (fileMarker.marker >= 0xffd0 && fileMarker.marker <= 0xffd7) {
// RSTx
offset += 2;
} else {
break;
}
2011-11-16 08:08:13 +09:00
}
return offset - startOffset;
}
// A port of poppler's IDCT method which in turn is taken from:
// Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz,
// 'Practical Fast 1-D DCT Algorithms with 11 Multiplications',
// IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989,
// 988-991.
function quantizeAndInverse(component, blockBufferOffset, p) {
const qt = component.quantizationTable,
blockData = component.blockData;
let v0, v1, v2, v3, v4, v5, v6, v7;
let p0, p1, p2, p3, p4, p5, p6, p7;
let t;
if (!qt) {
throw new JpegError("missing required Quantization Table.");
}
// inverse DCT on rows
for (let row = 0; row < 64; row += 8) {
// gather block data
p0 = blockData[blockBufferOffset + row];
p1 = blockData[blockBufferOffset + row + 1];
p2 = blockData[blockBufferOffset + row + 2];
p3 = blockData[blockBufferOffset + row + 3];
p4 = blockData[blockBufferOffset + row + 4];
p5 = blockData[blockBufferOffset + row + 5];
p6 = blockData[blockBufferOffset + row + 6];
p7 = blockData[blockBufferOffset + row + 7];
// dequant p0
p0 *= qt[row];
// check for all-zero AC coefficients
if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) {
t = (dctSqrt2 * p0 + 512) >> 10;
p[row] = t;
p[row + 1] = t;
p[row + 2] = t;
p[row + 3] = t;
p[row + 4] = t;
p[row + 5] = t;
p[row + 6] = t;
p[row + 7] = t;
continue;
}
// dequant p1 ... p7
p1 *= qt[row + 1];
p2 *= qt[row + 2];
p3 *= qt[row + 3];
p4 *= qt[row + 4];
p5 *= qt[row + 5];
p6 *= qt[row + 6];
p7 *= qt[row + 7];
// stage 4
v0 = (dctSqrt2 * p0 + 128) >> 8;
v1 = (dctSqrt2 * p4 + 128) >> 8;
v2 = p2;
v3 = p6;
v4 = (dctSqrt1d2 * (p1 - p7) + 128) >> 8;
v7 = (dctSqrt1d2 * (p1 + p7) + 128) >> 8;
v5 = p3 << 4;
v6 = p5 << 4;
// stage 3
v0 = (v0 + v1 + 1) >> 1;
v1 = v0 - v1;
t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8;
v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8;
v3 = t;
v4 = (v4 + v6 + 1) >> 1;
v6 = v4 - v6;
v7 = (v7 + v5 + 1) >> 1;
v5 = v7 - v5;
// stage 2
v0 = (v0 + v3 + 1) >> 1;
v3 = v0 - v3;
v1 = (v1 + v2 + 1) >> 1;
v2 = v1 - v2;
t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
v7 = t;
t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
v6 = t;
// stage 1
p[row] = v0 + v7;
p[row + 7] = v0 - v7;
p[row + 1] = v1 + v6;
p[row + 6] = v1 - v6;
p[row + 2] = v2 + v5;
p[row + 5] = v2 - v5;
p[row + 3] = v3 + v4;
p[row + 4] = v3 - v4;
}
// inverse DCT on columns
for (let col = 0; col < 8; ++col) {
p0 = p[col];
p1 = p[col + 8];
p2 = p[col + 16];
p3 = p[col + 24];
p4 = p[col + 32];
p5 = p[col + 40];
p6 = p[col + 48];
p7 = p[col + 56];
// check for all-zero AC coefficients
if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) {
t = (dctSqrt2 * p0 + 8192) >> 14;
// Convert to 8-bit.
if (t < -2040) {
t = 0;
} else if (t >= 2024) {
t = 255;
} else {
t = (t + 2056) >> 4;
}
blockData[blockBufferOffset + col] = t;
blockData[blockBufferOffset + col + 8] = t;
blockData[blockBufferOffset + col + 16] = t;
blockData[blockBufferOffset + col + 24] = t;
blockData[blockBufferOffset + col + 32] = t;
blockData[blockBufferOffset + col + 40] = t;
blockData[blockBufferOffset + col + 48] = t;
blockData[blockBufferOffset + col + 56] = t;
continue;
}
2014-06-17 17:09:17 +09:00
// stage 4
v0 = (dctSqrt2 * p0 + 2048) >> 12;
v1 = (dctSqrt2 * p4 + 2048) >> 12;
v2 = p2;
v3 = p6;
v4 = (dctSqrt1d2 * (p1 - p7) + 2048) >> 12;
v7 = (dctSqrt1d2 * (p1 + p7) + 2048) >> 12;
v5 = p3;
v6 = p5;
// stage 3
// Shift v0 by 128.5 << 5 here, so we don't need to shift p0...p7 when
// converting to UInt8 range later.
v0 = ((v0 + v1 + 1) >> 1) + 4112;
v1 = v0 - v1;
t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12;
v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12;
v3 = t;
v4 = (v4 + v6 + 1) >> 1;
v6 = v4 - v6;
v7 = (v7 + v5 + 1) >> 1;
v5 = v7 - v5;
// stage 2
v0 = (v0 + v3 + 1) >> 1;
v3 = v0 - v3;
v1 = (v1 + v2 + 1) >> 1;
v2 = v1 - v2;
t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
v7 = t;
t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
v6 = t;
// stage 1
p0 = v0 + v7;
p7 = v0 - v7;
p1 = v1 + v6;
p6 = v1 - v6;
p2 = v2 + v5;
p5 = v2 - v5;
p3 = v3 + v4;
p4 = v3 - v4;
// Convert to 8-bit integers.
if (p0 < 16) {
p0 = 0;
} else if (p0 >= 4080) {
p0 = 255;
} else {
p0 >>= 4;
}
if (p1 < 16) {
p1 = 0;
} else if (p1 >= 4080) {
p1 = 255;
} else {
p1 >>= 4;
}
if (p2 < 16) {
p2 = 0;
} else if (p2 >= 4080) {
p2 = 255;
} else {
p2 >>= 4;
}
if (p3 < 16) {
p3 = 0;
} else if (p3 >= 4080) {
p3 = 255;
} else {
p3 >>= 4;
}
if (p4 < 16) {
p4 = 0;
} else if (p4 >= 4080) {
p4 = 255;
} else {
p4 >>= 4;
}
if (p5 < 16) {
p5 = 0;
} else if (p5 >= 4080) {
p5 = 255;
} else {
p5 >>= 4;
}
if (p6 < 16) {
p6 = 0;
} else if (p6 >= 4080) {
p6 = 255;
} else {
p6 >>= 4;
}
if (p7 < 16) {
p7 = 0;
} else if (p7 >= 4080) {
p7 = 255;
} else {
p7 >>= 4;
}
// store block data
blockData[blockBufferOffset + col] = p0;
blockData[blockBufferOffset + col + 8] = p1;
blockData[blockBufferOffset + col + 16] = p2;
blockData[blockBufferOffset + col + 24] = p3;
blockData[blockBufferOffset + col + 32] = p4;
blockData[blockBufferOffset + col + 40] = p5;
blockData[blockBufferOffset + col + 48] = p6;
blockData[blockBufferOffset + col + 56] = p7;
}
}
function buildComponentData(frame, component) {
const blocksPerLine = component.blocksPerLine;
const blocksPerColumn = component.blocksPerColumn;
const computationBuffer = new Int16Array(64);
for (let blockRow = 0; blockRow < blocksPerColumn; blockRow++) {
for (let blockCol = 0; blockCol < blocksPerLine; blockCol++) {
const offset = getBlockBufferOffset(component, blockRow, blockCol);
quantizeAndInverse(component, offset, computationBuffer);
2011-11-16 08:08:13 +09:00
}
}
return component.blockData;
}
2011-11-16 08:08:13 +09:00
function findNextFileMarker(data, currentPos, startPos = currentPos) {
const maxPos = data.length - 1;
let newPos = startPos < currentPos ? startPos : currentPos;
if (currentPos >= maxPos) {
return null; // Don't attempt to read non-existent data and just return.
}
const currentMarker = readUint16(data, currentPos);
if (currentMarker >= 0xffc0 && currentMarker <= 0xfffe) {
return {
invalid: null,
marker: currentMarker,
offset: currentPos,
};
}
let newMarker = readUint16(data, newPos);
while (!(newMarker >= 0xffc0 && newMarker <= 0xfffe)) {
if (++newPos >= maxPos) {
return null; // Don't attempt to read non-existent data and just return.
}
newMarker = readUint16(data, newPos);
}
return {
invalid: currentMarker.toString(16),
marker: newMarker,
offset: newPos,
};
}
class JpegImage {
constructor({ decodeTransform = null, colorTransform = -1 } = {}) {
this._decodeTransform = decodeTransform;
this._colorTransform = colorTransform;
}
parse(data, { dnlScanLines = null } = {}) {
function readDataBlock() {
const length = readUint16(data, offset);
offset += 2;
let endOffset = offset + length - 2;
const fileMarker = findNextFileMarker(data, endOffset, offset);
if (fileMarker && fileMarker.invalid) {
warn(
"readDataBlock - incorrect length, current marker is: " +
fileMarker.invalid
);
endOffset = fileMarker.offset;
2011-11-16 08:08:13 +09:00
}
const array = data.subarray(offset, endOffset);
offset += array.length;
return array;
}
2011-11-16 08:08:13 +09:00
function prepareComponents(frame) {
const mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / frame.maxH);
const mcusPerColumn = Math.ceil(frame.scanLines / 8 / frame.maxV);
for (const component of frame.components) {
const blocksPerLine = Math.ceil(
(Math.ceil(frame.samplesPerLine / 8) * component.h) / frame.maxH
);
const blocksPerColumn = Math.ceil(
(Math.ceil(frame.scanLines / 8) * component.v) / frame.maxV
);
const blocksPerLineForMcu = mcusPerLine * component.h;
const blocksPerColumnForMcu = mcusPerColumn * component.v;
const blocksBufferSize =
64 * blocksPerColumnForMcu * (blocksPerLineForMcu + 1);
component.blockData = new Int16Array(blocksBufferSize);
component.blocksPerLine = blocksPerLine;
component.blocksPerColumn = blocksPerColumn;
}
frame.mcusPerLine = mcusPerLine;
frame.mcusPerColumn = mcusPerColumn;
}
2011-11-16 08:08:13 +09:00
let offset = 0;
let jfif = null;
let adobe = null;
let frame, resetInterval;
let numSOSMarkers = 0;
const quantizationTables = [];
const huffmanTablesAC = [],
huffmanTablesDC = [];
let fileMarker = readUint16(data, offset);
offset += 2;
if (fileMarker !== /* SOI (Start of Image) = */ 0xffd8) {
throw new JpegError("SOI not found");
}
fileMarker = readUint16(data, offset);
offset += 2;
markerLoop: while (fileMarker !== /* EOI (End of Image) = */ 0xffd9) {
let i, j, l;
switch (fileMarker) {
case 0xffe0: // APP0 (Application Specific)
case 0xffe1: // APP1
case 0xffe2: // APP2
case 0xffe3: // APP3
case 0xffe4: // APP4
case 0xffe5: // APP5
case 0xffe6: // APP6
case 0xffe7: // APP7
case 0xffe8: // APP8
case 0xffe9: // APP9
case 0xffea: // APP10
case 0xffeb: // APP11
case 0xffec: // APP12
case 0xffed: // APP13
case 0xffee: // APP14
case 0xffef: // APP15
case 0xfffe: // COM (Comment)
const appData = readDataBlock();
if (fileMarker === 0xffe0) {
// 'JFIF\x00'
if (
appData[0] === 0x4a &&
appData[1] === 0x46 &&
appData[2] === 0x49 &&
appData[3] === 0x46 &&
appData[4] === 0
) {
jfif = {
version: { major: appData[5], minor: appData[6] },
densityUnits: appData[7],
xDensity: (appData[8] << 8) | appData[9],
yDensity: (appData[10] << 8) | appData[11],
thumbWidth: appData[12],
thumbHeight: appData[13],
thumbData: appData.subarray(
14,
14 + 3 * appData[12] * appData[13]
),
};
2011-11-16 08:08:13 +09:00
}
}
// TODO APP1 - Exif
if (fileMarker === 0xffee) {
// 'Adobe'
if (
appData[0] === 0x41 &&
appData[1] === 0x64 &&
appData[2] === 0x6f &&
appData[3] === 0x62 &&
appData[4] === 0x65
) {
adobe = {
version: (appData[5] << 8) | appData[6],
flags0: (appData[7] << 8) | appData[8],
flags1: (appData[9] << 8) | appData[10],
transformCode: appData[11],
};
}
}
break;
case 0xffdb: // DQT (Define Quantization Tables)
const quantizationTablesLength = readUint16(data, offset);
offset += 2;
const quantizationTablesEnd = quantizationTablesLength + offset - 2;
let z;
while (offset < quantizationTablesEnd) {
const quantizationTableSpec = data[offset++];
const tableData = new Uint16Array(64);
if (quantizationTableSpec >> 4 === 0) {
// 8 bit values
for (j = 0; j < 64; j++) {
z = dctZigZag[j];
tableData[z] = data[offset++];
}
} else if (quantizationTableSpec >> 4 === 1) {
// 16 bit values
for (j = 0; j < 64; j++) {
z = dctZigZag[j];
tableData[z] = readUint16(data, offset);
offset += 2;
}
} else {
throw new JpegError("DQT - invalid table spec");
2011-11-16 08:08:13 +09:00
}
quantizationTables[quantizationTableSpec & 15] = tableData;
}
break;
2011-11-16 08:08:13 +09:00
case 0xffc0: // SOF0 (Start of Frame, Baseline DCT)
case 0xffc1: // SOF1 (Start of Frame, Extended DCT)
case 0xffc2: // SOF2 (Start of Frame, Progressive DCT)
if (frame) {
throw new JpegError("Only single frame JPEGs supported");
}
offset += 2; // Skip marker length.
frame = {};
frame.extended = fileMarker === 0xffc1;
frame.progressive = fileMarker === 0xffc2;
frame.precision = data[offset++];
const sofScanLines = readUint16(data, offset);
offset += 2;
frame.scanLines = dnlScanLines || sofScanLines;
frame.samplesPerLine = readUint16(data, offset);
offset += 2;
frame.components = [];
frame.componentIds = {};
const componentsCount = data[offset++];
let maxH = 0,
maxV = 0;
for (i = 0; i < componentsCount; i++) {
const componentId = data[offset];
const h = data[offset + 1] >> 4;
const v = data[offset + 1] & 15;
if (maxH < h) {
maxH = h;
2011-11-16 08:08:13 +09:00
}
if (maxV < v) {
maxV = v;
2011-11-16 08:08:13 +09:00
}
const qId = data[offset + 2];
l = frame.components.push({
h,
v,
quantizationId: qId,
quantizationTable: null, // See comment below.
});
frame.componentIds[componentId] = l - 1;
offset += 3;
}
frame.maxH = maxH;
frame.maxV = maxV;
prepareComponents(frame);
break;
case 0xffc4: // DHT (Define Huffman Tables)
const huffmanLength = readUint16(data, offset);
offset += 2;
for (i = 2; i < huffmanLength; ) {
const huffmanTableSpec = data[offset++];
const codeLengths = new Uint8Array(16);
let codeLengthSum = 0;
for (j = 0; j < 16; j++, offset++) {
codeLengthSum += codeLengths[j] = data[offset];
}
const huffmanValues = new Uint8Array(codeLengthSum);
for (j = 0; j < codeLengthSum; j++, offset++) {
huffmanValues[j] = data[offset];
}
i += 17 + codeLengthSum;
(huffmanTableSpec >> 4 === 0 ? huffmanTablesDC : huffmanTablesAC)[
huffmanTableSpec & 15
] = buildHuffmanTable(codeLengths, huffmanValues);
}
break;
case 0xffdd: // DRI (Define Restart Interval)
offset += 2; // Skip marker length.
resetInterval = readUint16(data, offset);
offset += 2;
break;
case 0xffda: // SOS (Start of Scan)
// A DNL marker (0xFFDC), if it exists, is only allowed at the end
// of the first scan segment and may only occur once in an image.
// Furthermore, to prevent an infinite loop, do *not* attempt to
// parse DNL markers during re-parsing of the JPEG scan data.
const parseDNLMarker = ++numSOSMarkers === 1 && !dnlScanLines;
offset += 2; // Skip marker length.
const selectorsCount = data[offset++],
components = [];
for (i = 0; i < selectorsCount; i++) {
const index = data[offset++];
const componentIndex = frame.componentIds[index];
const component = frame.components[componentIndex];
component.index = index;
const tableSpec = data[offset++];
component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4];
component.huffmanTableAC = huffmanTablesAC[tableSpec & 15];
components.push(component);
}
const spectralStart = data[offset++],
spectralEnd = data[offset++],
successiveApproximation = data[offset++];
try {
const processed = decodeScan(
data,
offset,
frame,
components,
resetInterval,
spectralStart,
spectralEnd,
successiveApproximation >> 4,
successiveApproximation & 15,
parseDNLMarker
);
offset += processed;
} catch (ex) {
if (ex instanceof DNLMarkerError) {
warn(`${ex.message} -- attempting to re-parse the JPEG image.`);
return this.parse(data, { dnlScanLines: ex.scanLines });
} else if (ex instanceof EOIMarkerError) {
warn(`${ex.message} -- ignoring the rest of the image data.`);
break markerLoop;
}
throw ex;
}
break;
2011-11-16 08:08:13 +09:00
case 0xffdc: // DNL (Define Number of Lines)
// Ignore the marker, since it's being handled in `decodeScan`.
offset += 4;
break;
case 0xffff: // Fill bytes
if (data[offset] !== 0xff) {
// Avoid skipping a valid marker.
offset--;
}
break;
default:
// Could be incorrect encoding -- the last 0xFF byte of the previous
// block could have been eaten by the encoder, hence we fallback to
// `startPos = offset - 3` when looking for the next valid marker.
const nextFileMarker = findNextFileMarker(
data,
/* currentPos = */ offset - 2,
/* startPos = */ offset - 3
);
if (nextFileMarker && nextFileMarker.invalid) {
warn(
"JpegImage.parse - unexpected data, current marker is: " +
nextFileMarker.invalid
);
offset = nextFileMarker.offset;
break;
}
if (!nextFileMarker || offset >= data.length - 1) {
warn(
"JpegImage.parse - reached the end of the image data " +
"without finding an EOI marker (0xFFD9)."
);
break markerLoop;
}
throw new JpegError(
"JpegImage.parse - unknown marker: " + fileMarker.toString(16)
);
}
fileMarker = readUint16(data, offset);
offset += 2;
}
this.width = frame.samplesPerLine;
this.height = frame.scanLines;
this.jfif = jfif;
this.adobe = adobe;
this.components = [];
for (const component of frame.components) {
// Prevent errors when DQT markers are placed after SOF{n} markers,
// by assigning the `quantizationTable` entry after the entire image
// has been parsed (fixes issue7406.pdf).
const quantizationTable = quantizationTables[component.quantizationId];
if (quantizationTable) {
component.quantizationTable = quantizationTable;
2011-11-16 08:08:13 +09:00
}
this.components.push({
index: component.index,
output: buildComponentData(frame, component),
scaleX: component.h / frame.maxH,
scaleY: component.v / frame.maxV,
blocksPerLine: component.blocksPerLine,
blocksPerColumn: component.blocksPerColumn,
});
}
this.numComponents = this.components.length;
return undefined;
}
2011-11-16 08:08:13 +09:00
_getLinearizedBlockData(width, height, isSourcePDF = false) {
const scaleX = this.width / width,
scaleY = this.height / height;
let component, componentScaleX, componentScaleY, blocksPerScanline;
let x, y, i, j, k;
let index;
let offset = 0;
let output;
const numComponents = this.components.length;
const dataLength = width * height * numComponents;
const data = new Uint8ClampedArray(dataLength);
const xScaleBlockOffset = new Uint32Array(width);
const mask3LSB = 0xfffffff8; // used to clear the 3 LSBs
let lastComponentScaleX;
for (i = 0; i < numComponents; i++) {
component = this.components[i];
componentScaleX = component.scaleX * scaleX;
componentScaleY = component.scaleY * scaleY;
offset = i;
output = component.output;
blocksPerScanline = (component.blocksPerLine + 1) << 3;
// Precalculate the `xScaleBlockOffset`. Since it doesn't depend on the
// component data, that's only necessary when `componentScaleX` changes.
if (componentScaleX !== lastComponentScaleX) {
for (x = 0; x < width; x++) {
j = 0 | (x * componentScaleX);
xScaleBlockOffset[x] = ((j & mask3LSB) << 3) | (j & 7);
}
lastComponentScaleX = componentScaleX;
}
// linearize the blocks of the component
for (y = 0; y < height; y++) {
j = 0 | (y * componentScaleY);
index = (blocksPerScanline * (j & mask3LSB)) | ((j & 7) << 3);
for (x = 0; x < width; x++) {
data[offset] = output[index + xScaleBlockOffset[x]];
offset += numComponents;
2014-02-19 00:24:59 +09:00
}
}
}
// decodeTransform contains pairs of multiplier (-256..256) and additive
let transform = this._decodeTransform;
// In PDF files, JPEG images with CMYK colour spaces are usually inverted
// (this can be observed by extracting the raw image data).
// Since the conversion algorithms (see below) were written primarily for
// the PDF use-cases, attempting to use `JpegImage` to parse standalone
// JPEG (CMYK) images may thus result in inverted images (see issue 9513).
//
// Unfortunately it's not (always) possible to tell, from the image data
// alone, if it needs to be inverted. Thus in an attempt to provide better
// out-of-box behaviour when `JpegImage` is used standalone, default to
// inverting JPEG (CMYK) images if and only if the image data does *not*
// come from a PDF file and no `decodeTransform` was passed by the user.
if (!isSourcePDF && numComponents === 4 && !transform) {
transform = new Int32Array([-256, 255, -256, 255, -256, 255, -256, 255]);
}
if (transform) {
for (i = 0; i < dataLength; ) {
for (j = 0, k = 0; j < numComponents; j++, i++, k += 2) {
data[i] = ((data[i] * transform[k]) >> 8) + transform[k + 1];
}
}
}
return data;
}
2014-02-19 00:24:59 +09:00
get _isColorConversionNeeded() {
if (this.adobe) {
// The adobe transform marker overrides any previous setting.
return !!this.adobe.transformCode;
}
if (this.numComponents === 3) {
if (this._colorTransform === 0) {
// If the Adobe transform marker is not present and the image
// dictionary has a 'ColorTransform' entry, explicitly set to `0`,
// then the colours should *not* be transformed.
return false;
} else if (
this.components[0].index === /* "R" = */ 0x52 &&
this.components[1].index === /* "G" = */ 0x47 &&
this.components[2].index === /* "B" = */ 0x42
) {
// If the three components are indexed as RGB in ASCII
// then the colours should *not* be transformed.
return false;
}
return true;
}
// `this.numComponents !== 3`
if (this._colorTransform === 1) {
// If the Adobe transform marker is not present and the image
// dictionary has a 'ColorTransform' entry, explicitly set to `1`,
// then the colours should be transformed.
return true;
}
return false;
}
_convertYccToRgb(data) {
let Y, Cb, Cr;
for (let i = 0, length = data.length; i < length; i += 3) {
Y = data[i];
Cb = data[i + 1];
Cr = data[i + 2];
data[i] = Y - 179.456 + 1.402 * Cr;
data[i + 1] = Y + 135.459 - 0.344 * Cb - 0.714 * Cr;
data[i + 2] = Y - 226.816 + 1.772 * Cb;
}
return data;
}
_convertYcckToRgb(data) {
let Y, Cb, Cr, k;
let offset = 0;
for (let i = 0, length = data.length; i < length; i += 4) {
Y = data[i];
Cb = data[i + 1];
Cr = data[i + 2];
k = data[i + 3];
data[offset++] =
-122.67195406894 +
Cb *
(-6.60635669420364e-5 * Cb +
0.000437130475926232 * Cr -
5.4080610064599e-5 * Y +
0.00048449797120281 * k -
0.154362151871126) +
Cr *
(-0.000957964378445773 * Cr +
0.000817076911346625 * Y -
0.00477271405408747 * k +
1.53380253221734) +
Y *
(0.000961250184130688 * Y -
0.00266257332283933 * k +
0.48357088451265) +
k * (-0.000336197177618394 * k + 0.484791561490776);
data[offset++] =
107.268039397724 +
Cb *
(2.19927104525741e-5 * Cb -
0.000640992018297945 * Cr +
0.000659397001245577 * Y +
0.000426105652938837 * k -
0.176491792462875) +
Cr *
(-0.000778269941513683 * Cr +
0.00130872261408275 * Y +
0.000770482631801132 * k -
0.151051492775562) +
Y *
(0.00126935368114843 * Y -
0.00265090189010898 * k +
0.25802910206845) +
k * (-0.000318913117588328 * k - 0.213742400323665);
data[offset++] =
-20.810012546947 +
Cb *
(-0.000570115196973677 * Cb -
2.63409051004589e-5 * Cr +
0.0020741088115012 * Y -
0.00288260236853442 * k +
0.814272968359295) +
Cr *
(-1.53496057440975e-5 * Cr -
0.000132689043961446 * Y +
0.000560833691242812 * k -
0.195152027534049) +
Y *
(0.00174418132927582 * Y -
0.00255243321439347 * k +
0.116935020465145) +
k * (-0.000343531996510555 * k + 0.24165260232407);
}
// Ensure that only the converted RGB data is returned.
return data.subarray(0, offset);
}
_convertYcckToCmyk(data) {
let Y, Cb, Cr;
for (let i = 0, length = data.length; i < length; i += 4) {
Y = data[i];
Cb = data[i + 1];
Cr = data[i + 2];
data[i] = 434.456 - Y - 1.402 * Cr;
data[i + 1] = 119.541 - Y + 0.344 * Cb + 0.714 * Cr;
data[i + 2] = 481.816 - Y - 1.772 * Cb;
// K in data[i + 3] is unchanged
}
return data;
}
_convertCmykToRgb(data) {
let c, m, y, k;
let offset = 0;
for (let i = 0, length = data.length; i < length; i += 4) {
c = data[i];
m = data[i + 1];
y = data[i + 2];
k = data[i + 3];
data[offset++] =
255 +
c *
(-0.00006747147073602441 * c +
0.0008379262121013727 * m +
0.0002894718188643294 * y +
0.003264231057537806 * k -
1.1185611867203937) +
m *
(0.000026374107616089405 * m -
0.00008626949158638572 * y -
0.0002748769067499491 * k -
0.02155688794978967) +
y *
(-0.00003878099212869363 * y -
0.0003267808279485286 * k +
0.0686742238595345) -
k * (0.0003361971776183937 * k + 0.7430659151342254);
data[offset++] =
255 +
c *
(0.00013596372813588848 * c +
0.000924537132573585 * m +
0.00010567359618683593 * y +
0.0004791864687436512 * k -
0.3109689587515875) +
m *
(-0.00023545346108370344 * m +
0.0002702845253534714 * y +
0.0020200308977307156 * k -
0.7488052167015494) +
y *
(0.00006834815998235662 * y +
0.00015168452363460973 * k -
0.09751927774728933) -
k * (0.0003189131175883281 * k + 0.7364883807733168);
data[offset++] =
255 +
c *
(0.000013598650411385307 * c +
0.00012423956175490851 * m +
0.0004751985097583589 * y -
0.0000036729317476630422 * k -
0.05562186980264034) +
m *
(0.00016141380598724676 * m +
0.0009692239130725186 * y +
0.0007782692450036253 * k -
0.44015232367526463) +
y *
(5.068882914068769e-7 * y +
0.0017778369011375071 * k -
0.7591454649749609) -
k * (0.0003435319965105553 * k + 0.7063770186160144);
}
// Ensure that only the converted RGB data is returned.
return data.subarray(0, offset);
}
getData({ width, height, forceRGB = false, isSourcePDF = false }) {
if (
typeof PDFJSDev === "undefined" ||
PDFJSDev.test("!PRODUCTION || TESTING")
) {
assert(
isSourcePDF === true,
'JpegImage.getData: Unexpected "isSourcePDF" value for PDF files.'
);
}
if (this.numComponents > 4) {
throw new JpegError("Unsupported color mode");
}
// Type of data: Uint8ClampedArray(width * height * numComponents)
const data = this._getLinearizedBlockData(width, height, isSourcePDF);
if (this.numComponents === 1 && forceRGB) {
const rgbData = new Uint8ClampedArray(data.length * 3);
let offset = 0;
for (const grayColor of data) {
rgbData[offset++] = grayColor;
rgbData[offset++] = grayColor;
rgbData[offset++] = grayColor;
}
return rgbData;
} else if (this.numComponents === 3 && this._isColorConversionNeeded) {
return this._convertYccToRgb(data);
} else if (this.numComponents === 4) {
if (this._isColorConversionNeeded) {
if (forceRGB) {
return this._convertYcckToRgb(data);
}
return this._convertYcckToCmyk(data);
} else if (forceRGB) {
return this._convertCmykToRgb(data);
2011-11-16 08:08:13 +09:00
}
}
return data;
}
}
Enable auto-formatting of the entire code-base using Prettier (issue 11444) Note that Prettier, purposely, has only limited [configuration options](https://prettier.io/docs/en/options.html). The configuration file is based on [the one in `mozilla central`](https://searchfox.org/mozilla-central/source/.prettierrc) with just a few additions (to avoid future breakage if the defaults ever changes). Prettier is being used for a couple of reasons: - To be consistent with `mozilla-central`, where Prettier is already in use across the tree. - To ensure a *consistent* coding style everywhere, which is automatically enforced during linting (since Prettier is used as an ESLint plugin). This thus ends "all" formatting disussions once and for all, removing the need for review comments on most stylistic matters. Many ESLint options are now redundant, and I've tried my best to remove all the now unnecessary options (but I may have missed some). Note also that since Prettier considers the `printWidth` option as a guide, rather than a hard rule, this patch resorts to a small hack in the ESLint config to ensure that *comments* won't become too long. *Please note:* This patch is generated automatically, by appending the `--fix` argument to the ESLint call used in the `gulp lint` task. It will thus require some additional clean-up, which will be done in a *separate* commit. (On a more personal note, I'll readily admit that some of the changes Prettier makes are *extremely* ugly. However, in the name of consistency we'll probably have to live with that.)
2019-12-25 23:59:37 +09:00
export { JpegImage };